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Introduction
Bile acids (BAs) are a diverse group of amphipathic steroid 
molecules that enable micelle formation and facilitate intes-
tinal absorption, emulsification, and transport of nutrients, 
lipids, and lipophilic vitamins. Recently, BAs were also recog-
nized as a potent signaling molecules implicating pleiotropic 
physiological responses (Forman et al., 1995; Makishima et al., 
1999), which includes glucose and energy metabolism (Ma et 
al., 2006; Kobayashi et al., 2007; Lefebvre et al., 2009). BAs 
are derived from catabolism of cholesterol in hepatocytes in 
a process that involves two principal pathways and activation 
of at least 17 hepatic enzymes. The classical pathway, which 
accounts for the majority of BA synthesis, is regulated by the 
rate-limiting enzyme cholesterol 7α-hydroxylase (CYP7A1). 
The alternative pathway involves an initial enzymatic step 
catalyzed by sterol-27-hydroxlase (CYP27A1), followed by 
BA hydroxylation by oxysterol 7α-hydroxylase (CYP7B1). 
Both pathways generate primary BAs that are actually the 
end products of cholesterol and are subsequently conjugated 
with taurine or glycine (Anderson et al., 1972; Ishibashi et al., 
1996; Schwarz et al., 1996).

Upon synthesis, BAs are secreted by hepatocytes and 
drained into the gallbladder via the biliary tree. Postpran-
dial contraction of the gallbladder releases BAs to the duo-
denum. In the intestine, primary BAs can be deconjugated 
and 7α-dehydroxylated by the gut bacteria to form secondary 
BAs, leading to even higher heterogeneity in this group of 
molecules (Kellogg and Wostmann, 1969; Yesair and Him-
melfarb, 1970; Gilliland and Speck, 1977; Eyssen et al., 1983; 
Jones et al., 2008; Devlin and Fischbach, 2015; Wahlström et 
al., 2016). Intestinal BAs are actively reabsorbed in the termi-
nal ileum and recirculated to the liver via the portal vein. In 

the liver, BAs are reconjugated and resecreted together with 
newly synthesized BAs. This efficient process, which allows 
recovery of the vast majority of BAs, is known as enterohe-
patic circulation (Vlahcevic et al., 1971; Angelin et al., 1982).

A minor fraction of BAs escape the enterohepatic circu-
lation, and these molecules are either excreted with the feces 
or reach the systemic circulation (Ahlberg et al., 1977). The 
latter enable activation of BA signaling outside the entero-
hepatic system, where they regulate a plethora of processes 
such as lipid and glucose homeostasis, energy expenditure, 
intestinal mobility, inflammation, configuration, and growth 
of the gut microbiome and even skeletal muscle mass (Kir-
wan et al., 1975; Islam et al., 2011; Wang et al., 2011; Guo et 
al., 2016; Wahlström et al., 2016; Benoit et al., 2017). Dys-
regulated metabolism and signaling of BAs are suggested to 
play roles in several diseases, including dyslipidemia, fatty liver 
disease, diabetes, obesity, atherosclerosis, cholestasis, gallstones, 
and cancer (Kuipers et al., 2007; Bernstein et al., 2009; Pols 
et al., 2011; Li and Chiang, 2014). In this review, we will dis-
cuss the role of BAs in regulation of the glycemic control in 
health and in type 2 diabetes mellitus (T2DM). Other roles 
and functions of BAs are concisely discussed elsewhere (de 
Aguiar Vallim et al., 2013).

BA signaling and regulation of the glycemic response
Two main receptors, farnesoid X receptor FXR (also known 
as NR1H4) and the G protein–coupled BA receptor TGR5 
(also known as GPB​AR1, M-BAR, and BG37), mediate BA 
signaling. Other suggested BA receptors include vitamin D 
receptor (VDR; Makishima et al., 2002), pregnane X recep-
tor (PXR; Staudinger et al., 2001), sphingosine-1-phosphate 
receptor 2 (S1PR2; Nagahashi et al., 2016), muscarinic M2 
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receptor (Sheikh Abdul Kadir et al., 2010), and constitutive 
androstane receptor (CAR; Cheng et al., 2017), which mainly 
regulate detoxification of the hepatotoxic species of BAs in 
addition to hepatic lipid and sterol metabolism.

FXR.� Both conjugated and nonconjugated BAs bind FXR, 
with chenodeoxycholic acid (CDCA) being the most potent 
agonist of this receptor (Makishima et al., 1999; Parks et al., 
1999; Wang et al., 1999). FXR is ubiquitously expressed in 
tissues and organs, including the liver, gut (Forman et al., 
1995; Seol et al., 1995), white adipose tissues (Cariou et al., 
2006), and heart (Zhang et al., 2003), enabling BA-mediated 
regulation of different physiological functions.

FXR forms a heterodimer with retinoic X receptor 
(RXR), thereby suppressing the expression of CYP7A1, 
the rate-limiting enzyme in BA biosynthesis, leading to at-
tenuated hepatic conversion of cholesterol to BAs. CY-
P7A1-dependent suppression by FXR is mediated by two 
mechanisms: (1) in the liver, FXR induces the expression of 
the small heterodimer partner (SHP), which in turn inhibits 
CYP7A1 expression; (2) in the gut, FXR increases the lev-
els of circulating fibroblast growth factor 19 (FGF19; FGF15 
in mice), which reduces the expression of CYP7A1 and cy-
tochrome P450 12a-hydroxylase B1 (CYP8B1), leading to 
inhibition of BA synthesis (Fig. 1). The effects of intestinal 
FGF15/19 suppression on hepatic CYP7A1 and CYP8B1 
are mediated by hepatic FGF4/βKlotho receptor (FGFR4/
βKlotho; Goodwin et al., 2000; Inagaki et al., 2005; Fig. 1). 
Overexpression of CYP7A1 in obese mice causes weight 
reduction and protection from glucose intolerance, insulin 
resistance, dyslipidemia (Li et al., 2010), liver steatosis, inflam-
mation, and fibrosis (Liu et al., 2016), suggesting that hepatic 
expression of CYP7A1 alleviates metabolic derangements 
associated with obesity.

Postprandial activation of FXR in various organs leads 
to repression of gene expression by induction of SHP (Good-
win et al., 2000) and suppression of autophagy by blocking 
both cAMP-response element–binding protein (CREB; Seok 
et al., 2014) and peroxisome proliferator-activated receptor-α 
(PPARα) activation (Lee et al., 2014). Furthermore, posttrans-
lational modifications of FXR modulate its own activity, thus 
impacting lipid and glucose sensing in both the fed and fasting 
states. These include glucose-stimulated O-GlcNAcylation of 
FXR that enhances FXR activity (Berrabah et al., 2014). The 
transcriptional activity of FXR is regulated by phosphory-
lation mediated by protein kinase C (PKC; Gineste et al., 
2008) or adenosine monophosphate–activated protein kinase 
(AMPK; Lien et al., 2014), and BA-FXR activation leads to 
enhanced FXR phosphorylation and proteasomal degrada-
tion of FXR (Hashiguchi et al., 2016). FXR methylation 
supports the transactivation of FXR and FXR target genes 
(Balasubramaniyan et al., 2012). In addition to methylation, 
acetylation increases FXR stability but inhibits FXR-RXRα 
dimerization, DNA binding, and transactivation activity 
and is regulated by p300 and Sirtuin-1 (SIRT1; Kemper et 

al., 2009). FXR acetylation is enhanced in mice models of 
obesity and T2DM (Kemper et al., 2009), and FXR acetyl-
ation exacerbates liver inflammation and glucose intoler-
ance (Kim et al., 2015).

Obese mice lacking FXR feature lower body weight 
coupled with an improved glycemic response and insulin sen-
sitivity (Prawitt et al., 2011; Zhang et al., 2012; Ryan et al., 
2014). In contrast, lean mice lacking FXR display dyslipidemia 
associated with loss of insulin sensitivity and impaired glucose 
tolerance (Ma et al., 2006). Long-term oral supplementation 
of FXR agonist (GW4064) to obese and insulin-resistant 
mice led to exacerbated weight gain, dyslipidemia, and glu-
cose intolerance (Watanabe et al., 2011). It is important to 
note that this effect was different from the improved insulin 
sensitivity that was observed upon short-term treatment with 
this agonist (Cariou et al., 2006). Collectively, whole-body 
manipulation of FXR affects different tissues leading to com-
plex alterations in glucose and energy homeostasis.

Hepatic BA-FXR signaling modulates postprandial 
glucose levels through decreased liver gluconeogenesis ac-
companied by induction of hepatic glycogen synthesis (Du-
ran-Sandoval et al., 2005; Zhang et al., 2006; Potthoff et al., 
2011; Fig. 2). Mice studies showed that after eating, induction 
of BAs secretion results in BA-FXR signaling in the liver, 
leading to stimulation of glycogen storage and inhibition of 
hepatic glycolytic and lipogenic gene expression, such as car-
bohydrate responsive element–binding protein (ChREBP) 
and sterol responsive element–binding protein 1 (SRE​BP1c; 
Watanabe et al., 2004; Duran-Sandoval et al., 2005; Ma et 
al., 2006; Fig. 2). Further studies in mice showed that FXR 
signaling in the liver causes repression of enzymes involved 
in hepatic gluconeogenesis including phosphoenolpyruvate 
carboxykinase (PEP​CK) and glucose 6-phosphatase (G6Pase; 
Zhang et al., 2006; Potthoff et al., 2011; Fig. 2). However, the 

Figure 1.  Regulation of BA synthesis by repression of Cyp7a1 is 
mediated by FXR signaling. BA-FXR signaling in the liver activates SHP, 
which negatively controls Cyp7A1 expression. Intestinal BA-FXR signaling 
induces FGF15/19 expression. Release of intestinal FGF15/19 followed by 
binding of FGF15/19 to hepatic FGFR4/βKlotho leads to repression of he-
patic Cyp7A1 and Cyp8B1.
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underlying mechanism governing FXR control of hepatic 
gluconeogenesis remains elusive and requires further investi-
gation in both the fasting and postprandial state. Interestingly, 
several mice studies suggest that FXR signaling does not di-
rectly affect liver insulin sensitivity, but rather impacts periph-
eral insulin sensitivity in tissues such as adipose tissue and 
skeletal muscle (Cariou et al., 2006; Ma et al., 2006). A recent 
study by Kim et al. (Kim et al., 2017) reported that hepatic 
deletion of both FXR and SHP improves glucose tolerance 
and fatty acid metabolism in aged mice, reversing the aging 
phenotype of increased adiposity and impaired glucose sens-
ing. This supports a key role of hepatic FXR-SHP signaling 
in controlling whole-body glucose and energy homeostasis.

BA-FXR–mediated induction of intestinal FGF15/19, 
leads to its binding to hepatic FGFR4/βKlotho, thereby 
contributing to hepatic glycogen synthesis and decreasing 
glycemia (Fig. 2; Kir et al., 2011). As such, FGF15 deficient 

mice featured hyperglycemia and impaired hepatic glycogen 
synthesis, which was ameliorated by FGF19 administration, 
suggesting a beneficial effect of FGF15/19 on energy and 
glucose metabolism (Kir et al., 2011). In concert, systemic 
administration of FGF19 to obese and diabetic mice induced 
an anti-diabetic effect (Fu et al., 2004). Similarly, a positive 
association between FGF19 and improved insulin sensitivity 
was demonstrated in T2DM patients who achieved normo-
glycemia as a result of a bariatric surgery Roux-en-Y gastric 
bypass (RYGB; Sachdev et al., 2016). Several downstream 
mechanisms have been suggested to explain the beneficial 
metabolic effects of FGF15/19, including inhibition of he-
patic gluconeogenesis by modulating G6Pase and PEP​CK 
(Potthoff et al., 2011) and stimulation of insulin-independent 
glycolysis in the brain (Morton et al., 2013). Additional mech-
anism for FGF19 function in the brain was demonstrated by 
Ryan et al. (Ryan et al., 2013), who administered FGF19 by 

Figure 2.  BA signaling controls the systemic glycemic response. In the liver BA-FXR signaling inhibits gluconeogenesis and promotes glycogen 
synthesis by negative regulation of PEP​CK, G6Pase, and ChREBP. In intestinal L cells, BA-TGR5 signaling leads to GLP-1 expression and secretion, whereas 
BA-FXR signaling inhibits GLP-1 production. The gut microbiome controls BA diversity, whereas BA composition mediates gut microbiome configuration. 
In the brain, BA-TGR5 signaling mediates satiety. In skeletal muscles and brown adipose tissue, BA-TGR5 sensing promotes T4 conversion to T3, leading to 
increased energy expenditure. In the pancreas, both BA-TGR5 and BA-FXR signaling in β cells induces insulin production. Glucose-stimulated insulin release 
is additionally promoted by BA-TGR5 signaling in α cells, which causes conversion of proglucagon to GLP-1 and GLP-1 release. TGR5-BA in immune cells 
results in inhibition of NLRP3-inflammasome and attenuated inflammation. CCL, chemokine (C-C motif) ligand; Dio2, type 2 iodothyronine deiodinase; LIP, 
liver inhibitory protein; T4, thyroxine; T3, tri-iodothyronine.
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intra-ventricular injection into the central nervous system of 
mice. This resulted in anorexigenic effect, weight loss and im-
proved glucose metabolism, which were blunted by FGF19 
inhibition, suggesting a role of FXR signaling in the satiety 
response (Fig. 2). Furthermore, recent study by Picard et al. 
(2016) revealed that FGF15 expression in the hypothalamus 
negatively regulates dorsal vagal complex neuronal activity, 
ultimately leading to lower glucagon secretion from pancre-
atic α cells. Collectively, these results suggest that intestinal, 
hepatic and neuronal activation of FGF15/19 provides a net-
work of signals leading to systemic control of the glycemic 
response in normoglycemia and in T2DM (Fig. 2).

Several recent studies highlight an additional effect of 
FXR signaling in the gastrointestinal tract. Blocking intes-
tinal FXR had a beneficial effect on glucose homeostasis 
and energy expenditure. In the intestine, FXR signaling im-
proves the kinetics of glucose 6-phosphate (G6P) absorption, 
an affect which was mitigated in FXR-deficient mice (van 
Dijk et al., 2009). Mice with an isolated intestinal deficiency 
of FXR displayed protection from development of obesity 
and glucose intolerance (Li et al., 2013; Jiang et al., 2015b), 
suggesting a central role of intestinal FXR in driving obesi-
ty-associated pathologies. In agreement with these findings, 
several studies (Li et al., 2013; Jiang et al., 2015a,b; Xie et 
al., 2017) showed that obese and diabetic mice treated with 
intestinal FXR antagonists develop a significant reduction 
in glucose intolerance, insulin resistance, fatty liver as well as 
elevated energy expenditure because of lower intestinal and 
total ceramide levels. Recently, Xie et al. (2017) reported that 
lower ceramide levels induced by blocking intestinal FXR 
led to attenuated hepatic gluconeogenesis by lowering liver 
mitochondrial acetyl-CoA levels and pyruvate carboxylase 
activity, thus adding another possible mechanism linking in-
testinal FXR signaling with hepatic regulation of gluconeo-
genesis. In contrast to studies presenting improved metabolic 
outcomes upon treatment with intestinal FXR antagonist or 
in mice lacking intestinal FXR, Fang et al. (2015) showed 
that the administration of intestinal FXR agonist fexaramine 
to obese and diabetic mice reduced weight gain, glucose in-
tolerance and insulin resistance along with increased energy 
expenditure. However, the metabolic phenotype shown with 
fexaramine was abrogated in mice lacking TGR5, suggesting 
that this drug may partially regulate TGR5 signaling in addi-
tion to FXR signaling. Collectively, most studies demonstrate 
that activation of intestinal FXR has a detrimental effect on 
the glycemic response and energy expenditure in response to 
obesity, suggesting that inhibition of intestinal FXR signaling 
has a potential for treating hyperglycemia. Additional mech-
anisms of intestinal FXR signaling and its outcomes merit 
further studies, including possible effects on glucose turnover 
and G6P absorption (van Dijk et al., 2009).

TGR5.� TGR5 is a G protein–coupled receptor expressed in 
many organs and tissues including the intestine, gallbladder, 
brown and white adipose tissues, skeletal muscle, brain and 

the pancreas. BA activation of TGR5 leads to cAMP produc-
tion, which in turn activates protein kinase A (PKA) path-
ways in different tissues and cell types (Kawamata et al., 
2003; Katsuma et al., 2005).

Activation of TGR5 by BAs promotes glucagon like 
peptide-1 (GLP-1) secretion from intestinal L cells (Fig. 2). 
This peptide acts on the pancreatic β cells and regulates 
glucose-stimulated insulin secretion (Katsuma et al., 2005; 
Fig. 2). TGR5 signaling in intestinal L cells was suggested to 
induce mitochondrial oxidative phosphorylation, a rise in the 
ATP/ADP ratio, subsequent closure of the ATP-dependent 
potassium channel (KATP) and enhanced mobilization of 
intracellular calcium, leading to GLP-1 secretion and im-
provement in glucose homeostasis (Thomas et al., 2009). Tra-
belsi et al. (2015) found that GLP-1 secretion by intestinal L 
cells is negatively regulated by FXR through inhibition of 
pro-glucagon gene expression and suppression of GLP-1 se-
cretion (Fig.  2). These results suggest that BA activation of 
both TGR5 and FXR in intestinal L cells can induce opposite 
effects on GLP-1 secretion and production. However, TGR5 
activation in L cells likely occurs rapidly after food ingestion, 
whereas activation of FXR induces a more delayed response 
that requires transcriptional activation. This difference leads to 
a temporal separation between postprandial positive effects of 
BA-TGR5 signaling on GLP-1 secretion and FXR-mediated 
inhibition of GLP-1 release (Trabelsi et al., 2015; Fig.  2). 
In accordance, several studies reported that T2DM patients 
who achieved normoglycemia as a result of RYGB bariatric 
surgery, featured a marked increase in fasting and postpran-
dial BAs. The change in BA levels positively correlated with 
FGF19, GLP-1 and PYY (Dutia et al., 2015; Sachdev et al., 
2016), but no causative relationship between BA-TGR5 sig-
naling and incretin levels was pursued in these patients.

Mice overexpressing TGR5 that were fed a high-fat diet 
(HFD) featured improved glucose-stimulated insulin secre-
tion compared with wild-type mice, and similar results were 
reported in obese and diabetic mice treated with TGR5 ago-
nists exhibiting reduced hepatic glucose production (Thomas 
et al., 2009). Conversely, TGR5-deficient mice displayed glu-
cose intolerance and impaired insulin secretion in response 
to obesity (Thomas et al., 2009) that were abrogated by the 
administration of TGR5 agonists (Pellicciari et al., 2009; Bri-
ere et al., 2015). In light of the beneficial effects of TGR5 sig-
naling, a substantial reduction in hyperglycemia and elevated 
GLP-1 was observed in a small group of T2DM patients who 
received a high dose of the TGR5 agonist SB-756050 (Hodge 
and Nunez, 2016). However, studies in rodents show that the 
effect of systemic exposure to TGR5 agonists increases gall-
bladder volume (Briere et al., 2015). Thus, an ideal TGR5 
agonist would be intestinal-specific agonist reaching L cells 
without affecting other systemic tissues. Indeed, Lasalle et al. 
(2017) recently described a novel topical intestinal agonist of 
TGR5 that was given orally to obese and insulin-resistant 
mice, leading to prominent elevation in GLP-1 levels along 
with significant improvement in glucose tolerance. Intestinal 
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TGR5 agonist did not cause a significant change in gallblad-
der size in lean mice. The impact of intestinal TGR5 agonist 
on human gallbladder and its therapeutic potential for T2DM 
in humans requires further study.

In addition to GLP-1 modulation, TGR5 can induce 
cAMP-dependent thyroid hormone activating enzyme type 
2 iodothyronine deiodinase, causing elevated energy ex-
penditure in brown adipocytes and skeletal muscles. This is 
achieved by converting inactive thyroxine (T4) into active 
tri-iodothyronine (T3) that critically determinates thyroid 
hormone receptor regulation of energy expenditure (Wata-
nabe et al., 2006; Fig. 2). In concert with the results in rodents, 
Patti et al. (2009) found that obese individuals who undergo 
RYGB had elevated levels of BAs that were inversely correlated 
with thyroid-stimulating hormone (TSH) levels compared 
with nonoperated obese controls. However, the mechanism 
of action of BAs on TSH production remains unknown.

Another mechanism possibly connecting BA signaling 
and elevated energy expenditure was proposed recently by 
Worthmann et al. (2017). They showed that cold exposure 
in mice triggered cholesterol lipoprotein uptake in brown 
adipose tissue and hepatic Cyp7b1 expression. This led to 
BA catabolism from cholesterol by the alternative pathway, 
which in turn caused modifications in the gut microbiome 
that facilitated adaptive thermogenesis. The authors observed 
lower hepatic expression of Cyp7b1 in obese patients with 
T2DM (Worthmann et al., 2017), but the clinical relevance 
of cold-induced BA synthesis remains unknown. Interestingly, 
oral supplementation of the BA CDCA to women led to 
increased brown adipose tissue activity and glucose uptake 
accompanied with increased energy expenditure, but the 
mechanism involved in BA stimulation of brown adipose tis-
sue activity in humans is unclear (Broeders et al., 2015).

Pancreatic β cells express both TGR5 (Kumar et 
al., 2012) and FXR (Renga et al., 2010), promoting glu-
cose-stimulated insulin secretion by increasing intracellular 
calcium concentration (Fig.  2). FXR additionally mediates 
the induction of insulin transcription (Renga et al., 2010). 
As mentioned in the FXR section, FXR-deficient mice are 
protected from obesity-induced glucose intolerance. Simi-
lar insulin levels and pancreatic islet mass were observed in 
obese mice lacking FXR and wild-type mice, suggesting that 
the protection from obesity and glucose tolerance that was 
found in FXR-deficient mice cannot be explained merely 
by compensation through enhanced β cell insulin secretion 
(Schittenhelm et al., 2015). Interestingly, pancreatic α cells 
also express TGR5. Activation of TGR5 by BA switches the 
α cell secretory phenotype from glucagon to GLP-1, thus 
promoting a paracrine effect on β cells to stimulate insulin 
secretion (Kumar et al., 2016; Fig. 2).

Collectively, manipulating FXR and TGR5 signaling in 
rodents and humans plays pivotal roles in regulating glucose 
metabolism via signaling in different organs (Fig. 2). In most 
studies, intestinal FXR activation causes deleterious effects on 
hyperglycemia, whereas TGR5 signaling improves glycemic 

control and energy homeostasis. Consequently, activation of 
TGR5 signaling coupled with blocking intestinal FXR may 
serve as an innovative approach for controlling the glyce-
mic response in T2DM patients. However, the tissue-specific 
functions and the long-term effects of FXR and TGR5 sig-
naling in different environmental conditions such as different 
diets and nutritional states, which modulates systemic glucose 
control, merits further investigation.

Factors regulating the BA pool
Several factors influence BA concentration and consequently 
BA-FXR and TGR5 signaling (Fig. 2). First, the concentra-
tion of BAs depends on food transit time. As such, BA pools 
are higher in the postprandial in comparison with the fast-
ing state (Angelin et al., 1982; Li et al., 2012; Haeusler et 
al., 2016). This is a result of enhanced postprandial BAs se-
cretion into the small intestine, increased enterohepatic re-
absorption, and, possibly, enhanced transcription and activity 
of hepatic CYP7A1 (Li et al., 2012). Second, obesity impacts 
the BA pool (Fig.  2). In response to a mixed meal, obese 
subjects feature slightly higher circulating levels of BAs (Hae-
usler et al., 2016). More specifically, other studies showed that 
the changes in BA levels observed in obese subjects include 
alterations in the BA ratio and blunted excursion of gly-
cine-conjugated BAs compared with lean subjects (Glicks-
man et al., 2010; Ahmad et al., 2013; Haeusler et al., 2016). 
The difference in BA composition between lean and obese 
subjects can be partially explained by the reduced expression 
of some hepatic BA transporters, coupled with an increase 
in 12-α hydroxylated BA synthesis (Haeusler et al., 2016). 
Third, insulin and glucose significantly alter BA composition 
and abundance (Fig. 2). Mice treated with streptozotocin to 
induce hyperglycemia or obese and diabetic mice display el-
evated serum levels of BAs and a larger BA pool. This effect 
could be mediated by induction of Cyp7a1 mRNA expres-
sion by increased acetylation and decreased methylation of the 
Cyp7a1 gene promoter (Li et al., 2012). Consistent with the 
results in rodents, humans undergoing oral glucose tolerance 
testing showed increased levels of several BAs (Shaham et al., 
2008). An euglycemic-hyperinsulinemic clamp study in hu-
mans found that insulin acutely caused a significant reduction 
in circulating BAs and that this effect was blunted in obese 
subjects (Haeusler et al., 2016). In humans, elevated levels of 
12-hydroxylated BAs were associated with insulin resistance 
(Haeusler et al., 2013). Haeusler et al. (2012) investigated the 
mechanism for this difference in the BA pool and found that 
in mice with normal physiology, insulin signaling activating 
FoxO1 maintains the production of 12-hydroxylated BAs by 
up-regulation of Cyp8b1 and normal FXR activity. In obese 
and insulin-resistant mice, the impaired insulin and FoxO1 
signaling leads to an excess of 12-hydroxylated BAs. Fourth, 
the daily circadian rhythm influences the BA pool, leading 
to a significant increase after feeding (Gälman et al., 2005; Le 
Martelot et al., 2009; Fig. 2). In mice, these diurnal changes 
seem to be regulated by the transcription of Cyp7a1 (Le Mar-

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/215/2/383/1765282/jem
_20171965.pdf by guest on 08 February 2026



Bile acids in glucose metabolism in health and disease | Shapiro et al.388

telot et al., 2009), by the clock gene Rev-erbα (Duez et al., 
2008), and by Fgf15 (Han et al., 2015). Finally, sex hormones 
were suggested to affect BA metabolism, but controversial 
findings have been reported on the differences in baseline 
fasting BA levels between men and women (Gälman et al., 
2011; Ho et al., 2013; Bathena et al., 2015).

BAs and the gut microbiome
The gut microbiome plays key roles in BA synthesis, modi-
fication, and signaling by transforming host-derived primary 
BAs into secondary BAs and by their deconjugation (e.g., re-
moval of glycine or taurine) via the enzymatic activity of bile 
salt hydrolases (Swann et al., 2011). Mice treated with antibi-
otics or germ-free mice displayed a predominance of primary 
BAs with a reduced secondary BA pool, suggesting a central 
role of the gut microbiome in generating BA diversity. The 
lower BA diversity in microbiome-depleted mice is accom-
panied by enhanced hepatic expression of CYP7A1 and re-
duced ileal expression of FGF15 and SHP (Sayin et al., 2013; 
Wahlström et al., 2016). These differences in gene expression 
were abrogated upon colonization of germ-free mice with 
bacteria (Wahlström et al., 2017). Sayin et al. (2013) showed 
that BA diversity is controlled by the gut microbiome in an 
FXR-dependent manner and that it affects the synthesis of 
primary BAs by regulating FGF15 and CYP7A1 expression 
along with conjugation and absorption of BAs. Moreover, 
several studies suggested that BAs may directly affect bacterial 
composition, creating a dynamic equilibrium between BAs 
and the gut microbiome composition and function (Islam et 
al., 2011; Kakiyama et al., 2013; Fig. 2).

BA-FXR signaling and the associated modification 
in microbiome composition may be clinically relevant, be-
cause the beneficial effects of bariatric surgery on glucose 
and body weight are also associated with changes in the gut 
microbial communities and are FXR dependent (Ryan et al., 
2014; Parséus et al., 2017). Further investigation of the in-
teractions between the gut microbiome and BA signaling, as 
well as their impact on glycemic control, may help to identify 
whether supplementation with certain BAs can change the 
microbiome configuration and therefore be used as a treat-
ment for hyperglycemia. Studying the microbiome–BA axis 
may additionally lead to the identification of bacterial species 
that modulate BA signaling in a way that would enable tar-
geted probiotics (Degirolamo et al., 2014) or prebiotics to 
improve the glycemic response in diabetic patients.

BAs and regulation of inflammation
Inflammation is another mechanism that could be involved 
in BA regulation of the glycemic response, because chronic 
low-grade inflammation is suggested to play a role in glucose 
homeostasis (Li et al., 2012). Studies in murine models and 
primary hepatocytes show that obeticholic acid (OCA) in-
duced an anti-inflammatory response mediated by inhibition 
of NF-κB activity leading to reduced expression of proin-
flammatory cytokines (Liu et al., 2016), but there are contro-

versial studies on the effect of OCA on insulin sensitivity in 
T2DM patients (Mudaliar et al., 2013; Neuschwander-Tetri 
et al., 2015). Inflammasomes are cytoplasmic innate immune 
protein complexes activated by both pathogens and endoge-
nous tissue damage–related signals and have been suggested 
to play key roles in regulation of obesity and the glycemic re-
sponse (Vandanmagsar et al., 2011; Henao-Mejia et al., 2012; 
Rathinam and Fitzgerald, 2016). Upon activation by one of a 
variety of different signals, NOD-like receptors (NLRs) form 
mature inflammasome complex. This results in activation 
of proinflammatory caspase, processing of mature cytokines 
such as IL-1β and IL-18, and a controlled cell death termed 
pyroptosis (Rathinam and Fitzgerald, 2016). Several studies 
showed that TGR5 induces an anti-inflammatory response 
in myeloid cells by suppressing proinflammatory cytokines 
(Wang et al., 2011; Högenauer et al., 2014; Perino et al., 2014). 
Perino et al. (2014) showed that in response to diet-induced 
obesity, wild-type mice transplanted with TGR5−/− bone 
marrow or mice with myeloid-specific deletion of TGR5 
displayed exacerbated glucose intolerance, insulin resistance, 
and adipose tissue inflammation. Bone marrow–derived mac-
rophages isolated from TGR5-depleted mice exhibited a sig-
nificant reduction in LPS-induced chemokine expression and 
macrophage migration that was mediated by AKT-dependent 
activation of mTOR and CCA​AT/enhancer binding protein 
β (C/EBP β). In concert, other studies (Pols et al., 2011; Wang 
et al., 2011; Högenauer et al., 2014; Guo et al., 2015; Su et al., 
2017) showed that TGR5 activation inhibits LPS induction 
of proinflammatory cytokines and NF-κB phosphorylation 
and signaling, which was ablated in TGR5-deficient mice. 
Altogether, these studies suggest that TGR5 activation may 
decrease systemic inflammation and macrophage infiltration 
to adipose tissues that may possible lead to improved glucose 
and insulin sensitivity in obesity (Fig.  2). In line with the 
role of TGR5 in attenuated inflammation, Guo et al. (2016) 
demonstrated that BA-TGR5 signaling induces inhibition of 
the NLRP3 inflammasome, which in turn improved insulin 
sensitivity and glucose tolerance, suggesting a possible link 
between BA-TGR5 signaling in innate immune cells and 
metabolic functions (Fig. 2). Future studies will lead to mech-
anistic understanding of the interaction between BA signaling 
and immune cells and their effects on inflammation and glu-
cose metabolism in health and in T2DM.

Clinical relevance of BA signaling in glycemic control
T1DM.� The clinical impact of BAs on hyperglycemia and dia-
betes mellitus was almost exclusively investigated in studies 
focusing on T2DM in rodents and humans, as highlighted 
below. In contrast, the contribution of BAs to the pathogene-
sis of type 1 diabetes mellitus (T1DM) remains less character-
ized. A model for T1DM involves treatment of mice with 
streptozotocin, a drug exhibiting high toxicity to insu-
lin-producing β cells. Upon development of T1DM in this 
model, mice display a significant rise in total BA level in 
serum, gallbladder and intestine while featuring lower levels 
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of secondary BAs in the gallbladder and in the feces (Li et al., 
2012). Similarly, children with T1DM (even when well con-
trolled) harbor alterations in urine and serum BA composi-
tion compared with healthy controls (Balderas et al., 2013). 
Likewise, adults with well or poorly controlled T1DM showed 
an altered profile of circulating BAs in comparison to healthy 
adults (Dutta et al., 2016). Collectively, these studies suggest 
that alterations in BA composition in T1DM persist even after 
induction of normoglycemia, suggesting a potential yet un-
proven causal association between altered BA profile and the 
progression of T1DM that requires further study.

T2DM.� The contribution of BAs to the regulation of glycemic 
responses in T2DM was mainly demonstrated through the 
effects of BA sequestrants (Fig.  3) and the effects demon-
strated in patients undergoing bariatric surgery, which dra-
matically impacts both glucose levels and BA profile.

BA sequestrants are orally administered nonabsorb-
able resins that lack systemic toxicity and have been used for 
treatment of dyslipidemia (Fonseca et al., 2010). Unexpect-
edly, BA sequestrants have beneficial effects on the glycemic 
control and insulin sensitivity in T2DM patients and diabetic 
rodents (Hansen et al., 2017). Hence, one BA sequestrant, 
colesevelam, is a US Food and Drug Administration–ap-
proved drug used to treat diabetes. T2DM patients treated for 
12 weeks with colesevelam showed a significant reduction in 
HbA1c and postprandial glucose levels (Zieve et al., 2007), 
even when colesevelam was given in combination with other 
antidiabetic drugs (Fonseca et al., 2010), whereas healthy in-
sulin-sensitive subjects remained unaffected by colesevelam 
treatment (Blahová et al., 2016). Some T2DM patients treated 
with colesevelam exhibited an increase in plasma triglycer-
ide levels, which precludes colesevelam treatment in T2DM 
subjects with hyperglyceridemia (Fonseca et al., 2010). Obese 
and diabetic mice treated with colesevelam showed im-
proved glycemic response mediated by a dual mechanism: (1) 
TGR5-mediated GLP-1 secretion in L cells and (2) intestinal 
proglucagon expression (Potthoff et al., 2013; Trabelsi et al., 
2015). The beneficial metabolic effects of colesevelam were 
also dependent on FXR signaling because FXR deletion di-
minishes the effect of the drug (Prawitt et al., 2011; Trabelsi 
et al., 2015). Hypothetically, and similarly to BA sequestrants, 
future drugs impacting BA signaling may serve as future mo-
dalities for T2DM treatment.

Multiple studies in humans (Wickremesekera et al., 
2005; Schauer et al., 2017) and rodents (Kohli et al., 2013) 
demonstrated the efficacy of bariatric surgery in improving 
and even normalizing blood glucose levels in T2DM. The 
improvement in the glycemic response is observed much 
earlier than weight loss (Wickremesekera et al., 2005), sug-
gesting weight-independent beneficial effects of the surgery 
on glucose metabolism (Lutz and Bueter, 2014). Interestingly, 
bariatric surgery also influences BA metabolism and disrupts 
the enterohepatic circulation, thereby leading to a rise in BA 
levels (Ahmad et al., 2013). The mechanisms for the increase 

in BAs upon bariatric surgery are currently unclear and may 
include induction of BA reabsorption in the ileum with an 
opposite decrease of reabsorption in the liver after bile di-
version (Bhutta et al., 2015; Goncalves et al., 2015), blunted 
hepatic glucose production, an increase in intestinal gluco-
neogenesis (Goncalves et al., 2015), and changes in gut mi-
crobial communities (Ryan et al., 2014). Other mechanisms 
that control BA pool upon bariatric surgery include modified 
activation of FXR and TGR5 signaling (Ryan et al., 2014; 
Ding et al., 2016; McGavigan et al., 2017). Alterations in BA 
pool were proposed to constitute one of the mechanisms 
that positively affect glucose metabolism after bariatric sur-
gery (Ferrannini et al., 2015). Obese FXR-deleted mice that 
undergo bariatric surgery exhibit impaired weight loss and 
glucose tolerance improvement (Ryan et al., 2014), suggest-
ing that BA-FXR signaling may govern weight and glucose 
control after bariatric surgery. Nevertheless, studies on the 
composition of the circulating BAs after bariatric surgery are 
inconsistent because of different measurement methods, lack 
of adjusted control groups, a focus on some (but not all) BAs 
in different human studies, and differences in surgical proce-
dures between cohorts (Courcoulas et al., 2014; De Giorgi et 
al., 2015; Dutia et al., 2015; Sachdev et al., 2016). Additionally, 
several studies that followed T2DM subjects before and after 
RYGB showed that the changes in glucose tolerance and in-
sulin sensitivity preceded the rise in BAs (Steinert et al., 2013; 
Jørgensen et al., 2015), pointing toward the possibility that the 
increase in BAs in the circulation after RYGB may not drive 
changes in the glycemic response but rather may constitute a 
secondary effect. Collectively, at present, the contribution of 
BAs to the regulation of glucose metabolism upon bariatric 
surgery remains unclear, with no clear-cut causative evidence 
linking postbariatric BA alterations with the postsurgical im-
provement in glucose control.

Another therapeutic approach for hyperglycemia and 
T2DM that manipulates BA levels involves inhibition of api-
cal sodium-dependent bile acid transporter (ASBT). ASBT is 
expressed in the distal ileum and has an important role in BA 
reabsorption in the lumen of the small intestine, which is piv-
otal for enterohepatic recirculation. ASBT inhibitors reduce 
ileal BA absorption and induce BA excretion in the feces. In 

Figure 3.  BAs and diabetes mellitus. Impaired BA signaling in the con-
text of an altered glycemic response contributes to progression toward 
T2DM through multiple mechanisms.
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the liver, ABST inhibitors stimulate BA production by in-
duction of Cyp7a1 and Cyp8b1 and suppression of Fgf15 
expression in the ileum (Rao et al., 2016). Importantly, ASBT 
inhibitors improve insulin sensitivity and reduce hyperglyce-
mia and elevated incretin levels in rodent models of diabetes 
(Chen et al., 2012; Wu et al., 2013) and diet-induced obesity 
and glucose intolerance (Rao et al., 2016). Further studies are 
required to determine the efficacy and safety of ASBT inhib-
itors in patients with T2DM.

Challenges and future perspectives
The knowledge gained from observations in mice and hu-
mans enhances our understanding that some BAs may play 
important roles in regulating the glycemic response in health 
and in T2DM. Mechanisms for these effects are diverse, as 
BA-FXR and TGR5 signaling modulates incretin excretion, 
hepatic glucose homeostasis, inflammation, energy expen-
diture, all of which have been convincingly shown to exert 
major implications on glucose and energy metabolism. Fur-
thermore, the cross-talk between BAs and the gut microbi-
ome leads to cross-regulation of both BAs and microbiome 
composition, the balance of which may impact the glycemic 
response. Thus, impaired BA signaling along with associated 
dysbiosis may contribute to T2DM and other metabolic 
complications associated with obesity (Fig. 3).

However, major challenges limit our understanding of 
BA contribution to the glycemic response in human health 
and disease. One major limitation relates to the fact that mice 
and humans are inherently different in many aspects related 
to BA biology. For example, mice and humans have different 
BA compositions, potentially leading to different physiolog-
ical effects and interventional outcomes in respective studies. 
For example, mice produce the potent FXR antagonist tau-
ro-β-muricholic acid (T-β-MCA), which is resistant to bacte-
rial bile salt hydrolase and thus can maintain intestinal stability 
and serve as an intestinal FXR antagonist. As such, oral ad-
ministration of a T-β-MCA derivative, glycine-β-muricholic 
acid (Gly-MCA), decreased murine FXR signaling in the 
ileum, resulting in improved obesity, insulin resistance, and 
liver steatosis associated with lower serum levels of ceramides 
(Jiang et al., 2015a,b). In contrast, humans cannot produce 
T-β-MCA and instead bear CDCA and cholic acid (CA) as 
their predominant BAs. These molecules may mediate differ-
ent downstream effects than those seen in rodents. Another 
example of such functional interspecies variation includes the 
preferential induction in mice of intestinal FGF15 in response 
to FXR activation in contrast to a preferential induction of 
FGF19 in response to the same stimulus in humans. Thus, ex-
trapolation of results obtained in mouse-based FGF15 studies 
to humans should be performed with caution. Even more 
generally, translation of mouse-based findings suggesting reg-
ulatory roles of BAs in glycemic responses may not necessar-
ily translate to humans.

Additional limitations are related to the inherent variabil-
ity in the composition and function of the gut microbiome in 

humans. This results in varying and highly person-specific BA 
profiles, which differentially impact disease pathogenesis and 
possibly the response to BA-associated medical interventions.

With those limitations and challenges notwithstanding, 
the use of synthetic antagonists of intestinal FXR (Cariou 
et al., 2006; Ma et al., 2006; Prawitt et al., 2011; Li et al., 
2013; Jiang et al., 2015b; Xie et al., 2017) and agonists of 
TGR5 (Watanabe et al., 2006; Thomas et al., 2009; Kumar 
et al., 2012; Briere et al., 2015; Fang et al., 2015; Hodge and 
Nunez, 2016) showed promising preliminary results in im-
proving glycemic control in obese and diabetic rodents. In-
testinal FXR antagonists attenuated hepatic gluconeogenesis 
and lowered intestinal and serum ceramides, whereas TGR5 
agonists promoted GLP-1 secretion from L cells and acti-
vated thermogenesis in brown adipocytes. Hence, an ideal 
treatment for hyperglycemia may combine intestinal-specific 
FXR antagonists, which would prevent undesirable effects 
stemming from hepatic FXR signaling, with TGR5 agonists. 
This tissue restriction is important because mice featuring a 
full-body deletion of FXR developed a high incidence of 
hepatic cancers (Kim et al., 2007; Yang et al., 2007), whereas 
mice featuring a liver-specific deficiency of FXR exhib-
ited increased cholic acid–induced liver tumors (Kong et al., 
2016). TGR5 activation can be developed for T2DM treat-
ment in rodents and humans (Hodge and Nunez, 2016), but 
a systemic TGR5 agonist may increase gallbladder volume 
(Briere et al., 2015). Accordingly, an optimal intestine-specific 
TGR5 agonist would be able to induce secretion of incre-
tins from L cells without producing other systemic adverse 
effects. Unfortunately, restricting TGR5 activation to the 
gut would impede the beneficial effects of TGR5 on energy 
metabolism in brown adipose tissue. Collectively, developing 
intestinal-specific FXR antagonists and TGR5 agonists may 
constitute a promising future approach for hyperglycemia 
treatment. A cautionary note is that the long-term effects of 
blocking intestinal FXR and activation of TGR5 in T2DM 
patients merit future evaluation.

FGF19 represents another potential BA-related thera-
peutic target. It is increasingly evident that intestinal induc-
tion of FGF19 by FXR signaling is positively correlated with 
glucose homeostasis (Fu et al., 2004; Kir et al., 2011; Sach-
dev et al., 2016). Moreover, FGF19 administration to obese 
and diabetic mice improved the glycemic response (Fu et al., 
2004), whereas FGF19 was elevated in T2DM subjects after 
the achievement of normoglycemia (Sachdev et al., 2016). 
Together, this indicates that FGF19 induction may potentially 
serve as a novel therapeutic modality contributing to glycemic 
control in T2DM. However, FGF19 expression can also pro-
mote hepatocellular carcinoma (Sawey et al., 2011). Design-
ing FGF19 analogues that retain the intestinal BA regulatory 
activity without promoting hepatic carcinogenesis (Zhou et 
al., 2014) could potentially improve glycemic control in di-
abetic patients while maintaining an adequate safety profile.

Collectively, the effect of BAs on metabolic functions 
is highly complex and tightly regulated, yet therapeutic ap-
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proaches targeting BA signaling hold promise in contributing 
to improved glycemic responses in patients with T2DM and 
potentially in T1DM. The major challenge is the development 
of a drug that manipulates BA signaling in a tissue-specific 
manner that can significantly normalize the glycemic response 
without causing significant adverse effects. Such intervention 
may potentially contribute to the treatment and prevention 
of a variety of chronic metabolic syndrome–related diseases.
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