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During affT cell development, the thymus medulla represents an essential microenvironment for T cell tolerance. This func-
tional specialization is attributed to its typical organized topology consisting of a branching structure that contains medullary
thymic epithelial cell (nTEC) networks to support negative selection and Foxp3* T-regulatory cell (T-reg) development. Here,
by performing TEC-specific deletion of the thymus medulla regulator lymphotoxin § receptor (LTBR), we show that thymic
tolerance mechanisms operate independently of LTBR-mediated mTEC development and organization. Consistent with this,
mTECs continue to express Fezf2 and Aire, regulators of intrathymic self-antigens, and support T-reg development despite loss
of LTBR-mediated medulla organogenesis. Moreover, we demonstrate that LTBR controls thymic tolerance by regulating the
frequency and makeup of intrathymic dendritic cells (DCs) required for effective thymocyte negative selection. In all, our study
demonstrates that thymus medulla specialization for thymic tolerance segregates from medulla organogenesis and instead
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involves LTBR-mediated regulation of the thymic DC pool.

INTRODUCTION
The thymus generates afT cells that respond to foreign an-
tigens presented by sel-MHC molecules (Boehm, 2008).
During intrathymic development, thymocytes express a ran-
domly generated apTCR repertoire that is screened to bias
thymus function toward self-tolerant T cell production (Kap-
pler et al., 1987; Jenkinson et al., 1989; Kishimoto and Sprent,
1997). This requires thymic selection mechanisms involving
stromal cells in anatomically distinct areas (Takahama et al.,
2008). In the cortex, cortical thymic epithelial cells (TECs
[cTECs]) trigger positive selection (Anderson et al., 1994;
Laufer et al., 1996; Murata et al., 2007). This process also in-
duces expression of CCR4 and CCR7 (Ueno et al., 2004;
Ehrlich et al., 2009; Cowan et al., 2014; Hu et al., 2015) to
allow newly selected thymocytes access to the medulla. Here,
negative selection eliminates thymocytes bearing high-affinity
af TCRs via apoptosis (Daniels et al., 2006; Klein et al.,2014).
The medulla also supports Foxp3" T-regulatory (T-reg) devel-
opment (Aschenbrenner et al., 2007; Perry et al., 2014; Mal-
hotra et al., 2016), and although mechanisms discriminating
these processes are unclear, both medullary TECs (mTECs)
and DCs are important (Cowan et al., 2013; Perry et al,,
2014; Herbin et al., 2016).

Several features of the medulla may explain its specializa-
tion for tolerance. First, formation from clonally derived islets
creates a complex 3D topology which, in WT mice, consists
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of small areas that may be connected to a larger medullary
compartment. This process is initiated during organogenesis,
is maintained in adulthood (Rodewald et al., 2001; Boehm et
al., 2003; Irla et al., 2013), and provides lymphostromal inter-
actions for single-positive thymocytes (Anderson and Taka-
hama, 2012). Second, the medulla houses DCs, with Aire®
mTECs producing XCL1 to control DC positioning for
T-reg generation (Lei et al., 2011). Finally, specialized mTEC
subsets express key genes that collectively regulate tolerance.
Of these, Aire and Fezf2 are the two known regulators of in-
trathymic expression of tissue-restricted antigens (TR As). Ab-
sence of either Aire (Anderson et al., 2002) or Fezf2 (Takaba
et al., 2015) results in tolerance breakdown, which fits well
with their ability to regulate differing TR As. Although Aire
is controlled by RANK (Rossi et al., 2007; Akiyama et al.,
2008; Hikosaka et al., 2008), lymphotoxin p receptor (LTPR)
was reported as an essential regulator of Fezf2 expression in
mTECs (Takaba et al., 2015). Indeed, both Rank™~ (Rossi
et al., 2007; Akiyama et al., 2008; Hikosaka et al., 2008) and
Ltbr™'~ (Boehm et al., 2003;Venanzi et al., 2007; Zhu et al.,
2007;White et al., 2010) mice demonstrate defective medulla
formation and loss of tolerance. Collectively, these findings
suggest a dual requirement for RANK/Aire and LT PR /Fezf2
pathways during T cell tolerance. Furthermore, they help form
current models in which mTEC organization and develop-
ment are prerequisites of tolerance induction, with medulla
abnormalities being causative factors in tolerance breakdown
(Akiyama et al., 2015; Abramson and Anderson, 2017).

© 2017 Cosway et al. This article is available under a Creative Commons License (Attribution 4.0
International, as described at https://creativecommons.org/licenses/by/4.0/).
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Here, we have explored mechanisms that control the
thymus medulla and determine its ability to mediate toler-
ance. Specifically, we examined the relationship between
LTPR and coordination of mTECs and DCs for negative
selection and T-reg generation. We show that despite a pro-
found perturbation of mTECs caused by TEC-specific dele-
tion of LTPR, T cell tolerance remains intact, challenging the
notion that thymic tolerance is determined by medulla orga-
nization and development. Rather, we show that an essential
feature of medulla function involves LTPR-mediated control
of the thymic DC pool for negative selection. In all, our study
separates the process of medulla formation from its control of
thymic tolerance and identifies a new role for LTPR in the
regulation of thymus function.

RESULTS AND DISCUSSION

TEC-restricted deletion of LTPR dissociates medulla
topology from tolerance induction

Normal programs of mTEC development and medulla for-
mation are seen to be essential for the specialized function of
this site. The TNF receptor superfamily (TNFRSF) member
LTPR is a key regulator of thymic microenvironments and
intrathymic tolerance, and its expression is readily detectable
in multiple TEC subsets (Fig. 1 A). However, in studies using
germline Ltbr™’~ models, it is unclear whether effects on tol-
erance are directly attributable to alterations in TEC devel-
opment or function. To examine this, we crossed Foxnl“®
mice (Gordon et al., 2007) with mice carrying floxed alleles
of LTPR (Wang et al., 2010) to create LTPR™C mice. Im-
portantly, LTBR. expression by EpCAM1* TEC was absent
in Ltbr™’~ mice and LTBR ™ mice (Fig. 1 B), demonstrating
the effectiveness of this model to examine the relationship
between medulla function and tolerance.

A key feature of Ltbr™’~ mice is a breakdown in cen-
tral tolerance. This manifests as lymphocytic infiltrates in
multiple organs and the presence of serum autoantibodies
(Boehm et al., 2003; Venanzi et al., 2007; Zhu et al., 2007;
Martins et al., 2008). Because disruption of thymic tolerance
in Ltbr’~ mice correlates with defective medulla formation
and mTEC development (Boehm et al., 2003), we examined
thymic tolerance in LTPR™ mice. Although several tissues
(liver, kidney, stomach, salivary gland) from Ltbr™’~ mice
showed signs of autoimmunity including cell infiltrates, pos-
itive autoantibody staining, and presence of activated T cells,
these features were markedly absent from LTPR™C mice
(Fig. 1, C=G; and Fig. S1). Notably, the lack of measurable
autoimmunity in LTBR ™ mice occurred despite the pres-
ence of intact secondary lymphoid tissues that are defective
in Ltbr™"~ mice (not depicted). We examined LTPR ™ mice
up to 5 mo of age and still failed to observe signs of autoim-
munity (not depicted). Importantly, compared with medulla
organization in WT and Foxn1“" controls, both Ltbr™’~ and
LTBR™C mice showed disruption of the typical 3D medulla
architecture (Fig. 2,A and B). Indeed, large ERTR5* mTEC
areas present in control mice were absent, and ERTR5"
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areas were smaller and scattered throughout thymic sections
(Fig. 2 B). Thus, Ltbr™"~ and LTPR™ mice both showed a
significant decrease in the number of large (>0.5-mm?) me-
dulla areas per thymus section and an increased number of
smaller (<0.1-mm? and 0.1-0.5-mm?) medullas (Fig. 2 C).
Interestingly, despite detectable LTBR expression by ¢TECs
(Fig. 1 A), we saw no significant alterations in cTEC numbers
in Lebr”™ and LTBR™ mice (Fig. 2, E and F). In contrast,
both mice had defects in mTECs, including reduced numbers
of mMTEC"Y, mTEC", and subsets of CCL21" and Aire”* cells
(Fig. 2, D-F). Thus, in LTPR™C mice where TEC specific
deletion of LTPR recapitulates the medullary disorganization
in Ltbr™”™ mice, T cell tolerance is maintained. Collectively,
these findings indicate that autoimmunity is not a direct
consequence of medulla dysgenesis and is distinct from the
impact of LTPR on mTEC:s.

RANK controls both known intrathymic requlators of
promiscuous gene expression

Significant to our findings is a study suggesting that LTPR
controls mTEC expression of Fezf2, a transcription factor
that regulates intrathymic TR As (Takaba et al., 2015). Indeed,
absence of Fezf2" mTEC from Ltbr /™ mice was reported as
a major factor in loss of tolerance in these mice. Importantly,
using the same anti-Fezf2 antibody (Takaba et al., 2015),
we detected Fezf2* mTEC in both Ltbr™~ and LTPR™C
mice (Fig. 3 A). Moreover, anti-LTBR stimulation of dGuo
fetal thymus organ culture (FTOC) did not induce expres-
sion of Fezf2 (Fig. 3, B and C) nor the previously reported
Fezf2-dependent TRAs Fabp9, Krt10, and Ter (Fig. 3 C;
Takaba et al., 2015). Importantly, this failure was not caused
by ineffective stimulation, because anti-LTPR induced
expression of Ccl2] mRNA (Fig. 3 C). In contrast, an-
ti-RANK stimulation induced high levels of both Fezf2 and
Aire in mTECs (Fig. 3, B-D), as well as Aire-dependent and
Fezf2-dependent TR As (Fig. 3, C and D). Expression of Aire,
Fezf2, and associated TR As was not augmented by combined
RANK and LTBR stimulation (Fig. 3, B-D). Consistent with
the expression pattern of Aire (Gray et al., 2007), Fezf2 was
detectable only in mTEC" cells (not depicted). Thus, al-
though LTPR influences mTEC development and organi-
zation (Boehm et al., 2003; Lkhagvasuren et al., 2013; Wu et
al., 2017), it is not required for generation of Fezf2* mTECs.
Rather, RANK represents a key regulator of both Aire" and
Fezf2" mTECs. This demonstrates that the requirement for
RANK in thymic tolerance is linked to control of mMTEC de-
velopment, including Aire and now Fezf2 expression, and em-
phasizes that the role of LTBR in central tolerance is distinct
from its ability to control intrathymic TRA expression. This
is reinforced by our finding that LTBR ™ mice do not show
symptoms of autoimmunity and suggests that despite a reduc-
tion in the number of TR A-producing cells, the capacity for
mTEC-dependent self-antigen production in LTBR ™ mice
exceeds any threshold requirement for tolerance induction in
the naturally diverse aBTCR repertoire.
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Figure 1. LTPR deletion in thymic epithelium corrects the autoimmunity in germline Ltbr~~ mice. (A) LTBR in WT EpCAM1* TECs, Ly51* cTECs,
Ly51~MHCII®CD80" mTEC cells, and Ly51~"MHCII"CD80" mTEC" cells; gray histogram is isotype control staining. (B) Anti-LT@R staining in TECs from indi-
cated strains. Data represent two experiments, n > 4 mice. (C) Liver sections from mice at 8-12 wk of age. Arrow indicates lymphocytic infiltrates. Bars, 100
um. (D) Quantitation of infiltrates in B. Data from >3 mice from two experiments. (E) WT sections incubated with 1/80 sera to detect autoantibodies (green);
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Foxp3* T-reg production occurs independently of LTPR

and medulla organization

In the medulla, interactions between thymocytes and
mTECs/DCs result in Foxp3" Tereg development (Tai et
al., 2013; Perry et al., 2014). Given the essential require-
ment for mTECs in Foxp3™ T-reg development (Cowan et
al., 2013), we analyzed this process in Ltbr™™ and LTPR™EC
mice. Importantly, and in contrast to previous studies (Zhu
et al., 2007; Martins et al., 2008), we separated total thymic
T-reg using CCR7 to discriminate de novo from recirculat-
ing T-reg (Cowan et al., 2016). In Ltbr™'~ and LTBR ™ mice,
both proportions and absolute numbers of newly generated
CCR7'Foxp3" T-reg were comparable to those of control
mice (Fig. 4, A and B). Thus, Foxp3™ T cell development is
not dependent on LTPR-mediated control of the medulla,
suggesting that failure of tolerance in Ltbr™’~ mice is not
caused by defective Foxp3" T-reg generation secondary to
disruption of medulla structure.

LTPR controls the thymic DC pool for negative selection

Given the importance of multiple DC subsets in thymic tol-
erance (Proietto et al., 2008; Hadeiba et al., 2012; Perry et al.,
2014), we examined thymic DCs in Ltbr’~ and LTPR™
mice. We used flow cytometric analysis of digested thymuses
to identify PDCA17CD11c"" plasmacytoid DCs (pDCs) and
PDCA1-CD11c" conventional DC (cDC) subsets in the
CD3 CD19"NK1.1~ (Lin") fraction. CD11c* ¢DCs were
further subdivided into SIRPa~ cDC1 and SIRPa" cDC2
cells (Fig. 5 A). Although DCs in both WT and Ltbr™’~ mice
were predominantly located in the medulla (Fig. 5 B), we
saw alterations in the thymic DC pool size of Lthr™’™ mice,
with numbers of both pDCs and ¢DCs significantly reduced
compared with WT (Fig. 5 D). This impact on cDCs mapped
to a selective reduction in cDC1 cells, with comparable cDC2
numbers in WT and Ltbr’~ mice (Fig. 5 D). Importantly,
we saw no differences in BrdU incorporation in thymic DCs
from Ltbr’~ and LTPR™C mice (Fig. S2), suggesting that
the diminished numbers were not caused by reduced DC
proliferation. Thus, in Ltbr™’~ mice where both mTECs and
tolerance are defective, LTPR controls the size and makeup
of the thymic DC pool. When we analyzed thymic DCs
in LTPR™C mice, where mTEC development is impaired
but tolerance is maintained, DCs were located throughout
ERTRS5" medullary areas in a manner comparable to control
mice (Fig. 5 C). However, and in contrast to Ltbr™’~ mice,
we found no reduction in thymic DCs in LTPR™ mice
(Fig. 5 E). Indeed, we saw increased cDC2 cells in LTRR ™
mice compared with Foxn1 controls. Although the reasons
for this are currently unclear, one possibility is that LTR
expression by TECs may act to suppress intrathymic cDC2

numbers as part of its role in controlling the size and makeup
of the intrathymic DC pool. Collectively, analysis of intra-
thymic DCs in Ltbr’~ and LTPR™ mice shows that the
requirement for LTPR in thymic tolerance correlates with
a reduction in thymic DC frequency that is unconnected to
LTBR-mediated mTEC regulation.

LTBR controls splenic DCsina cell-autonomous manner
(Kabashima et al., 2005; Wang et al., 2005). We generated BM
chimeras using WT and Ltbr’~ host/donor combinations,
and this confirmed the cell-intrinsic requirement for LTBR
by splenic DCs (Fig. S3). Importantly, however, thymic
DCs were significantly reduced in WT:Ltbr’~ but not
Ltbr'":WT chimeras (Fig. S3). Thus, the requirement for
LTPR by thymic DCs is non—cell autonomous and instead
maps to radioresistant stroma, with no reduction in thymic
DC numbers in LTBR ™ mice, indicating a role for LTPR
expression by non-TEC stroma. As the thymic mesenchyme
has been implicated in various aspects of thymus function
(Jenkinson et al., 2003, 2007), we investigated whether these
cells play a role in controlling thymic DCs. Thus, we crossed
Wnt1“? mice, in which Cre is expressed by neural crest
derived mesenchymal cells (Lewis et al., 2013), with Lebr™*
mice to generate LTPRM™ mice in which thymic deletion of
LTPR is limited to the mesenchyme. Interestingly, we saw a
significant and selective decrease in both cDC1 cells and pDCs
in LTARM® mice compared with Wnt!1“? controls (Fig. 5 F),
a pattern that mirrors the thymic DC defect in Ltbr™’~ mice.
Collectively, comparison of the cellular regulators of thymic
tolerance in Ltbr™’~ and LTBR ™ mice and analysis of their
autoimmune status indicates that LTPR controls formation
of the thymic DC pool via a mechanism distinct from its
regulation of mTEC development and medulla formation.
Because a key role of DCs is clonal deletion of autoreactive
thymocytes (Gallegos and Bevan, 2004; Bonasio et al., 2006),
we analyzed the frequency of Caspase-3"CD5"CD69"
thymocytes, representing cells undergoing negative selection
in the naturally diverse WT aff TCR repertoire (Stritesky et
al., 2013). Compared with WT, Ltbr~~ mice contained fewer
Caspase-3'CD5"CD69" thymocytes, indicating a reduction
in negative selection (Fig. 5 G). Moreover, combined analysis
of CD4, CD8, and Caspase-3 expression showed a greater
reduction in the number of CD4" thymocytes undergoing
negative selection compared with double-positive (DP)
thymocytes (Fig. 5 G). In contrast, in LTBR™ mice, in
which self-tolerance and thymic DCs are maintained, the
frequency of total, DP, or CD4" Caspase-3"CD5"CD69*
thymocytes was not changed (Fig. 5 G). Thus, breakdown of
thymic tolerance in Ltbr™’~ but not LTBR™ mice correlates
with reductions in both thymic DCs and the frequency of
thymocytes undergoing negative selection.

DAPI in red; staining on stomach shown as an example. Bars, 100 um. (F) Quantification of autoantibody staining in stomach. Data represent at least two
experiments, n > 5 mice. (G) Summary of autoantibody detection in various tissues. Each segment represents one mouse; black denotes positive staining.

Error bars indicate SEM. *, P < 0.05; **, P < 0.01; ***, P < 0.0001.
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Figure 2. Defective mTEC development and medulla topology in LTBR™C mice. (A) Thymic architecture in indicated mouse strains. Bar, 500 um.

(B) Sections stained with anti-CD8 (green) to detect cortex and ERTR5 (red) to detect medulla. Bar, 500 pm. Images represent >4 mice. (C) Quantitation
of medulla areas in sections. Data are means of three sections per mouse, n = 3 per strain. Data from three separate experiments. (D) CD8O/MHCII in
EpCAM1*Ly51~ mTECs. (E and F) TEC quantitation in Foxn1e, LT[BRTEC, WT, and Ltbr”~ mice. Data from four experiments, n = 12. Error bars indicate SEM.
* P <0.05;" P<0.01; ™ P<0.001;* P < 0.0001.
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Figure 3.

RANK controls intrathymic regulators of promiscuous gene expression. (A) Confocal images of thymus sections stained for Aire (green),

ERTR5 (blue), and Fezf2 (red). Bars, 10 um. Data represent three experiments, n > 6. (B) Aire and Fezf2 in Ly51~ mTECs in dGuo FTOCs treated as indicated.
Graph shows percentage Aire*Fezf2* mTECs. Data from at least three separate experiments. (C and D) gPCR of indicated genes in anti-RANK/anti-LTBR
stimulated dGuo FTOCs. Data from at least two independent experiments. Error bars represent SEM.

The thymus medulla is a specialized microenvironment
essential for T cell tolerance. This has been attributed to its
3D organization and the presence of multiple mTEC subsets
residing within a complex structure consisting of multiple
islets that may branch from a larger medullary core (Irla et
al., 2013). This anatomical specialization is thought to foster
mTEC and DC function and limit autoimmune responses
via negative selection and Foxp3" Tereg development. Here,
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we show that TEC-specific deletion of LTPR disrupts me-
dulla formation and mTEC development and limits mTEC
availability. Although it is currently unclear whether LTPR
expression by cTECs plays a functional role inT cell develop-
ment, it is important to note that absence of LTPR does not
alter cTEC numbers, suggesting that it may not play an essen-
tial role in ¢TEC development. Importantly, and despite the
alterations in mTECs caused by TEC-specific loss of LTPR,
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thymus dysgenesis does not alter its ability to impose T cell
tolerance mechanisms. Thus, our data suggest that “form ever
follows function” models (Sullivan, 1896) do not necessarily
apply to the thymus medulla. Although mTECs are an essen-
tial requirement for tolerance induction (Cowan et al., 2013),
we show that quantitative limitation of their availability, and a
loss of typical thymus architecture, still allows the medulla to
operate as a tolerizing site. This finding is important in under-
standing how the medulla imposes tolerance mechanisms. For
example, although TCR transgenic T-reg development is lim-
ited by intrathymic niche availability (Bautista et al., 2009; Di-
Paolo and Shevach, 2009; Leung et al., 2009), mTEC loss in
LTBR ™ mice does not impair Foxp3" T-reg development or
negative selection. Thus, for the naturally diverse afp TCR rep-
ertoire, intrathymic niche availability does not rate-limit the
ability of the medulla to support both dominant and recessive
tolerance. Furthermore, despite reduced mTECs in LTPRTEC

JEM Vol. 214, No. 11

mice, frequencies of mature CD4" and CD8" thymocytes are
unaltered (unpublished data). Whether this reflects changes in
thymocyte motility/dwell time that compensate for reduced
mTEC availability is not known. In addition, because LTBR
influences mTEC shape (Boehm et al., 2003), alterations in
mTEC cell surface area in LTPR ™ mice may alter thymo-
cyte interactions. Interestingly, however, the segmented nature
of the medulla in LTPR™ mice does not lead to tolerance
breakdown, which is perhaps consistent with a similar dis-
tribution of medullary islands in juvenile mice (Rodewald
et al., 2001) and the confinement of thymocytes to toler-
ance-inducing medulla subunits (Le Borgne et al., 2009).
Perhaps most significant to current understanding of
mTEC development is our finding that LTBR does not con-
trol expression of Fezf2, a regulator of intrathymic TR As.
This contrasts with a recent study (Takaba et al., 2015), and
although the reasons for this difference are not clear, it is im-
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portant to note that our finding remains compatible with
the idea that Fezf2 regulates tolerance via control of TRA
expression. Importantly, we find that Fezf2 expression in
mTECs is regulated by RANK-mediated signaling events.
Thus, RANK signaling controls expression of both Aire and
Fezf2, the two known regulators of intrathymic TR As, which
demonstrates the requirement for this TNFRSF member in
thymic tolerance maps to its regulation of mTECs. In addi-
tion, the effect of LTPR on mTEC: is separable from its im-
portance in thymic tolerance, further suggesting that LTBR
mediates tolerance by another mechanism. Our observation
that LTBR controls thymic cDC1/pDC availability in Lebr™~
mice provides an explanation for this, and fits well with the
autoimmune phenotype of these mice and the need for both
intrathymic (cDC1) and extrathymic (pDC) cells in tolerance
induction (Proietto et al., 2008; Hadeiba et al., 2012; Perry et
al., 2014). Interestingly, although thymic DCs regulate both
negative selection and T-reg development, DC defects in
Ltbr’~ mice correlate with a selective reduction in thymo-
cytes undergoing negative selection. This emphasizes the im-
portance of DC-mediated negative selection as a mechanism
of thymic tolerance, which is in agreement with a quantita-
tive requirement for DCs in thymocyte deletion (Anderson
et al., 1998; Kroger et al., 2016). Moreover, although mTECs
influence thymic DCs (Lei et al., 2011; Spidale et al., 2014),
the role of LTPR in formation of the thymic DC pool maps
to non-TEC stroma. Indeed, similar to Ltbr™’~ mice, we saw
thymic DC defects in LTPRM™ mice in which LTPR was de-
leted in the mesenchyme, demonstrating a role for these cells
in the regulation of intrathymic DCs. How mesenchymal
cells control thymic DCs is not currently known, although
it is interesting that in both mesenchyme and endothelium
LTBR regulates expression of chemokines and adhesion mol-
ecules (Lkhagvasuren et al., 2013; Lucas et al., 2016) that may
aid thymus entry of DCs/DC progenitors.

In summary, we examined properties of the thymus me-
dulla that enable it to act as a highly effective and essential site
for T cell tolerance. Our finding that LTPR controls thymic
DCs identifies a new role for this TNFRSF member in reg-
ulating thymus function and demonstrates the importance of
negative selection during tolerance induction. Moreover, that
correct medulla formation can be separated from its ability
to support thymic tolerance raises the possibility that typical
medullary topology is closely associated with other functions
of this site. These may include aspects of postselection affT
cell development (Webb et al., 2016; Xing et al., 2016) and
the regulation of thymic emigration (Zamora-Pineda et al.,
2016), as well the medulla’s role in supporting nonconven-

tional T cell lineages (Roberts et al., 2012; White et al., 2014;
Jenkinson et al., 2015).

MATERIALS AND METHODS

Mice

All mice were age 8-12 wk on a C57BL/6 background:
WT (CD45.2), WT Boy] (CD45.1), germline LTPR-defi-
cient (Ltbr™’~; Fiitterer et al., 1998), Foxn1¢™ (Gordon et al.,
2007), Wnt1“"*? (Lewis et al., 2013), and Lebr™* (Wang et al.,
2010) mice. The latter were crossed with Foxnl“™ mice to
obtain LTBR™ mice and with Wnt1“*? mice to generate
LTBRM™ mice. In all experiments, WT C57/BL6 controls
were used for Ltbr™’~ mice, and Foxn1 or Wnt1“® mice
were used as controls for LTR™ and LTPRM™ mice, re-
spectively. Mice were housed at the University of Birming-
ham Biomedical Services Unit. All experimental procedures
were approved by the Birmingham Animal Welfare and Eth-
ical Review Body and were performed in accordance with
UK Home Office regulations.

Antibodies and cell sorting

For stromal analysis, thymus samples were digested in colla-
genase dispase and DNase I (Sigma-Aldrich). Samples were
stained with antibodies to the following (from eBioscience
unless stated otherwise): CD45 APC (30-F11), EpCAM-1
PerCp Cy5.5 (G8.8), Ly51 PE (6C3), MHCII IA/IE Pacific
Blue (M5/114.15.2), Aire Alexa Fluor 488 (5H12), anti-Fezf2
(F441;IBL), and CD80 BV605 (16-10A1; BioLegend). Rab-
bit anti-CCL21 (Lifespan Biosciences) was detected using
Alexa Fluor 647—conjugated goat anti-rabbit (Life Technolo-
gies); biotinylated anti-LTBR (3C8) and biotinylated UEA-1
(Vector Laboratories) were detected using streptavidin PE
Cy7. For thymocyte analysis, thymic tissue was mechanically
disrupted and stained with antibodies to CD4 BV711 (RM4-
5; BioLegend), CD8 BV510 (53-6.7; BioLegend), TCRf
APC-Cy7 (H57-597), CD25 APC (PC61.5), CCR7 PE
(4B12),and CD5 Biotin (53-7.3) and detected with streptavi-
din PE Cy7, CD69 PerCp Cy5.5 (H1.2F3), CD3¢e PE (clone
145-2C11), Foxp3 FITC (FJK-16s), and cleaved Caspase-3
PE (Asp175, 5AIE; Cell Signaling Technology). Intracellular
staining was performed using the Foxp3/transcription factor
staining buffer set (eBioscience) according to the manufac-
turer’s instructions. To detect activated offT cells in salivary
glands, submandibular salivary glands were digested with
30 ug/ml Liberase (Roche) and stained with antibodies to
CD45, CD4, CD8, TCRf, CD69, and CD44 (IM7; eBiosci-
ence). For DC analysis, samples were digested using colla-
genase D and DNase I and stained with antibodies to the

Figure 5. LTPR controls formation of the thymic DC pool for negative selection. (A) cDC1, cDC2, and pDCs in Lin~ thymus preparations. (B and C)
CD11c* DCs in ERTR5" areas of indicated mice. Bars, 50 pum. Data from three experiments, n > 6. (D and E) Thymic DCs in WT/Ltbr’~ and LT[%RTEC/FOXMC’C
mice; n = 11 from three experiments. (F) Thymic DC numbers in Wnt1%¢? and LTBRM® mice; data from three experiments, n > 6. (G) Numbers of total, DP,
and CD4* CD5*CD69*Caspase3* thymocytes. Data obtained from at least two experiments where n > 5 for all strains. Error bars indicate SEM. *, P < 0.05;

* P <001, P<0.001; " P < 0.0001.
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following: CD45.2 BV785 (104; BioLegend), PDCA-1 Pa-
cific Blue (129C1; BioLegend), CD11c PeCy7 (N418), Sirpa
PE (P84), and CD45.1 APCCy7 (A20). A lineage cocktail
containing FITC-labeled antibodies to CD3 (145-2C11),
CD19 (eBio1D3),and NK1.1 (PK136) was also used.

Autoantibody detection

Autoantibodies were detected in serum samples obtained
from 8—12-wk-old WT, Ltbr’~, Foxn1°, and Ltb"" mice
using a NovaLite rat liver, kidney, and stomach multicom-
posite kit (Innova Diagnostics). In brief, tissue sections were
incubated with 1/80 sera from the indicated mouse strains
at room temperature followed by detection with goat (Fab),
anti-mouse IgG(H+L) FITC (SouthernBiotech). Images
were acquired with a DM6000 microscope (Leica Microsys-
tems). Quantification of autoantibodies was performed by
two independent staff members based on positive staining
intensity on an arbitrary scale of 1-6.

Histology

Liver and salivary gland samples from WT, Ltbr™"~, Foxn1“",and
LTBR™ mice were embedded in OCT compound (Sakura
Finetek), snap frozen,and sectioned to a thickness of 7 um. Sec-
tions were fixed in acetone for 10 min at 4°C and stained with
hematoxylin and eosin, and images were acquired with a Axio
ScanZ1 microscope (Zeiss). Cellular infiltrates were quantified
by counting cell foci on 3-5 sections per tissue 30—40 pm apart,
with infiltrates scored as more than 25 cells clustered together.
Software used for analysis was Zeiss Zen Blue.

Confocal microscopy

Snap-frozen thymus tissues were mounted in OCT, sec-
tioned at 7 pm, and fixed in acetone. The following reagents
were used: anti-Aire Alexa Fluor 488 (clone 5H12), anti-
Fezf2 (F441, IBL), donkey anti—rabbit IgG Alexa Fluor
594 (Thermo Fisher Scientific), ERTR5 (gift from W. van
Ewijk, Leiden University Medical Centre, Leiden, Nether-
lands), goat anti—rat IgM Alexa Fluor 647 (Thermo Fisher
Scientific), goat anti—rat IgM Alexa Fluor 488 (Thermo
Fisher Scientific), anti-CD11c¢ Biotin (HL3; BD), anti-CD8
Biotin (53-6.7), and streptavidin Alexa Fluor 555 (Thermo
Fisher Scientific). All confocal microscopy was performed
on a Zeiss Zen 780 microscope. For quantitation, three to
four thymus sections were stained, five images were ac-
quired of medullary and cortical areas, and CD11c" cells
were enumerated. All imaging analysis was conducted using
Zeiss Zen Black software.

Quantitation of medullary areas

In frozen thymus sections, boundaries of ERTR5* medullary
areas were identified using Zeiss Zen Blue software. Three
sections per thymus were analyzed, with a minimum of three
mice per strain. Medullary regions were categorized accord-
ing to area in square millimeters, and the mean number of
medullas within each size category was calculated.

3192

BrdU incorporation in thymic DCs

Adult mice were injected i.p. with 1.5 mg BrdU, and tissues
were harvested 18 h later. Thymic DC subsets were iden-
tified by flow cytometry, and BrdU incorporation was re-
vealed after cell permeabilization using BrdU flow kit (BD
PharMingen) and staining with an APC-conjugated anti-
BrdU antibody (MoBU-1).

BM chimeras

BM cells from femurs and tibias of Ltbr™’~ (CD45.2),C57BL/6
(CD45.2), or Boy] (CD45.1) mice were T cell depleted using
PE-labeled anti-CD3 and anti-PE microbeads and LS col-
umns (Miltenyi Biotec). Host mice were lethally irradiated
(two split doses of 500 rad) and reconstituted on the second
day of irradiation with 5 X 10°T cell-depleted BM cells from
donor mice. Mice were analyzed 8 wk after reconstitution.

Fetal thymus organ cultures

Embryonic day 15 lobes were cultured with 1.35 mM 2
deoxyguanosine (2dGuo) for 7 d (Cowan et al., 2013).
2dGuo FTOCs were stimulated with 2 pg/ml each of
anti-RANK (R&D Systems) or anti-LTPR  (Banks et
al., 2005) for 4 d. Lobes were digested using 0.25% tryp-
sin/0.02% EDTA (Sigma-Aldrich) and depleted of any re-
maining CD45" with Dynabeads (Anderson et al., 1993).
Cells were then snap frozen for quantitative PCR (qPCR)
or permeabilized and stained with antibodies to CD45,
EpCAM1, Ly51, Aire, and Fezf2.

qPCR

qPCR was performed exactly as described (Cowan et al.,
2013). mRNA levels were normalized to B-actin, fold lev-
els represent replicate reaction mean (+SEM), and data
are typical of at least two independently sorted biological
samples. Primer sequences were as follows: f-actin Quan-
tiTect Mm Actb 1SG Primer Assay (QT00095242; Qia-
gen); Aire forward, 5'-TGCATAGCATCCTGGACGGCT
TCC-3', and reverse, 5'-CCTGGGCTGGAGACGCTC
TTTGAG-3'; Fezf2 forward, 5'-ACCCAGCTTCCTATC
CCCAT-3', and reverse, 5 -GAGCATTGAACACCT
TGCCG-3'; Ccl21 forward, 5'-ATCCCGGCAATCCTG
TTCTC-3', and reverse, 5-GGGGCTTTGTTTCCC
TGGG-3'; Fabp9 forward, 5'-GAATGTGAGCCCCGG
AAAGTC-3’, and reverse, 5'-GGATCATTGACCCAC
CTTCAAA-3'; Ttr forward, 5'-CACCAAATCGTACTG
GAAGACA-3’, and reverse, 5'-GTCGTTGGCTGTGAA
AACCAC-3"; Krtl0 forward, 5'-CAGCTGGCCCTG
AAACAATC-3', and reverse, 5’ - AGTTGTTGGTACTCG
GCGTT-3'; Sptl forward, 5'-TACTGAAACTTCTGG
AACTGCTGAT-3’, and reverse, 5'-TCGACTGAATCA
GAGGAATCAACT-3’; Ins2 forward, 5'-CACCAGCCC
TAAGTGATCCG-3', and reverse, 5'-GCCATGTTGAAA
CAATAACCTTCCT-3'; and S100a8 forward, 5-AAA
TCACCATGCCCTCTACAAG-3’, and reverse, 5'-CCC
ACTTTTATCACCATCGCAA-3'".

LTBR controls DCs for thymic tolerance | Cosway et al.
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Statistical analysis

All analyses used GraphPad Prism 6.0. To compare expres-
sion levels of LTBR in Foxn1“", Ltbr '™, and LTPR ™ mice,
one-way ANOVA test was used. In all other cases, we used
unpaired Student’s ¢ test. Only p-values <0.05 were noted as
significant. Nonsignificant differences were not specified. In
all figures, error bars represent SEM.

Online supplemental material

Fig. S1 shows histological and flow cytometric analysis of
lymphocyte infiltrates and activated aff T cells in submandibular
salivary glands from Lebr™"~, LTBR™, and control mice. Fig.
S2 shows flow cytometric analysis of BrdU incorporation in
thymic DC subsets from Lebr™~, LTBR ™ and control mice.
Fig. S3 shows flow cytometric analysis of DC populations
in thymus and spleen of WT:Ltbr™’~ and Lthr"*WT BM
chimeric mice, harvested 8 wk after transplant.
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