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Aging is linked to deficiencies in immune responses and increased systemic inflammation. To unravel the regulatory programs
behind these changes, we applied systems immunology approaches and profiled chromatin accessibility and the transcriptome
in PBMCs and purified monocytes, B cells, and T cells. Analysis of samples from 77 young and elderly donors revealed a novel
and robust aging signature in PBMCs, with simultaneous systematic chromatin closing at promoters and enhancers associated
with T cell signaling and a potentially stochastic chromatin opening mostly found at quiescent and repressed sites. Combined
analyses of chromatin accessibility and the transcriptome uncovered immune molecules activated/inactivated with aging and
identified the silencing of the IL7R gene and the IL-7 signaling pathway genes as potential biomarkers. This signature is borne
by memory CD8* T cells, which exhibited an aging-related loss in binding of NF-kB and STAT factors. Thus, our study provides
a unique and comprehensive approach to identifying candidate biomarkers and provides mechanistic insights into aging-
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associated immunodeficiency.

INTRODUCTION

As we age, our immune system undergoes a broad range of
functional changes, including two hallmarks: (a) immunose-
nescence (i.e., functional decline), which especially affects
the adaptive arm of immunity (Pawelec, 2008; Goronzy and
Weyand, 2013; Goronzy et al.,2013) and (b) “inflamm-aging”
(1.e.,a persistent systemic inflammatory state; Franceschi et al.,
2000; Pawelec et al., 2014).These changes lead to diminished
ability of the immune system to generate protective responses
to immunological threats, predisposing older adults to infec-
tion and raising the risk of many chronic diseases (Dorshkind
et al., 2009; Shaw et al., 2013; Tchkonia et al., 2013). Chro-
matin accessibility is emerging as an essential component of
gene regulation and genome stability. Moreover, changes in
chromatin accessibility patterns are thought to play a critical
role in human diseases (Philip et al., 2017) and aging (Mos-
kowitz et al.,2017) by altering the accessibility of key proteins
to regulatory regions of the genome. Despite this crucial role,
assessment of chromatin accessibility in human immune cells
lags behind other genome-wide measurements such as tran-
scription or DNA modifications.
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Aging-associated changes in epigenomic patterns have
been reported across diverse cell types and organisms (Rando
and Chang, 2012; Lopez-Otin et al., 2013; Benayoun et al.,
2015). In human immune cells, transcriptomic profiling of
human PBMCs and purified immune cells revealed genes
that are differentially expressed with aging (Cao et al., 2010;
Harries et al., 2011; Reynolds et al., 2015). Moreover, DNA
methylation studies demonstrated that human immune sys-
tem aging is associated with methylation changes at specific
CpG sites (Rakyan et al., 2010; Martino et al., 2011; Horvath
et al., 2012; Tserel et al., 2015; Yuan et al., 2015; Zheng et
al., 2016). A recent study (Moskowitz et al., 2017) reported
that CD8" T cells go through significant chromatin changes
with aging. However, whether these changes are restricted to
the CD8* T cell population and whether analysis of PBMCs
rather than purified CD8" T cells can be used to detect these
changes remains to be determined.

The assay for transposase-accessible chromatin with
sequencing (ATAC-seq; Buenrostro et al., 2013; Qu et al.,
2015) is a recent technology that enables genome-wide
profiling of chromatin accessibility patterns at base pair res-
olution using limited cell numbers. This technology offers
remarkable opportunity to define aging-associated disrup-
tions to transcriptional regulatory programs in human im-
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mune cells with increased precision, including changes in
noncoding cis-acting sequences (e.g., enhancers) and tran-
scription factor (TF) activity. Studying chromatin accessibility
in blood-derived human immune cells should provide the
blueprint to better understand how transcriptional programs
are disrupted in immune cells with aging and to develop po-
tential treatments for rejuvenation. Thus, herein we profiled
and analyzed chromatin accessibility and transcriptome pro-
files in PBMCs and purified monocytes, B cells, and T cells
from 77 healthy volunteers.

RESULTS
An epigenomic signature of aging in PBMCs
PBMCs, a composite of immune cells, represent a tissue re-
source to assess and monitor an individual’s immune health
and responses longitudinally. We have successfully applied
PBMC profiling in earlier studies as a means of identify-
ing transcriptomic signatures of autoimmune diseases and
of immune responses to infectious agents (Chaussabel et
al., 2008; Berry et al., 2010; Banchereau et al., 2016). To ex-
amine aging-associated chromatin accessibility profiles, we
collected blood and isolated PBMCs from 77 healthy, com-
munity-dwelling research volunteers: 51 healthy young (HY,
22-40 yr) and 26 healthy old (HO, 65+ yr) subjects (Fig. 1 A
and Table S1).As the changes captured in PBMC epigenomes
could be attributable to both differences in the frequency of
certain cell types and changes in genomic patterns that are in-
trinsic to specific cell subsets (Kowalczyk et al., 2015), we also
examined the cell composition of PBMCs using flow cytom-
etry from a subset of these subjects (Table S2). Proportions of
naive CD4" T cells, naive CD8" T cells, and CD19" B cells
significantly decreased with aging, consistent with age-related
decline in thymus and bone marrow activity (Fig. S1, A—C).
The most significant aging-associated decline was observed
in the naive CD8" T cell population (Fig. S1 C), where the
percentage of naive CD8" T cells in PBMCs decreased from
~7% to ~3% with age (P = 1¢™, Wilcoxon rank-sum test).
ATAC-seq profiles were generated from 49 subjects
(28 HY, 21 HO) by incubating the purified nuclei with Tn5
transposase to cut and “tag” accessible chromatin and se-
quencing the resulting “tags” to identify genome-wide open
chromatin patterns. This approach identified 140,172 open
chromatin sites (i.e., peaks) associated with 22,124 genes
based on their distance to transcription start sites (T'SSs).
Only high-quality samples passing quality control crite-
ria were used in downstream analyses (44 samples, 25 HY
and 19 HO; Methods). Using a generalized linear model
(GLM), 12,626 differentially accessible peaks (9% of those
tested, false discovery rate [FDR] < 0.05) were identified
between age groups. Of these, 6,977 showed a decrease and
5,649 showed an increase in chromatin accessibility with
aging, hereafter referred to as “closing” and “opening” peaks,
respectively (Fig. 1 B). Principal component analysis and
hierarchical clustering analyses confirmed that differential
peaks discriminated between age groups with high accu-
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racy, where a majority of samples (42 out of 44 in hierar-
chical clustering) clustered based on the age group alone
(Fig. 1, C and D; Fig. S1 D).

The Roadmap Epigenomics Project (Roadmap Epi-
genomics Consortium et al., 2015) profiled reference PBMC
samples and defined functional states such as promoters
and enhancers in these cells. To determine the location of
ATAC-seq open chromatin sites (e.g., promoters, enhancers)
we annotated them using these Roadmap-defined (i.e.,
ChromHMM) chromatin states. As expected, the most acces-
sible peaks mostly overlapped with promoter and enhancer
states (Fig. S1 E). In contrast, less accessible peaks were an-
notated with repressed or quiescent states (Fig. S1 E). For
example, the most accessible 10% among all peaks (14,222)
were mostly at promoters (55.6%) and enhancers (36.1%),
whereas the least accessible 10% (14,199) were mostly at
quiescent sites (61.3%). As shown in Fig. 1 E, there was a
remarkable difference in the functional annotation of differ-
ential peaks, with closing peaks mostly found at promoters
and enhancers and opening peaks mostly found at repressed
and quiescent sites. Moreover, closing peaks were more acces-
sible (i.e., larger peaks) on average than opening peaks and all
ATAC-seq peaks (Fig. S1 F).

Analysis of the frequency of differentially accessible
chromatin regions across the cohort revealed that closing
peaks consist of open chromatin sites that are common be-
tween subjects (i.e., high-frequency peaks), whereas opening
peaks consist of low-frequency and often subject-specific
peaks (Fig. 1 F). Thus, examination of chromatin accessibility
led to the identification of an epigenomic signature of aging
in PBMCs composed of (a) chromatin closing at the most
accessible promoter/enhancer regions of the genome across
the population and (b) a chromatin opening of less accessible
regions of the genome in a subject-specific manner.

Chromatin closing at promoters and enhancers with aging
Differential peaks were annotated to the nearest gene based
on their distance to TSS, thereby linking 4,567 and 3,816
genes to “closing” and “opening” peaks, respectively (see
Table S3 for genes associated with differentially open peaks).
Genes annotated to differentially accessible peaks were fur-
ther characterized using gene ontology (GO) terms, which
revealed 622 and 379 immune-related genes that are closing
and opening, respectively (Fig. 2 A). ClueGO (Bindea et al.,
2009) enrichment analyses revealed that chromatin closing is
significantly associated with genes involved in T cell activa-
tion-related GO terms (n = 161 genes) and T cell receptor
signaling pathway (n = 59 genes; Fig. 2 B, Fig. S2 A, and Table
S4). In contrast, chromatin opening is associated significantly
with genes involved in myeloid leukocyte (n = 48 genes) and
osteoclast differentiation (n = 29 genes) processes (Fig. 2 B,
Fig. S2 B, and Table S4).

To further interpret the immunological implications
of these chromatin changes, we compared them against
previously described gene sets from transcriptional profiles
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Figure 1.  Epigenomic signature of aging in PBMCs. (A) Schema summarizing our study. (B) Plot representing log2 fold change (old-young) versus mean
read count for ATAC-seq peaks. Peaks differentially opening (closing) with aging are represented in red (blue). (C) Heat map showing normalized (z scores)
chromatin profiles for differentially closing/opening peaks across PBMC samples. (D) Plot of first two principal components (PCs) based on differential peaks
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(Chaussabel et al., 2008), where each module represents a
coordinately expressed gene set across many PBMC ex-
pression profiles. These modules are functionally charac-
terized and linked to pathways or cell types involved in
immune processes, which enabled us to systematically de-
fine transcriptional fingerprints of diverse immune diseases
and responses (Berry et al., 2010; Guiducci et al., 2010). We
further characterized the modules with unknown func-
tionality using ClueGO (Bindea et al., 2009) annotations
(Methods; Table S5) and calculated the mean fold change
for immune module genes, where negative numbers rep-
resent chromatin closing with aging (Fig. 2 C, blue bars)
and positive ones represent chromatin opening with aging
(Fig. 2 C, red bars). This analysis revealed a systematic loss
of chromatin accessibility at the promoters and enhancers
of immune module genes. This loss was accompanied by
a gain of chromatin accessibility around these genes at
loci classified as repressed or quiescent by the Roadmap
(Roadmap Epigenomics Consortium et al., 2015) profiles
(Fig. 2 C), consistent with observed genome-wide patterns
(Fig. 1 E). Modular analyses of the chromatin accessibil-
ity data revealed that the T cell module genes exhibit the
most significant chromatin closing with aging (Fig. 2 C,
first row). Fig. 2 D shows that at the subject level, most
genes in the T cell module exhibited chromatin silencing
with aging, resulting in a striking separation of subjects
into their respective age groups based on the chromatin
accessibility of these genes. Focusing on the genes within
the inflammation I module revealed that aging has a dual
effect on inflammation-related genes (Fig. 2 E). A set of in-
flammation-related genes are repressed via chromatin clos-
ing mostly at their enhancers, including hypoxia-inducible
factor HIF1A, which modulates hypoxia responses in im-
mune cells (Palazon et al., 2014). Meanwhile, a mutually
exclusive gene set was associated with chromatin opening
mostly at quiescent sites, including DUSP10, a molecule
that is known to play an essential role in local and systemic
inflammation (Lang et al., 2006). A gain in chromatin ac-
cessibility was not detected around the IL-6 molecule, a
key mediator of systemic inflammation (Ershler and Keller,
2000), suggesting that age-associated increases in serum
IL-6 levels might originate from cells other than PBMCs
(Maggio et al., 2006). Thus, our analysis shows a wide-
spread chromatin closing at promoters and enhancers re-
lated to immune functions, especially T cell functions.

Aging-associated gene expression and

chromatin accessibility changes

To link aging-associated chromatin changes to transcript lev-
els, RNA-seq profiles of PBMCs from 39 subjects (24 HY,
15 HO) were generated to match the ATAC-seq samples.
Fig. 3 A shows a significant positive correlation between
age-related changes in gene expression levels and chroma-
tin accessibility at gene promoters (r = 0.34, P < 1e™'%). We
identified immune modules that undergo transcriptional,
epigenetic, and concordant (i.e., transcription and chromatin
accessibility are remodeled together in the same direction)
changes with aging (Fig. 3 B). Analysis of genes showing con-
cordant remodeling (Fig. 3 B, third column) revealed the most
significant chromatin closing with aging as well as declines
in gene expression in the T cell module (Fig. S3, A and B).
Many genes associated with T cell functions, including TFs
involved in lymphocyte development and activation, such as
LEF1 and TCF7, exhibited correlated decreases in chroma-
tin and expression profiles (Fig. 3 C and Fig. S3, C and D).
Meanwhile, other immune modules, most notably cytotoxic
cells, were activated both at the chromatin and gene expres-
sion levels with aging (Chaussabel et al., 2008; Fig. 3 B, red
bars in third column).These included activation of granzymes
(GZMH and GZMB) and granulysin (GNLY; Fig. 3, D and
E) and might originate from natural killer cells (Hayhoe et al.,
2010); however, multiple other cell types can express GZMB,
including plasmacytoid dendritic cells (Matsui et al., 2009),
CD4" T cells (Namekawa et al., 1998; Appay et al., 2002), and
plasma cells (Xu et al., 2014).

Our analyses also revealed chromatin remodeling that
was not accompanied by changes in gene expression (Fig.
S3 E). For example, chromatin opening at genes associated
with inflammation was not accompanied by changes in gene
expression, suggesting that transcriptional activation of these
genes might depend on additional stimuli. Thus, the com-
bined analyses of the epigenome and transcriptome increased
the power of each assay and enabled us to identify immune
effector molecules that are activated/inactivated with aging.
Moreover, chromatin accessibility profiles provided more pre-
cise and genome-wide information than expression data alone,
including epigenomic changes at promoters and enhancers.

Epigenomic silencing of T cell signaling pathways with aging
IL7R,a gene critical for lymphocyte development and healthy
immune responses (Schluns et al., 2000), was among the top

confirms that PC1 accounts for the separation between age groups. Percentage of variation among differential peaks accounted for by each PC is shown in
parentheses. PC1 from this analysis accounts for ~7% of the variance in the complete data set. (E) Relative to all peaks tested, differentially closing peaks
are enriched in promoters and enhancers, whereas opening peaks are enriched in quiescent and repressed sites. (F) Relationship between peak frequency
(ie., in how many samples/subjects a peak is called) and aging-related change in chromatin accessibility. (left) Differentially closing peaks (in blue) are
commonly found across the cohort, whereas opening peaks (in red) tend to be rare or private (all pairwise comparisons between shown distributions are
significant after Wilcoxon test, P < 0.01). (right) Log2 fold change (old-young) as a function of peak frequency. Significantly closing and opening peaks are
shown in blue and red, respectively. Differential accessibility of ATAC-seq peaks was tested using a GLM based on read counts, with significance assessed at
a 5% FDR threshold, after using Benjamini-Hochberg P value adjustment. Tests are based on n = 25 young and n = 19 elderly subjects.
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Figure 2. Epigenomic signature of aging at immune-related genes. (A) Major GO category annotations of genes associated with differentially closing
and opening peaks. (B) Significant GO terms (P < 0.05 after Bonferroni step-down correction) associated with immune-related genes enriched among genes
annotated to differentially closing (n = 6,977; blue, left) and opening (n = 5,649; red, right) peaks. ClueGO was used for enrichment testing and annotation
merging, and significance was based on adjusted P values of less than 0.05 after Bonferroni step-down correction. (C) Mean chromatin remodeling (log2
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genes linked to multiple closing peaks (n = 12; Fig. 4 A;Fig. S4,
A and B).The loss of chromatin accessibility around the IL7R
locus was also accompanied by aging-associated decreases in
IL7R expression (Fig. 4 B). Moreover, the IL7R expression
and the chromatin accessibility of its promoter were signifi-
cantly correlated at the individual level (r = 0.59, P < 0.001;
Fig. 4 C). Additional genes in the IL-7 signaling cascade, in-
cluding JAK1, JAK3, STAT5A, and STAT5DB, also exhibited
closing in aged individuals (Fig. 4, D and E), possibly explain-
ing the impaired signaling and responses to IL-7 in the elderly
(Kim et al., 2006). Moreover, these results revealed IL7R and
the members of the IL-7 signaling pathway as potential bio-
markers of healthy aging. WikiPathways enrichment analyses
(Kelder et al., 2012) of genes annotated with differentially
open peaks confirmed systematic and significant chromatin
closing of IL-7 signaling pathway genes and other signaling
pathways, including TCR,, IL-2, and IL-9 signaling (Fig. 4 F
Fig.S4 C, and Table S4). In addition, 27 out of 70 genes in the
“histone modifications” pathway were also associated with
significant chromatin closing with aging (Fig. S4 C and Table
S4). These included histone genes (e.g., HIST1H3D, HIS-
T1H3E, HIST4H4) as well as histone modifiers (e.g., EZH1,
SETD?7), in alignment with the known reduced expression
of core histones and disruption of histone modification pat-
terns associated with cellular aging (Benayoun et al., 2015).
Collectively, our results suggest that aging is associated with
the chromatin closing of multiple pathways related to T cell
signaling that might explain impaired T cell responses in the
elderly. Moreover, these results establish IL7R and the mem-
bers of the IL-7 signaling pathway as potential biomarkers
of healthy aging whose predictive ability as immune health
indicators needs to be assessed in longitudinal studies.

CD8* T cells account for the PBMC aging signature

Flow cytometry data from 23 subjects (12 HY and 11 HO)
revealed that the age-related decrease in IL7R expression
was limited to CD8" T cells (Fig. 5, A and B; and Table S6),
indicating that chromatin alterations captured in PBMCs
were not equal across profiled T cell subsets. Furthermore,
when we measured pSTATS induction upon IL-7 stimula-
tion, we noted major differences between CD4" and CD8"
T cells. These data revealed a clear decline in IL-7 respon-
siveness with aging in CD8" T cells (both percent and mag-
nitude) that was not observed in CD4" T cells (Fig. 5 C).
Flow cytometry analyses suggested that significant reductions
in IL7R-expressing cells occur in both naive and memory
CD8" compartments, including central memory (CM) and

effector memory RA (EMRA) subpopulations (Fig. 5 D).
Based on these data, we profiled the chromatin accessibility of
sorted naive and memory CD4" and CD8" T cells from eight
donors (4 HY, 4 HO; Materials and methods). A similar num-
ber of open chromatin sites was captured in these four subsets
(~45,000-50,000 peaks). However, each subset exhibited dif-
ferent changes in its open chromatin sites with aging. CD4"
T cells showed minimal chromatin remodeling with aging:
44 peaks in memory and 216 peaks in naive CD4" T cells. In
contrast, CD8" T cells showed extensive chromatin remod-
eling with aging (Fig. 5 E). Specifically, memory CD8" T
cells displayed 8,503 (19.7% of those tested) differential peaks,
whereas naive CD8" T cells displayed 2,925 (6.4% of those
tested) differential peaks. A recent study (Moskowitz et al.,
2017) reported aging-associated closing of chromatin accessi-
bility at gene promoters in CM and naive CD8" T cells. Our
data align with this observation and suggest that chromatin at
gene promoters closes with aging in both memory and naive
CDS8' T cells, although this pattern is more evident in mem-
ory CD8" T cells. More specifically, functional state annota-
tions from Roadmap T cell data sets (Roadmap Epigenomics
Consortium et al., 2015) revealed that chromatin closing in
memory CD8" T cells occurred mostly at promoters (>50%)
and enhancers (>30%), whereas chromatin opening was asso-
ciated less with promoters (~10%) and more with quiescent
(~30%) and enhancer sites (~40%; Fig. 5 F), similar to the
PBMC signature (Fig. 1 E). In naive CD8" T cells, chroma-
tin remodeling was mostly observed at enhancers, including
>75% of closing peaks and >50% of opening enhancer peaks.

Comparing aging-induced chromatin remodeling in
T cell subsets to that of PBMCs indicated that chromatin
remodeling in PBMCs correlates positively with the chro-
matin remodeling of CD8" T cell subsets (Fig. S4 D). These
results suggest that CD4" and CD8" T cell populations go
through very different cellular changes with aging. Analysis
of gene promoters known to be expressed in memory and
naive CD4" and CD8" T cells revealed that the chroma-
tin closing of promoters of genes encoding certain surface
(e.g., CD28, IL7R) and signaling (STAT4) molecules was
more pronounced in memory CD8" T cells (Fig. 5 G and
Fig. S4 E). Moreover, chromatin closing in PBMCs around T
cell signaling pathways, including the IL7 signaling pathway,
mostly stemmed from memory CD8" T cells (Fig. 5 H), in-
cluding the IL7R locus itself (Fig. 6 A).These results identify
memory CD8" T cells as the subpopulation with the most
profound chromatin remodeling with aging. Moreover, the
silencing of promoters and enhancers in PBMC:s likely stems

fold change) of genes listed in 28 immune coexpression modules, calculated based on all peaks (leftmost column) and separately using peaks annotated to
specific chromHMM states. (D) Subject-specific normalized (z scores) chromatin accessibility patterns of peaks annotated to genes in the T cell coexpression
module reveals concerted aging-related variation across the cohort. Warmer (cooler) hues represent increased (decreased) chromatin accessibility relative
to the cohort mean. (E) Mean chromatin remodeling (log2 fold change) of peaks annotated to genes in the inflammation | module, calculated based on all
peaks (top row) and separately with respect to specific chromHMM state annotations. The test for differential young (n = 25) versus old (n = 19) subject
ATAC-seq peaks was based on a GLM, with significance assessed at a 5% Benjamini-Hochberg FDR.
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Figure 3. Concordant transcriptional and epigenomic changes associated with aging in PBMCs. (A) Chromatin remodeling at gene promoters cor-
relates significantly with changes in expression of the colocated genes (Pearson r = 0.32, p-value <2.2 x 107'%). Dashed lines delineate the set of peaks (x
axis) and genes (y axis) that are differentially accessible or expressed between young and old subjects with a p-value < 0.01 computed from 1,000 random
permutations of subject labels. Shaded quadrants define sets of genes showing congruent aging-related shifts in chromatin accessibility and expression.
(B) Enrichment level of immune modules among gene sets associated to differentially accessible peaks (left), differentially expressed genes (center), and
congruent (concordant) chromatin and expression remodeling (right). Plots show —log10 of hypergeometric test P values, colored according to the direction
of difference in accessibility or expression (blue for decrease and red for increase with age). Reference lines are drawn at the largest P value for which a 5%
FDR is attained, computed using the Benjamini-Hochberg method. (C) Examples of concordantly remodeled genes from the T cell module. (C, top) Normal-
ized (z scores) for chromatin accessibility and gene expression correlate among subjects. (C, bottom) Both chromatin accessibility at promoters (in yellow)
and gene expression (in green) decrease with aging. (D) Promoter chromatin accessibility (top) and gene expression (bottom) of genes in the cytotoxic
cells module that show congruent increases in accessibility and expression with aging. Warmer (cooler) hues represent increased (decreased) chromatin
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from CD8" T cells, even though CD8" T cells typically con-
stitute <10-15% of PBMC:s.

We also profiled the chromatin accessibility of purified
monocytes (n = 20) and naive B cells (n = 7) and found that
these cell types do not display significant chromatin acces-
sibility changes with aging (Fig. S4 F), further confirming
that aging differentially affects distinct immune cell subsets.
Moreover, chromatin changes detected in purified immune
subsets (i.e., memory and naive CD8" T cells) suggest that
the aging signature of PBMC is not merely a consequence of
cell composition changes with aging, which is in agreement
with similar observations based on single-cell transcriptomic
profiling (Kowalczyk et al., 2015).

Potential regulators of IL7R are

silenced in memory CD8* T cells

Our data revealed that whereas chromatin closing around
the IL7R locus (promoters and enhancers) was observed in
CDS8" T cells, both memory and naive, chromatin closing at
the IL7R promoter was specific to memory CD8" T cells
(Fig. 6 A, gray bar showing the IL7R promoter peak). To
uncover potential regulators of these changes, we analyzed
TF binding motifs located around the IL7R TSS (10 kb up-
stream, 1 kb downstream). After filtering out the TFs based
on their expression in PBMCs, several TFs and TF fami-
lies emerged, including LEF1, ETS2, BACH1/2, JUN, the
NF-xB family, and the STAT family (Fig. 6 B and Table S7).
Among these, NF-xB, JUN, and STATS are known as rapid-
acting factors, which can be present in an inactive state not re-
quiring protein synthesis to be activated. Enrichment of these
TFs at the IL7R promoter suggests a role for these rapid-
acting TFs in ensuring the rapid activation of IL7R and mod-
ulating IL-7 responsiveness in T cells. In fact, NF-xB directly
controls the expression of the IL7R gene in T cells through
an enhancer control region close to the promoter (Miller et
al., 2014). Furthermore, the chromatin around the promot-
ers of these factors (e.g., NF-kB and STAT family mem-
bers) closed with aging, specifically in memory CD8" T cells
(Fig. 6, C-E). Our data and analyses suggest that these TFs
are likely to play a role in regulating the activity of IL7R
in T cells and lose their chromatin accessibility—and hence
functionality—with aging, specifically in memory CD8"
T cells. In alignment with these findings, Moskowitz et al.
(2017) also reported aging-related disruptions in TF binding
patterns in CD8" T cells.

To determine whether silencing of TF promoters might
correspond to changes in TF binding activity, we conducted
TF footprinting analyses using PBMCs and T cell ATAC-seq
samples. After pooling the ATAC-seq samples by cell type and
age group and normalizing with respect to the library depth,

significant TF footprint calls were obtained using the PIQ
algorithm (Sherwood et al., 2014). These analyses showed that
several TFs with significant footprints around the IL7R pro-
moter, including RXRA,NFKB1, ETS1,and TCF7,lost their
footprints with aging, specifically in memory CD8" T cells
(Fig. S5 A). Globally, there was also an aging-related decrease
in TF footprinting calls for all TFs in memory CD8" T cells
(Fig. 6 F), including footprints for NF-xB factors, STATS,
and TFs with important roles in T cell functions (Fig. 6 G
and Table S8). Collectively, these results indicate that memory
CD8" T cells undergo aging-associated silencing of regula-
tory elements and interactions, as evident from the loss of
chromatin accessibility at TF gene promoters and the decrease
in TF binding estimates.

Aging-specific chromatin accessibility profiles

are not linked with CMV

In chronic infections, most notably with CMV, CD8" T cells
enter an “exhausted” state of reduced functionality and stop
responding to further stimulation (Wherry, 2011; Sansoni et
al., 2014), and an aging-related increase in CMV seropos-
itivity is associated with increased mortality in the elderly
(Fiilop et al., 2013; Savva et al., 2013). To study whether the
observed aging-associated chromatin signature in PBMCs is
attributable to CMYV seropositivity, we measured CMV IgG
antibody status in a subset of our cohort (n = 26, 17 HY, 9
HO), of which n = 21 (12 HY, 9 HO) also had ATAC-seq
profiles. As reported (Filop et al., 2013; Savva et al., 2013),
we observed that more elderly subjects were CMV positive
(70%) compared with young subjects (45%; Table S9). More-
over, there was a significant correlation between an individ-
ual’s age and his or her CMV antibody levels (correlation
coefficient = 0.65, Fig. 7 A). Both aging and CMV status
were correlated with changes in PBMC composition, most
notably with changes involving CD8" T cell subpopulations
(Fig. S5, B-D).The decrease of the naive CD8" T cell number
is more dependent on aging than on the CMYV status (Fig.
S5, B-D), as observed earlier in large cohorts (Wertheimer
et al., 2014). Differential chromatin accessibility analyses be-
tween CMV-positive and CMV-negative subjects revealed
that CMV seropositivity by itself is not associated with signif-
icant chromatin remodeling (Fig. 7 B), even when differen-
tial analyses are stratified by age group (Fig. S5 E). Moreover,
CMV-related and aging-related changes were not correlated
(correlation coeflicient = —0.02, Fig. 7 C). Principal variance
component analysis (PVCA; Boedigheimer et al., 2008) con-
firmed that the variation in aging-associated ATAC-seq peaks
cannot be explained by CMV status or sex, whereas age con-
tributed ~30% of the variation in these data (Fig. S5 F).Thus,
although elderly subjects are more likely to have higher CMV

accessibility (expression) relative to the cohort mean; data shown as normalized (z scores) values. (E) Examples of concordantly remodeled genes from the
cytotoxic cells module. (E, top) Chromatin accessibility and gene expression correlate among subjects. (E, bottom) Both chromatin accessibility (in yellow)

and gene expression (in green) increase with aging.
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Figure 4. T cell signaling pathways are affected with aging. (A) Genome browser view of /L7R locus highlighting 8 differentially closing peaks (out of
12 annotated to /L7R). Blue and red tracks represent open chromatin profiles of HY (n = 5) and HO (n = 5) samples, respectively. This region also includes
the transcription end site (TES) of a nearby gene SPEF2 whose TSS is further away from these differential peaks than /L7R. (B) /L7R expression and chro-

JEM Vol. 214, No. 10 3131

920z Arenigad 20 uo1senb Aq 4pd'9L¥0. 10z Wel/z66€9.L/EZ1LE/0L /7L Z/Pd-ajone/wal/Bio sseidny//:dpy woly papeojumoq



infection rates, CMV seropositivity is neither associated with
significant chromatin accessibility changes nor with the epi-
genomic aging signature observed in PBMCs.

Aging-associated chromatin accessibility profiles

are stable over seasons

Seasonal variation affects immune cell counts, gene expres-
sion patterns (Dopico et al., 2015), and immune responses
(Aguirre-Gamboa et al., 2016; Ter Horst et al., 2016). PVCA
analyses showed that the season is among the biggest fac-
tors introducing variation in the chromatin accessibility data
(~20% of the variation; Fig. S5 G); therefore, the season is
used as a covariate in our models (Methods). We separately
analyzed PBMC samples collected in June—November (“sum-
mer”) and December—-May (“winter”). By using “season’ as
a blocking factor in the GLMs, we defined aging-associated
chromatin accessibility changes in summer (10 HY, 7 HO)
and winter samples (15 HY, 12 HO). This analysis resulted in
8,744 ATAC-seq peaks that are differentially accessible be-
tween HY and HO in summer and winter samples (Fig. 7 D),
87% of which were also captured as differential in the com-
bined cohort. Similar to the global signature, closing peaks are
mostly found at promoters and enhancers, and opening peaks
are at quiescent and repressed sites (Fig. S5 H). Fold changes
between HY and HO samples that were obtained from two
seasons correlated highly with the fold changes obtained from
the whole cohort, although winter samples had a slightly
higher correlation score (Fig. 7 E; r = 0.81 for summer,
r = 0.86 for winter). These results indicate that the chromatin
accessibility aging signature is robust and is not significantly
affected by seasonal variation.

DISCUSSION

This study integrates chromatin accessibility (ATAC-seq) and
transcriptomes (RNA-seq) of blood-derived human immune
cells and demonstrates, in healthy elderly individuals, an epig-
enomic alteration that is essentially borne by the memory
CDS8'T cell compartment. By applying systems immunology
approaches, we defined for the first time a chromatin acces-
sibility signature of aging-related reduced immune responses
in PBMCs and uncovered genes and proteins that can serve
as potential biomarkers of immunodeficiency. The signature
contained simultaneous chromatin closing at promoters and
enhancers associated with T cell signaling and chromatin
opening mostly found at quiescent and repressed sites. Re-

gions associated with chromatin opening were stochastically
distributed across the cohort, where they were observed in
a single subject or a small number of subjects. This chroma-
tin opening might be associated with the aging-related loss
of histone proteins leaving short strands of DINA accessible
to the Tn5 transposase (Pal and Tyler, 2016). However, the
functional significance of this observation remains to be de-
termined. In contrast, a widespread loss of chromatin acces-
sibility at promoters and enhancers especially affecting T cell
signaling pathways was observed across all subjects. Matching
chromatin accessibility and gene expression by genomic re-
gion (i.e., promoter and transcript) and by subject helped us
identify immune effector molecules that exhibit concordant
alterations in their expression and chromatin accessibility lev-
els with aging. Among these molecules, a substantial number
of genes related to T cell functions were silenced epigeno-
mically and transcriptionally, most notably the IL7R gene and
other genes encoding the IL-7 signaling pathway.

Chromatin accessibility profiles of purified cells revealed
that this aging-related signature in PBMCs stems from CD8"
T cells, which together account for 10-15% of PBMCs. We
found that memory CD8"* T cells undergo a widespread si-
lencing of promoters with aging, whereas naive CD8" T cells
exhibit such a loss mostly at enhancers, a dichotomy that is
not yet understood. Parallels between PBMCs and memory
CDS8" T cells were particularly notable for genes in the T cell
signaling pathways, including IL-7 signaling, where a strong
chromatin closing around the promoters of these genes was
observed in both PBMC and memory CD8" T cells. The al-
teration of the IL-7 pathway might explain the loss of the
homeostatic proliferation of CD8" T cells (Bricefio et al.,
2016) as well as their reduced antigen-driven proliferation,
thus curtailing responses to infectious agents and cancer
cells. Indeed, when compared with CD8" T cells from HY
adults, those from elderly individuals responded less well to
IL-7, as measured by STAT5 phosphorylation. The defect in
the response to IL-7 is specific to CD8" T cells, as CD4"
T cells from elderly and young individuals responded simi-
larly to IL-7 stimulation.

A previous study established decreased expres-
sion of IL7R on naive (CD45RA'CCR7") and EMRA
(CD45RATCCR77) CD8" T cells as one of the hallmarks of
aging (Kim et al., 2006). However, the most dramatic impact
of reduced IL7R levels, including BCL2 upregulation and
STATS5 phosphorylation, was detected in the EMRA sub-

matin accessibility at its promoter decrease with aging. Box plots represent individuals in the age groups. (C) Promoter chromatin accessibility and gene
expression are highly correlated among subjects. (D) Chromatin accessibility of peaks annotated to genes in the IL-7 signaling pathway. Color represents
the fold change of the most significantly differential (i.e., lowest P value) peak annotated to this gene. Genes marked in gray are not associated with a sig-
nificantly closing or opening peak. (E) Subject-specific chromatin accessibility of peaks significantly closing with aging and annotated to genes in the IL-7
signaling pathway. Warmer (cooler) hues represent increased (decreased) chromatin accessibility relative to the cohort mean; data shown as normalized (z
scores) values. The test for differential ATAC-seq peaks was based on a GLM, with significance assessed at a 5% Benjamini-Hochberg FDR. (F) ClueGO figure
representing the genes that are in T cell signaling pathways that annotate differentially closing peaks (closed circles for genes). Blue portions of pie charts
represent the number of genes in the pathway that are associated with a closing peak.
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Figure 5. The PBMC aging signature stems mostly from memory CD8* T cells. (A) Flow cytometry plots in representative young (right) and old (left)
subjects illustrate the decrease in IL7R protein levels with aging in CD8" T cells. (B) Flow cytometry results indicating that the aging-related decrease in
IL7R levels is specific to CD8* T cells. (C) Frequency of pSTAT5" cells (left) and median fluorescence intensity (MFI) of pSTATS in IL-7 stimulated and control
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population. This has important functional consequences, as
signaling initiated by IL-7 plays a crucial role in the mainte-
nance and homeostasis of naive and memory T cells (Schluns
et al., 2000). In CD8" T cell subsets, IL-7 stimulation leads to
a more homogenous response in terms of BCL2 upregulation
and STATS5 phosphorylation in naive and CM subpopula-
tions, whereas the response is more heterogeneous in effector
memory (EM) and EMR A subpopulations in both young and
elderly subjects (Kim et al., 2006). Indeed, IL7R is an import-
ant marker of functional heterogeneity observed in mouse ef-
fector memory CD8"' T cells (Kaech et al., 2003). Epigenetic
mechanisms have been implicated in regulating IL7R levels
in human CD8" T cells. For example, increased DNA meth-
ylation levels have been observed around the IL7R promoter
in IL-7Ra"" cells in comparison to IL-7Ra"¢" cells (Kim et
al., 2007). A similar mechanism was identified in mouse cells
where the IL7R expression in memory precursor CD8" T
cells was inhibited by HDAC1-mediated histone deacetyla-
tion of the gene promoter (Chandele et al., 2008).

Memory CD8" T cells also exhibited an epigenomic
silencing of TF promoters and a loss in TF footprints with
aging. This aging-associated loss of TF footprints included
fast-acting factors such as NF-xB and STATSs, which might
play a role in regulating rapid T cell responses. This loss in
TF footprints was particularly noticeable around the IL7R
locus. A recently published study (Moskowitz et al., 2017)
similarly reported the aging-associated erosion of chromatin
accessibility around gene promoters in naive and CM CD8"
T cells and showed that aging disrupts the TF binding pat-
terns in these cells. Similarly, chromatin accessibility changes
in CD8" T cells have been recently reported in cancer (Philip
et al., 2017). By establishing a chromatin accessibility sig-
nature of aging-related immunodeficiency and delivering
potential biomarkers in PBMCs (rather than in purified
cells), our study addresses a significant gap and motivates fu-
ture longitudinal studies.

The epigenomic signature of aging in PBMCs described
herein was robust and was associated with neither CMV se-
ropositivity nor seasonal variation. As part of this signature,

IL7R emerged as a potential biomarker of reduced immune
responses, where aging-associated loss of this molecule is ob-
served at the chromatin, transcriptome, and protein levels, es-
pecially in memory CD8" T cells. Such biomarkers could be
instrumental in identifying individuals who might benefit the
most from therapies to rejuvenate declining immune func-
tions due to aging or diseases, such as HIV (Feinberg, 2007,
Kennedy et al., 2014). Indeed, clinical studies of recombinant
human IL-7 (thIL-7) suggested a possible rejuvenation of the
circulating T cell profile upon administration of rhIL-7, es-
pecially in individuals with limited naive T cells and dimin-
ished TCR repertoire diversity, as in the case of the elderly
(Sportes et al., 2008, 2010). Chromatin accessibility profil-
ing of immune cells for individuals would also be helpful in
quantifying whether rejuvenation therapies administrated to
individuals, such as rthIL-7, are effective and can lead to mea-
surable genomic changes around relevant genes/pathways.

The demonstration that aging has a profound impact
on the epigenomes of human CD8" T cells as presented
herein and in the study by Moskowitz et al. (2017) opens
the door to profiling of chromatin accessibility in a clinical
context. In this study, we show for the first time that mea-
suring chromatin accessibility from whole blood samples is
sensitive enough to detect aging-associated changes, even if
these changes stem from a subpopulation of cells. PBMCs
are easy to obtain and profile; hence, this opens the door to
the assessment of healthy immune system responses in diverse
clinical conditions such as diseases or response to therapeu-
tic intervention, including vaccination. Our study is the first
demonstration that leukocyte chromatin accessibility profil-
ing can serve as an integral and powerful immune monitoring
tool for reduced immune responses.

MATERIALS AND METHODS

Human subjects

All studies were conducted after receiving approval by the
Institutional Review Board (IRB) of the University of
Connecticut Health Center (IRB 14-194]-3). After receiving
informed consent, blood samples were obtained from 75 HY

gated CD4" and CD8* T cell subpopulations in a sample of young (n = 4) and old (n = 4) subjects. A significant aging-related reduction in responsiveness
is observed only in CD8" T cells. (B and C) Error bars represent mean + one standard deviation based on all tested individuals. (D) Frequency of IL7R* cells
(left) and MFI of IL7R (right) on naive, CM, EM, and EMRA CD8* T cells obtained using flow cytometry on freshly isolated PBMCs (n = 36 young, n = 23 old).
P values were calculated using a one-sided Wilcoxon rank-sum test; only significant P values (P < 0.05) are shown. (E) Differential accessibility analyses in
T cell subsets show that most significant aging-related remodeling occurs in CD8" T cells, particularly in memory CD8* T cells. Plots representing log2 fold
change (old-young) versus mean read count for the corresponding ATAC-seq peaks in T cell subsets. Opening (closing) peaks are represented in red (blue).
(F) Distribution of differential and all peaks classified by chromHMM state annotations (Roadmap T cell annotations) for memory and naive CD8" T cells.
Promoters and enhancers close with aging in memory CD8" T cells, similar to PBMCs. Differential accessibility of ATAC-seq peaks was tested using GLMs
based on read counts, with significance assessed at a 5% FDR threshold after using Benjamini-Hochberg P value adjustment. All tests based on n = 3 young
and n = 4 elderly subjects. (G) Chromatin accessibility remodeling (median fold change) of promoters of selected functionally relevant signaling and surface
molecules in naive and memory CD4* and CD8" T cells. Red and blue bars represent positive (i.e., opening with aging) and negative (i.e., closing with aging)
median fold change, respectively, aggregated over all peaks overlapping promoters of the corresponding gene. (H) Chromatin remodeling of closing PBMC
regions associated to genes in the IL-7 signaling pathway (left) and TCR signaling pathway (right) stems from the remodeling in memory CD8 T cells. Box
plots for PBMC and T cell subsets represent distribution of log2 fold changes of peaks annotated to genes that are associated to closing peaks in PBMCs.
Boxes and whiskers represent 1x and 1.5x interquartile range of log fold change, respectively.
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Figure 6. TF activity is repressed specifically in memory CD8" T cells. (A) Genome browser view of the /L7R locus. Genome browser tracks are gen-
erated after pooling three HY and four HO samples using the same individuals for all T cell subsets. (B) TF motifs found at the IL7R promoter (—10,000 bp
upstream, *1,000 bp downstream) at a 20% FDR. TFs that are not expressed in PBMCs are filtered out. (C) Summary of TFs that belong to the NF-xB family in
terms of expression changes in PBMCs and chromatin changes in PBMCs and CD8* T cells. These TFs are specifically affected with aging in memory CD8* T
cells. (D) Summary of expression changes in PBMCs and chromatin changes in PBMCs and CD8* T cells for TFs in the STAT family. Significance of chromatin
accessibility and expression values computed using GLMs (5% FDR). These TFs are specifically affected with aging in memory CD8" T cells. (E) Chromatin
accessibility profiles at NF-xB and STAT TF loci in T cell subsets. These TFs lose the chromatin accessibility of their promoters, specifically in memory CD8"
T cells, with aging. Differential peaks (5% FDR) from PBMCs and naive and memory CD8" T cells are indicated with black bars. (F) Total number of TF foot-
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(22—40 yr) and 26 HO (65+ yr) research volunteers residing
in the Greater Hartford, CT, region using services from the
University of Connecticut Center on Aging Recruitment
and Community Outreach Research Cores (http://health
.uconn.edu/aging/research/research-cores/).
criteria were selected to identify individuals who are
experiencing “healthy” aging and are thus representative
of the mean or typical normal health status of the local
population within the corresponding age groups (Robertson
and Williams, 2009). Selecting this type of cohort increases
the generalizability of our studies and the likelihood that
these findings can be translated to the general population
(Robertson and Williams, 2009).

Subjects were carefully screened to exclude potentially
confounding diseases and medications as well as frailty. Indi-
viduals who reported chronic or recent (i.e., within 2 wk)
infections were also excluded. Subjects were deemed ineli-
gible if they reported a history of diseases such as congestive
heart failure, ischemic heart disease, myocarditis, congenital
abnormalities, Paget’s disease, kidney disease, diabetes requir-
ing insulin, chronic obstructive lung disease, emphysema, or
asthma. Subjects were also excluded if they were undergoing
active cancer treatment, took prednisone above 10 mg day,
took other immunosuppressive drugs, took any medications
for rheumatoid arthritis other than NSAIDs, or had received
antibiotics in the previous 6 mo.

In addition to these steps to exclude specific chronic
conditions, we also undertook further additional efforts to
exclude older adults with any significant frailty. Because de-
clines in self-reported physical performance are highly pre-
dictive of frailty, subsequent disability, and mortality (Hardy et
al., 2011), all subjects were also questioned as to their ability
to walk 1/4 mile (or two to three city blocks). For those
who self-reported an inability to walk 1/4 mile (Hardy et al.,
2011), the “timed up and go” (TUG) test was performed and
measured as the time taken to stand up from the sitting posi-
tion, walk 10 ft, and return to sitting in the chair (Podsiadlo
and Richardson, 1991). A TUG score of >10 s was considered
an indication of increased frailty and resulted in exclusion
from the study (Rockwood et al., 2000).

Medication usage did increase with age. Nevertheless,
these medications all reflected their use for common and
controlled chronic conditions unlikely to influence our find-
ings, such as hypertension, hyperlipidemia, hypothyroidism,
degenerative joint disease, seasonal allergies, headaches, atrial
fibrillation, depression, anxiety, or attention deficit hyperac-
tivity disorder (ADHD). Finally, smoking history data are not
typically collected in these studies—including ours—because
smoking is a rare habit in the elderly population.

Recruitment

Cell sorting and phenotypic analysis

PBMCs were isolated from fresh whole blood using Ficoll-
Paque Plus (GE) density gradient centrifugation. For
cell sortings, we wused fluorochrome-labeled antibod-
ies specific for CD3 (UCHT1), CD27 (M-T271; Bioleg-
end); CD4 (RPA-T4), CD45RO (UCHL1), CD45RA
(HI100), CD19 (HIB19), CD16 (B73.1), and IgD (IA6-
2); CD11c (S-HCL-3; BD Biosciences); and CD8
(SCF121Thy2D3) and CD19 (J3-119; Beckman-Coulter).
Naive CD4 (CD4"CD8 CD45RO™CD45RA™), naive
CD8 (CD4 CD8'CD45RO™CD45RA"), memory CD4
(CD4"CD8 CD45RO"CD45RA™), and memory CDS
(CD4 CD8'CD45RO'CD45RA™) T cells were sorted
from the CD197CD16 "CD11c¢™ fraction (DUMP channel).
Naive B cells (CD19"IgD"CD277) were sorted from the
CD37CD16™CD11c¢") fraction (DUMP channel). Cell sort-
ing was performed using FACSAria Fusion (BD Biosciences).
Monocytes were isolated from fresh PBMCs by positive se-
lection using magnetic CD14 microbeads (Miltenyi Biotech).
For phenotypic analysis, PBMCs were stained with fluoro-
chrome-labeled antibodies specific for CD3 (UCHT1), CD4
(RPA-T4), CD8 (SCF121Thy2D3), CD45RA (HI100),
CD19 (HIB19),CD14 (MSE2), CCR7 (150503),and CD127
(HIL-7R-M21). For the analysis of the frequencies of naive T
cells (CD45RATCCR7Y), CM T cells (CD45RACCR7"),
EMT cells (CD45RA™CCR77),EMRA (CD45RA*CCR7"),
B cells, and monocytes, PBMCs were stained with fluoro-
chrome-labeled antibodies specific for CD3 (UCHT1), CD4
(RPA-T4), CD8 (SCF121Thy2D3), CD45RA (HI100),
CD19 (HIB19), CD14 (MSE2), CCR7 (150503), and
CD127 (HIL-7R-M21).The stained cells were acquired with
BD Fortessa and analyzed with Flow]Jo software (Tree Star).

CMV seropositivity measurements

Anti-CMV IgG titers were determined in frozen sera by
commercially available ELISA (Genway Biotech Inc.) with
an interassay coefficient of variance of 5.2%.A titer of 1.2 ELI
SA units/ml or greater in a sample was predetermined by the
manufacturer as CMV seropositive.

PBMC stimulation and phospho-STAT5 detection

Cryopreserved PBMCs isolated from HY and HO individu-
als were recovered and allowed to rest in complete media at
37°C for 2 h.Then, cells were washed and incubated for 15
min at 37°C in prewarmed complete culture medium sup-
plemented or not with 100 ng/ml IL-7 (PeproTech). After
stimulation, cells were fixed for 10 min with prewarmed
fixation buffer (BD Cytofix; BD Biosciences), washed, and
permeabilized on ice for 30 min with ice-cold Phosphoflow

printing calls obtained in PBMCs and T cell subsets from young (blue) and old (red) samples. All ATAC-seq samples are pooled and randomly downsampled
to the same total read count before TF footprinting calls to eliminate potential biases due to depth of sequencing. The number of footprint calls decreases
with aging in memory CD8" T cells. (G) Proportion of ATAC-seq peaks with a footprint for selected TFs. The decrease with aging in the proportion of peaks
carrying footprints is specific to memory CD8" T cells for NF-kB and STAT factors as well as other TFs relevant for T cell functions.
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Figure 7. Relevance of CMV seropositivity and seasonality as factors influencing aging signature of chromatin accessibility in PBMCs. (A) Cor-
relation between CMV antibody level and age. Note the positive and significant correlation between CMV seropositivity and aging. (B) Plot representing log2
fold change (CMV* vs. CMV") versus mean read count for ATAC-seq peaks. No differential peaks were obtained at 5% FDR from this comparison. (C) Cor-
relation between peak-specific log fold changes in chromatin accessibility associated with aging and log fold changes associated with CMV seropositivity.
Peaks that are closing or opening with aging are shown in red. Note the weak correlation (r = —0.02), suggesting that CMV seropositivity does not explain
aging-associated chromatin changes. (D) Heat map showing normalized (z scores) chromatin accessibility profiles of differentially closing and opening
peaks across PBMC samples obtained in two seasons. Shades of purple and green on the left represent fold changes in winter and summer samples, respec-
tively. (E) Correlation between peak-specific log fold changes in chromatin accessibility associated with aging for all samples and changes associated with
aging for summer (left) and winter (right) samples. Season-specific chromatin changes associated with aging are highly correlated with global changes.
Changes in winter are slightly more strongly correlated with the global signature (Pearson r = 0.86 vs. 0.81). Testing of differential chromatin accessibility
was based on GLMs, with significance assessed at a 5% FDR threshold computed using Benjamini-Hochberg adjustment. CMV-aging comparisons based
on n =12 young and n = 9 elderly subjects (n = 11 CMV*, n = 10 CMV~). Season-aging comparisons based on n = 25 young and n = 19 elderly subjects
(n=17 summer, n = 27 winter samples).
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Perm Buffer III (BD Biosciences). Cells were washed, stained
for 60 min with a cocktail containing fluorochrome-labeled
antibodies specific for CD3 (UCHT1), CD4 (RPA-T4),
CDS8 (RPA-T8), and pSTATS5 (pY694; BD Biosciences), and
analyzed by flow cytometry. The P value calculations on these
values were conducted using a one-sided Wilcoxon test after
the medium levels were subtracted from each subject.

ATAC-seq library generation and preprocessing

ATAC-seq was performed as previously described (Buenros-
tro et al., 2013). 50,000 unfixed nuclei were tagged using Tn5
transposase (Nextera DNA sample prep kit; [llumina) for 30
min at 37°C, and the resulting library fragments were puri-
fied using a Qiagen MinElute kit. Libraries were amplified
by 10-12 PCR cycles, purified using a Qiagen PCR cleanup
kit, and finally sequenced on an Illumina HiSeq 2500 with
a minimum read length of 75 bp to a minimum depth of
30 million reads per sample. At least two technical replicates
(mean = 2.4 replicates) were processed per biological sample.
Table S10 summarizes the depth, peak number, and fragments
in reads (FrIP) scores for ATAC-seq samples.

ATAC-seq sequences were quality filtered using
trimmomatic (Bolger et al., 2014), and trimmed reads were
mapped to the GRCh37 (hg19) human reference sequence
using bwa-mem (Li and Durbin, 2009). After alignment,
technical replicates were merged and all further analyses were
performed on these merged data. For peak calling, MACS2
(Zhang et al., 2008) was used with no-model, 100-bp shift,
200-bp extension, and broad peaks options. Only peaks called
with a peak score (q-value) of 1% or better were kept from each
sample, and the selected peaks were merged into a consensus
peak set using the Bedtools multiinter tool (Quinlan and Hall,
2010). Only peaks called on autosomal chromosomes were
used in this study. We further filtered consensus peaks to avoid
likely false positives by only including those peaks overlapping
more than 20 short reads in at least one sample and peaks for
which the maximum read count did not exceed 500 cpm
to account for regions that are potential artifacts. Finally, we
excluded peaks overlapping blacklisted regions as defined by
the ENCODE mappability criteria developed for DNase
assays (July 2015 version; http://hgdownload.cse.ucsc.edu/
goldenpath/hg19/encodeDCC/wgEncodeMapability/).

An additional quality control step was developed to fil-
ter out samples with a consistently poor signal, consisting of
an algorithm to discover and characterize a series of relatively
invariant “benchmark peaks,” defined as a set of peaks ex-
pected to be called in all samples. Samples that consistently
miss calls for a significant portion of these benchmark peaks
are flagged as having poor quality. A benchmark peak is de-
fined based on three criteria: (a) that it remains approximately
invariant between the two groups of interest (i.e., young and
old samples); (b) that it captures a substantial number of reads;
and (c) that it is called in most samples. For each peak, the
absolute value of the log of the ratio of HO:HY mean nor-
malized read counts (log fold change [logFC]) was used to
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assess the first criteria, whereas the maximum read count over
all samples (maxCt) was used to assess the second one. In this
study, a peak was considered apt for benchmarking when (a)
its absolute logFC was in the bottom decile of the distribu-
tion over all peaks; (b) its maxCt was in the top decile of the
distribution over all peaks; and (c) the peak was called in at
least 90% of the samples. Using these parameters, 273 (out of
169,636) peaks were selected as a benchmark; only samples
for which at least 95% of these peaks were called were se-
lected for analyses, which excluded five samples from further
analyses. We examined the effects of each of these parameter
choices and found that the same samples were consistently
chosen as poor quality for a range of values chosen to assess
the benchmark criteria. Before performing statistical analyses,
ATAC-seq read counts were normalized to each sample’s ef-
fective library size (i.e., the sum of reads of overlapping peaks)
using the trimmed mean of M-values normalization method
(TMM; Robinson and Oshlack, 2010).

RNA-seq library generation and preprocessing

Total RNA was isolated from PBMCs using RNeasy (Qia-
gen) or Arcturus PicoPure (Life Technologies) kits following
the manufacturer’s protocols. During RINA isolation, DNase
treatment was additionally performed using the RNase-free
DNase set (Qiagen). RNA quality was checked using an Ag-
ilent 2100 Expert bioanalyzer (Agilent Technologies). RNA
quality was reported as a score from 1 to 10, and samples fall-
ing below the threshold of 8.0 were omitted from the study.
cDNA libraries were prepared using a TruSeq Stranded Total
RNA LT Sample Prep kit with Ribo-Zero Gold (Illumina),
a Kapa Stranded mRNA-Seq Library Prep kit (Kapa Biosys-
tems), or NuGEN Ovation RNA-seq v2 (NuGEN) accord-
ing to the manufacturer’s instructions using 100 or 500 ng
of total RINA. Final libraries were analyzed on a Bioanalyzer
DNA 1000 chip (Agilent Technologies). Paired-end sequenc-
ing (2 X 75 bp or 2 X 100 bp) of stranded total RNA li-
braries was performed in an [llumina HiSeq2500 using SBS
v3 sequencing reagents.

Quality control of the raw sequencing data was per-
formed using the FASTQC tool, which computes read qual-
ity using a summary of per-base quality defined using the
probability of an incorrect base call (Ewing et al., 1998). Ac-
cording to our quality criteria, reads with more than 30%
of their nucleotides with a Phred score less than 30 were
removed, whereas samples with more than 20% of such
low-quality reads were dropped from analyses. None of the
samples used in this study were dropped after quality con-
trol. Reads from samples that passed the quality criteria were
quality trimmed and filtered using trimmomatic (Bolger et
al.,2014). High-quality reads were then used to estimate tran-
script abundance using RSEM (Li and Dewey, 2011). Finally,
to minimize the interference of nonmessenger RNA in our
data, estimate read counts were renormalized to include only
protein-coding genes. Table S10 summarizes the depth and
alignment rate of our PBMC RNA-seq samples.
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Differential analysis

To identity differentially open chromatin regions from
ATAC-seq and differentially expressed genes from RINA-
seq data, the R package edgeR was used to fit a GLM to
test for the effect of aging between HY and HO samples.
In addition to age group (old vs. young), our models in-
cluded sex and the season in which the sample was collected
(summer vs. winter) as covariates (Robinson et al., 2010)
because it was determined using PVCA (Boedigheimer et
al., 2008) that these factors account for a sizeable fraction
of the variance in read counts. Furthermore, we used surro-
gate variable analysis (SVA; Leek et al., 2012) to capture un-
known sources of variation (e.g., batch effects, subject-level
heterogeneity, variation in library preparation techniques)
statistically independent from age group assignments. SVA
decomposes the variation that is not accounted for by
known factors such as age group or sex into orthogonal
vectors that can then be used as additional covariates when
fitting a model to test for differential accessibility or expres-
sion. Using the built-in permutation-based procedure in the
R package sva, we chose to retain three SVs to include as
covariates in the GLM for PBMC ATAC-seq and RNA-seq
data analyses (Qu et al., 2015). Further examination of the
pattern of variation captured by SVs derived from ATAC-
seq data jointly seemed to capture anomalies in libraries
with particularly large or small read counts and residual sea-
sonal variation. In the case of RNA-seq data, SVs seemed
to capture both differences in library size and differences in
library preparation methods.

GLMs were implemented using a negative binomial
link function, including both genome-wide and peak-specific
dispersion parameters, estimated using edgeR’s “common,”
“trended,” and “tagwise” dispersion components, calculated
using a robust estimation option. Benjamini-Hochberg P
value correction was used to select differentially open peaks
at an FDR of 5%. To generate a set of model-adjusted peak
estimates of chromatin accessibility (i.e., sex-, season-, and
SV-adjusted) for downstream analyses and visualization, we
used edgeR to fit a “null” model excluding the age group
factor and then subtracted the resulting fitted values from this
model from the original TMM-normalized reads.

An equivalent approach was used to analyze the effects
of CMV seropositivity and seasonal variation (i.e., winter- vs.
summer-acquired samples) in PBMC data. For CMV analysis,
the subset of samples for which this information was available
(i.e.,n = 21,12 HY and 9 HO) was fit to a model including
sex as a factor and CMV status (positive, negative) as a block-
ing factor. In this analysis, the season factor was not taken
into consideration because all subjects for whom CMYV status
was available were collected in the same season. For seasonal
analysis, we used season (summer, winter) as a blocking fac-
tor. In both analyses, we tested both separately and jointly
for the significance of age group by CMV status or season.
In addition, we fitted the converse models (CMV status or
aging nested within age group) to test for and calculate fold
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change estimates for CMV'/CMV~ and winter/summer
stratified by age group.

Peak annotation and downstream analyses

Multiple data sources were used to annotate ATAC-seq
peaks with regard to functional and positional information.
HOMER (Heinz et al., 2010) was used to annotate peaks as
“promoter” (i.e., within 2 kb of known TSS), “intergenic,”
“intronic,” and other positional categories. For functional
annotation of peaks, we implemented a simplified version
of the 18-state ChromHMM-derived chromatin states ob-
tained from Roadmap Epigenomics data for PBMC and
T cell subsets (Roadmap Epigenomics Consortium et al.,
2015). We first intersected the Roadmap-generated states
with our set of consensus peaks and solved conflicting cases
where multiple chromatin states overlap the same ATAC-
seq peak so that each peak was assigned a single annotation,
according to the following priority rules: Active TSS > Ac-
tive Enhancer 1 > Active Enhancer 2 > Genic Enhancer 1 >
Genic Enhancer 2 > Weak Enhancer > Strong Transcription
> Flanking Active TSS > Flanking Upstream Active TSS >
Flanking Downstream Active TSS > Weak Transcription >
Bivalent Poised TSS > Bivalent Enhancer > Weakly Re-
pressed Polycomb > Repressed Polycomb > ZNF Genes
and Repeats > Heterochromatin > Quiescent/Low Signal.
Then, to facilitate interpretation and visualization, we sim-
plified the set of 18 chromatin states to a scheme with six
pooled meta-states: (a) TSS, collecting active, flanking, and
bivalent TSS states; (b) Enhancer, pooling active, weak, and
bivalent enhancer states; (c¢) Repressed Polycomb, combin-
ing both weak and strong Polycomb states; (d) Transcrip-
tion, including both weak and strong transcription states; (e)
the quiescent chromHMM state; and (f) other states (ZNE
heterochromatin) combined.

For gene-based analyses, HOMER was used to assign
each ATAC-seq peak to the nearest TSS, as measured from
the peak center. To improve confidence on these annota-
tions, gene-based analyses were further restricted to include
only peaks located within 50 kb of their corresponding TSS.
ATAC-seq peaks were also annotated using gene sets pro-
vided by curated immune function—related coexpression
modules (Chaussabel et al., 2008). These gene sets comprise
28 modules defined from multiple compiled transcriptomic
data sets, which were originally annotated based on expert
knowledge of representative functions of the gene ensemble
in each module. In this study, we have preserved and used
these annotations to test for enrichment of these modules
in gene sets of interest, such as the set of genes associated to
chromatin peaks gaining or losing accessibility with aging.
We assessed enrichment using the hypergeometric test fol-
lowed by Benjamini-Hochberg FDR adjustment for P val-
ues. In addition, we summarized the representation of GO
terms among gene annotations for all peaks after solving for
multiple GO annotations for the same gene by prioritizing
terms according to the following order: Immunity > Meta-
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bolic > Transcription, Translation > Migration > Mitochon-
dria > Axon > Development.

Further functional enrichment analyses were performed
using ClueGO (Bindea et al., 2009) to test for overrepresenta-
tion of GO:Immune System Process terms using GO term
fusion option and WikiPathways pathways (Kelder et al.,
2012) among genes associated to differentially open peaks. In
addition to testing for enriched gene sets, ClueGO combines
GO terms and pathways into functionally relevant meta-sets
based on the rate of shared genes among terms, allowing for
an efficient assessment of enriched categories as well as their
potential interactions, as inferred from sets of shared genes.
We applied these methods separately to peaks significantly
closing and opening between age groups to investigate the
degree to which these two sets of peaks were associated to
unique signatures. We only listed terms that are significant at
a P value of 0.05 after Bonferroni step-down correction. In
addition, we used ClueGO to annotate the aforementioned
immunological coexpression modules that were originally
associated to unknown function. The most salient enriched
functional categories for these modules are listed in Table
S5. Visualization of signaling pathways were generated using
ClueGO and PathVisio (Kutmon et al., 2015) tools.

Congruence between chromatin

accessibility and transcription data

Gene expression (nRINA-seq, see above) data were gener-
ated for a subset of subjects with ATAC-seq profiles (n =
39, 24 HY and 15 HO). These data were normalized to
protein-coding transcripts and annotated to ENSEMBL
GRCh37 gene symbols. Genes for which at least three
normalized reads per million were obtained in at least two
samples were considered as expressed, and all others were
removed before analysis. This resulted in a total estimate of
11,311 expressed genes in PBMCs.

We built a data set comprising paired ATAC-seq and
RNA-seq samples by matching promoter peaks to the near-
est gene (TSS) annotations. First, we retrieved the complete
list of refSeq TSS coordinates for the hgl9 genome reference
(n = 34,783) and defined promoters as the regions within
1,000-bp flanks of each TSS. The final set of promoters was
defined by merging overlapping flanked TSS regions anno-
tated to the same gene (n = 34,700). We then selected ATAC-
seq peaks overlapping these promoters and annotated them to
the corresponding gene. Only the peak closest to the T'SS was
kept. Finally, the resulting data set was filtered to only include
promoter peaks for genes that were transcribed, as defined
above. Whenever multiple expressed genes were matched to
the same promoter peak, all of them were retained for analysis.

To study the concordance between promoter accessi-
bility and gene expression, we subdivided the space defined
by aging-related fold changes derived from ATAC-seq and
RNA-seq data into gene sets defined by the direction and
magnitude of change along both dimensions, such as genes
with both upregulated expression and increasing accessibility

3140

in elderly subjects or genes for which expression is upregu-
lated but accessibility remains unchanged with aging. To cap-
ture enough genes to enable functional enrichment analysis
of these gene sets, fold changes between HO and HY subjects
for matching promoter peaks and transcripts were estimated
empirically as the difference between the mean normalized
values of each group and plotted against each other (Fig. 3 A).
Specifically, we defined a gene or promoter as being signifi-
cantly “up” or “down” if the empirical log fold change of the
HO mean relative to the HY mean was above or below zero,
respectively, and if the adjusted empirical p-value was <0.01
for that gene. Empirical P values were computed by randomly
permuting the HO and HY sample labels 1,000 times for
each promoter peak and gene. Genes for which P < 0.01
were considered significantly different between age groups,
whereas all others were considered to have “stable” expres-
sion and/or accessibility relative to aging. Here, we focus on
a subset of the combined accessibility—expression gene sets
generated by this method: (a) genes with both increased or
(b) both decreased promoter accessibility and expression with
aging and (c) genes with increased or (d) decreased promoter
accessibility but stable aging-related expression. For each
gene set, we tested for enrichment in immune modules and
‘WikiPathways pathways using the hypergeometric test against
a background defined by the set of genes that are expressed,
as determined by RINA-seq data, or potentially expressed, as
given by promoter accessibility, in PBMCs. We used the Ben-
jamini-Hochberg FDR multiple test correction to assess the
significance of hypergeometric P values.

TF motif and footprinting analysis

ATAC-seq data from PBMCs and T cells were scanned for
TF footprints using the PIQ algorithm (Sherwood et al.,
2014). This method integrates genome-wide TF motifs
(.., position weight matrices [PWMs]) with chromatin
accessibility estimates profiled at base pair resolution to
generate a list of possible footprint matches for a motif.
The method also produces a probability estimate for each
footprint’s reproducibility, called the “purity score.” Here, we
compiled a set of 1,273 distinct motifs comprising the curated
(CORE) list available in the JASPAR 2016 database (n =
466, http://jaspar.genereg.net) in addition to the complete
set of HT-SELEX motifs made available in Jolma et al. (2013)
(n = 819). Altogether, these motifs represent binding sites
for 381 distinct TFs. Before footprint calling, we merged
samples belonging to the same cell type and age group to
maximize our ability to find highly reproducible footprints.
In addition, we used SAMtools v. 0.1.19 (Li and Durbin,
2009) to randomly downsample aligned reads from each
merged data set to approximately match the mapped library
depth of the least deeply sequenced sample (i.e., 113 Mb).
This normalization step is included to minimize the impact
of the high correlation observed between library depth and
footprint purity scores. Only footprints with a purity score
of 90% or more were retained for further analysis. Finally,
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footprint calls were further filtered to include in analyses
only those associated to TFs determined that are expressed
in immune cells. Footprinting analyses are conducted by
pooling young and old samples from each cell type and using
random read resampling to ensure that these pooled old and
young data have approximately the same sequencing depth
(~113 million reads). Pooling individual samples from a group
(i.e., CD8" memory T cell samples from young subjects)
increases the effective library depth; this therefore allows for
more controlled and robust footprinting calls and leads to an
unbiased starting point for comparative analyses (no impact
due to the differences in sequencing depth).

To examine the regulatory landscape of IL7R, a poten-
tial aging biomarker, we focused on footprints called on the
promoter region (1 kb from TSS) of this gene separately by
age group and cell type. To complement this set of footprints,
we also performed de novo motif discovery using HOMER
by searching for motifs enriched in peaks annotated to IL7R
relative to all peaks in PBMCs and T cell subsets. Each en-
riched motif was annotated to the best-fitting known TE as
found by HOMER, with the added requirement that the an-
notated TF should be expressed in the appropriate cell type.
We then used the PIQ algorithm to call footprints of the
enriched motifs and combined those overlapping IL7R pro-
moters with the previously selected footprints. Finally, in ad-
dition to footprint and motif enrichment analyses, known TF
motifs were retrieved for the region around IL7R TSS (—=10
kb upstream, +1 kb downstream) using the MotifMap tool
(Daily et al., 2011) at a 20% FDR.

Data availability

All sequence data (RNA-seq and ATAC-seq) have been de-
posited in the European Genome-phenome Archive (EGA),
which is hosted by the EBI and the CRG, under accession
number EGAS00001002605.

Online supplemental material

Fig. S1 shows cell composition data and changes in these with
aging. Fig. S2 shows GO enrichment results for genes asso-
ciated to closing/opening peaks in PBMCs. Fig. S3 shows
chromatin accessibility and gene expression changes associ-
ated with aging for genes in immune modules. Fig. S4 shows
chromatin accessibility changes associated with aging in im-
mune cell subsets. Fig. S5 shows aging-associated changes in
TF footprints as well as CMV- and season-related epigenomic
changes. Tables S1-S10 are provided as Excel files. Table S1
summarizes cohort details. Table S2 tabulates cell composi-
tions of PBMC samples. Table S3 shows the genes associated
with differentially closing and opening ATAC-seq peaks in
PBMCs. Table S4 lists GO and pathway enrichment results
for opening/closing peaks. Table S5 lists functional enrich-
ments for immune modules with unknown functions. Table
S6 represents IL7R " protein levels in different cell subsets.
Table S7 lists the TF motifs near the IL7R gene promoter.
Table S8 lists TF footprint call rates in different cell types.
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Table S9 tabulates CMV measurements. Table S10 shows the
data quality metrics for ATAC-seq and RNA-seq samples.
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