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Th2 responses are primed by skin dendritic cells with
distinct transcriptional profiles
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The dendritic cell signals required for the in vivo priming of IL-4—producing T cells are unknown. We used RNA sequencing to
characterize DCs from skin LN of mice exposed to two different Th2 stimuli: the helminth parasite Nippostrongylus brasiliensis
(Nb) and the contact sensitizer dibutyl phthalate (DBP)-FITC. Both Nb and DBP-FITC induced extensive transcriptional changes
that involved multiple DC subsets. Surprisingly, these transcriptional changes were highly distinct in the two models, with only
a small number of genes being similarly requlated in both conditions. Pathway analysis of expressed genes identified no shared
pathways between Nb and DBP-FITC, but revealed a type-I IFN (IFN-I) signature unique to DCs from Nb-primed mice. Blocking
the IFN-I receptor at the time of Nb treatment had little effect on DC migration and antigen transport to the LN, but inhibited
the up-regulation of IFN-I-induced markers on DCs and effectively blunted Th2 development. In contrast, the response to
DBP-FITC was not affected by IFN-I receptor blockade, a finding consistent with the known dependence of this response on
the innate cytokine TSLP. Thus, the priming of Th2 responses is associated with distinct transcriptional signatures in DCs in
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vivo, reflecting the diverse environments in which Th2 immune responses are initiated.

INTRODUCTION

DCs are a specialized population of innate immune cells that
play a pivotal role in the initiation of adaptive T cell immunity.
In particular, CD11c¢" DCs are essential for the priming of
Th2 cells (Hammad et al., 2010; Phythian-Adams et al., 2010;
Smith et al., 2011, 2012), which are associated with protective
immunity against helminths and also responsible for the inap-
propriate response to innocuous antigens observed in allergic
disease (Paul and Zhu, 2010; Pulendran and Artis, 2012). The
mechanism by which DCs direct Th2 differentiation are not
well understood, but are critical to developing effective treat-
ment strategies against these diseases.

DCs that express the transcription factor IRF4 have been
identified as essential for the development of Th2 immune
responses in skin and airway (Gao et al., 2013; Kumamoto et
al., 2013; Murakami et al., 2013; Williams et al., 2013). In the
skin, IRF4-dependent DCs are Langerin”CD1037, and ex-
press the surface markers CD301b (Mgl2) and programmed
cell death ligand 2 (PD-L2) (Gao et al., 2013; Kumamoto et
al., 2013; Murakami et al., 2013). A key role of IRF4 is fur-
ther supported by studies showing that the optimal induction
of Th2 responses also requires DCs to express the transcrip-
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tional repressor Mbd2, which epigenetically regulates IRF4
expression (Cook et al., 2015). Similarly, the transcription
factor KLF4 supports IRF4 expression during DC develop-
ment and is necessary for the development of CD301b"* and
CD301b™ DC populations in LN, and the priming of Th2, but
not Th17 responses (Tussiwand et al., 2015). Consistent with
these observations, IRF4-independent DC subsets, which in-
clude the dermal CD103" DCs and epidermal Langerhans
cells in the skin, are either unnecessary or even inhibitory of
Th2 responses (Everts et al., 2016). Studies from our labora-
tory also indicate that CD1037CD326~ skin DC subsets are
positively associated with the initiation of Th2 responses after
skin immunization (Connor et al., 2014; Ochiai et al., 2014).

Innate cytokines also play an important role in DC ac-
tivation during Th2 immune responses. In the skin, thymic
stromal lymphopoietin (TSLP) is produced by epithelial cells
subjected to barrier disruption (Oyoshi et al., 2010) or insults
such as contact sensitizers (Larson et al., 2010), and directs
DCs to express molecules such as OX40L (Ito et al., 2005),
CCL17 and CCL22 (Soumelis et al., 2002) that promote Th2
priming. However, several Th2 immune responses, especially
to parasite infections, appear to be TSLP independent (Mas-
sacand et al., 2009), suggesting that other cytokines or factors
are involved. Expression of specific co-stimulatory molecules
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or cytokines and the ability to engage the TCR with altered
avidity have both been proposed as possible mechanisms of
Th2 induction (Bouchery et al., 2014; Hussaarts et al., 2014);
however, conclusive evidence is not available.

In this study, we examined the transcriptional profiles
of distinct DC populations isolated from skin LN after in
vivo treatment with two different Th2 stimuli: intradermal
transfer of nonviable Nippostrongylus brasiliensis larvae (IND)
as a model of skin immune response to a parasite (Camberis
et al., 2013), or topical application of DBP-FITC as a model
of contact hypersensitivity. These models were selected be-
cause they induce CD4 responses that are strongly domi-
nated by IL-4 production with little or no IFN-y or IL-17,
and they require similar DC subsets for initiation. Therefore,
comparison of DCs exposed to these two stimuli would
presumably enable the identification of a shared Th2 tran-
scriptional profile in DCs. We report that the CD11b" and
TN DC populations from Nb- or DBP-FITC—treated mice
exhibited a noninflammatory profile and profound transcrip-
tional changes compared with their respective controls. Un-
expectedly, these transcriptional changes were specific to each
Th2 condition such that only very few genes were similarly
regulated in both Th2 models. Pathway analysis of expressed
genes revealed a previously unreported type I IFN (IFN-I)
signature that was unique to Nb, and necessary for the opti-
mal induction of Th2 immune responses in this model. Our
data thus reveal distinct patterns in the response of DCs to
Th2 stimuli, despite the shared ability of these DCs to prime
IL-4—producing T cells in vivo.

RESULTS
The induction of Th2 responses by Nb and DBP-FITC
involves similar subsets of DCs
To assess whether induction of Th2 immunity by different
stimuli involves similar skin DC subsets we used Batf3™/~
mice, which constitutively lack dermal CD103" DCs, and
Langerin-diphtheria toxin receptor (DTR) mice that can be
depleted of epidermal LCs and CD103* DCs by DT treat-
ment. The remaining CD326"CD103~ MHCII" DC subsets
(CD11b" and CD103"CD11b"CD3267, or TN) are pre-
served in these mice (Kissenpfennig et al., 2005; Edelson et al.,
2010). Mice were either injected with PBS or nonviable Nb
i.d.into the ear, or were given one topical application of DBP
+ FITC on ear skin. The number of IL-4—producing CD4"
T cells in draining LNs (dLNs) was determined on day 7 as a
measure of Th2 induction. Langerin-DTR and Batf3™'~ mice
all exhibited robust IL-4 responses that were similar or higher
than the response in C57BL/6 controls (Fig. 1 A).

To better assess the response of different DC subsets to
Th2 stimuli, we performed a time course analysis of MHC
1" DC subsets in the LN of C57BL/6 mice treated with Nb,
DBP-FITC or the respective controls. After Nb injection, the
number of MHCII™ DCs in LN remained stable at 24 h, but
was significantly increased at 48 and 72 h. Most of this in-
crease was accounted for by higher numbers of CD11b* and
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TN DCs (Fig. 1 B). DCs carrying AF488-labeled Nb (INb-
AF488) and expressing increased CD86 were detected in the
LN by 24 h, but their number was highest at 48 h (Fig. 1 C;
Connor et al., 2014). Treatment with DBP-FITC also led to
increased numbers of MHCII™ DCs in LN; however, this in-
crease was already apparent at 24 h, with no further significant
increases at 48 or 72 h (Fig. 1 C). Again, higher numbers of
CD11b* and TN DCs accounted for most of the increased
cellularity. The proportion of FITC" DCs, and their expres-
sion of CD86, was also highest at 24 h after DBP-FITC ap-
plication (Fig. 1 C; Ochiai et al., 2014).

TSLP is essential for Th2 development after DBP-
FITC, whereas Th2 response to Nb can develop in the ab-
sence of TSLPR (Larson et al., 2010; Connor et al., 2014).
To determine whether Nb can trigger TSLP production in
vivo, we performed quantitative RT-PCR on mRNA from
the epidermis of mice exposed to Nb or DBP-FITC. Tslp
transcripts were detected after both treatments and followed
similar kinetics, although their levels were higher in DBP-
FITC—treated mice compared with Nb (Fig. 1 D).

Together, these results are consistent with previous
work identifying CD11b" and TN DGCs as key populations
in the induction of TSLP-dependent and -independent Th2
responses (Gao et al., 2013; Kitajima and Ziegler, 2013; Ku-
mamoto et al., 2013; Murakami et al., 2013; Williams et al.,
2013; Connor et al., 2014; Ochiai et al., 2014; Tussiwand et
al., 2015), whereas CD103* DCs are not required or inhibi-
tory (Everts et al., 2016).

DCs from the dLN of untreated, Nb-, or DBP-FITC-treated
mice express a migratory DC gene signature and low levels
of proinflammatory transcripts

To generate a full transcriptomic profile of the DCs involved
in Th2 immune responses, CD11b" and TN MHCII"™ DC
populations were flow sorted from skin dLN of Nb- or
DBP-FITC~treated mice according to the strategy in Fig. S1.
CD11b" and TN DCs were collected 48 h after Nb or PBS
treatment, to correspond to the peak of DC cellularity in the
dLN (Fig. 1 B).CD103"* DCs were also included in this analy-
sis. Similarly, CD11b" and TN DCs were flow sorted from the
dLN of DBP-FITC—treated or untreated (UT) mice, except
that dLN harvest was at 24 h to reflect earlier DC migration
to the dLN in this model. The flow-sorting panel was also
slightly modified for improved purity (Fig. S1, A-C).

To confirm that the desired populations of skin-derived
migratory DCs had been purified from LN, we used previ-
ously published data (Miller et al., 2012) to generate a list of
23 migratory DC signature genes with high mean expression
across all migratory DC populations compared with LN-
resident DC populations, and vice versa for 14 resident DC
signature genes. As shown in Fig. S2, individual DC subsets
expressed high levels of most of the gene transcripts associ-
ated with migratory DCs, and low levels of the genes associ-
ated with resident DCs. We also assessed expression of genes
that are expressed at a high levels in Ly6C*"MHCII™ mono-
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Figure 1. Characterization of DC subset contribution and Tslp induction during Th2 immune responses to Nb and DBP-FITC. LNs were collected
from mice immunized with 600 Nb or DBP-FITC and respective controls at the indicated time points. (A) C57BL/6, Langerin-DTR, and Batf3™~ mice were
immunized as indicated. DT was injected i.p. 1 d before and 1 d after immunization. On day 7 after immunization, LN cells were collected and processed
for intracellular cytokine staining; in vitro restimulation was with PMA and ionomycin (Nb) or anti-CD3 and anti-CD28 (DBP-FITC). Bar graphs show mean
+ SEM for 4-8 mice/group. Data are from one of two experiments that gave similar results. P-values were determined using one-way ANOVA with the
Bonferroni post-test. (B) C57BL/6 mice were immunized as indicated, and dLN were collected for flow cytometric analysis at the indicated times after
treatment. DC subsets were defined as in Fig. S1. Bar graphs show the mean + SE of four (Nb) or seven (DBP-FITC) mice per time point. Data are from one
of two experiments that gave similar results. Statistical significance values refer to the total number of DCs in LN, p-values were determined using one-way
ANOVA with the Bonferroni post-test. (C) As in B, except that mice were immunized with AF488-Nb instead of Nb. CD86 expression in AF488* or FITC* DCs
was determined on total MHCII" DC populations at the indicated time points. Fach dot corresponds to one mouse. Data from AF488-Nbimmunization show
combination of two separate experiments with three to four mice/group, and data from DBP-FITC treatment are representative of two repeat experiments
using six to seven mice/group. P-values were determined using one-way ANOVA with the Bonferroni post-test. (D) C57BL/6 mice were immunized on both
ears as indicated. Epidermal layers were harvested for RNA preparation at the indicated times after treatment. Ts/p data are expressed as relative to 18S and
the respective control samples. Each dot represents one mouse (pool of two ears); mean and SEM for six mice/group are shown. Data are from one of two
experiments that gave similar results. P-values were determined using the Kruskal-Wallis with the Dunn's post-test. *, P < 0.05; **, P < 0.01; **, P < 0.001;
¥ P < 0.0001; ns, not significant.

cytes or plasmacytoid DCs, and are low to medium in migra-
tory DCs (Fig. S2). Both groups of transcripts were generally
low 1n all populations.

Steady state migratory DCs are reported to express genes
with immunoregulatory function (Miller et al., 2012; Manh
etal.,2013; Dalod et al., 2014). Several of these genes: CD274
(PD-L1), Etv3, Sbno2, Spredl, Tnfaip3, Socs2, and Stat3,

JEM Vol. 214, No. 1

were highly expressed in all our DC populations and were
often down-regulated in TN DCs from DBP-FITC—treated
mice, but not in CD11b* or TN DCs from Nb mice (Fig. 2).
Interestingly, Stat4 was up-regulated in all DC subsets exam-
ined, except CD11b" DCs in DBP-FITC—treated mice. TN
DCs expressed low levels of the TGFp-activating molecule
Itgb8, reported to be necessary for Th17 and regulatory T cell
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(T reg) activation (Travis et al., 2007;Yoshida et al., 2014). All
DC populations also expressed high levels of genes associated
with antigen-presenting function (Cd74, H2-aa, Icam1, and
Swap70), and variably up-regulated genes encoding co-stim-
ulatory molecules after treatment with Nb or DBP-FITC
(Fig. 2). TnfsfY and Tnfrsf9, or 4-1BB and 4-1BB ligand, were
either down-regulated or not up-regulated. These transcripts
are strongly induced in monocyte-derived DCs exposed to
bacteria and, to a lesser extent, viruses (Huang et al., 2001).

Genes encoding inflammatory cytokines and chemo-
kines were mostly expressed at low levels in all DC populations
(Fig. 2). Nb immunization led to an up-regulation of these
genes in CD103" and TN DCs, but not in the CD11b" subset.
Similarly, no up-regulation was observed in CD11b* or TN
DCs from DBP-FITC—treated mice. The clear down-regula-
tion of I12b in TN and CD11b* DCs after DBP-FITC was
presumably caused by the effects of TSLP (Taylor et al., 2009),
which is highly induced by DBP-FITC, but not Nb (Fig. 1 D).
Transcripts for IL-12a and IL-23a were almost undetectable
regardless of DC subset or condition (not depicted).

The expression of several genes associated with Th2 im-
munity was also examined (Fig. 2). Transcripts for the chemo-
kine Ccl17 and the transcription factor Irf4 were up-regulated
in both the CD11b* and TN DC subsets from DBP-FITC
and Nb-treated mice. Pdcd1lg2 (PD-L2) and II4ra were also
up-regulated, especially after Nb injection. Changes that were
smaller or more variable across DC populations were also ob-
served for Ccl22, Mbd?2, Stat6, I19r, Lsp1 (anti-Th1), and, sur-
prisingly, Tnfsf4 (OX40L) transcripts. Cish, a TSLP-responsive
negative regulator of cytokine signal transduction was espe-
cially up-regulated on TN DCs. Cxcr5 and the early innate cy-
tokine II33 were both variably up-regulated, but their baseline
expression levels were very low. DII4 and Vdr were strongly
up-regulated by Nb treatment but not DBP-FITC. DIl4 is
also up-regulated by DNFB (Tamoutounour et al., 2013) thus
questioning its significance in Th2 immunity. The expression
levels of Tyro3,aTAM family receptor tyrosine kinase recently
reported to suppress Th2 responses (Chan et al., 2016), did not
appear to be significantly regulated. Expression of II1ri1 and
I17rb, the IL-33 and IL-25 receptors, respectively, was very
low regardless of subset or condition (not depicted).

Th2 responses are associated with profound transcriptional
changes involving multiple DC subsets

To investigate transcriptional changes that are associated with
the immune response to Nb, we compared gene expression
in CD103%, CD11b*, and TN DC populations from Nb
and control mice in a principal component analysis (PCA;
Fig. 3 A). We found good clustering of biological replicates
for each DC subset and treatment. Individual DC subsets
were segregated across the first two principal components,
which together accounted for ~57% of the total variability in
the data. The second source of variation was associated with
treatment conditions, with PC3 mostly separating the Nb-
treated groups from the PBS controls.
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To investigate the genes and signaling pathways that are
associated with DC responses to Th2 stimuli, we performed a
differential expression analysis between PBS and Nb for indi-
vidual DC subsets. Treatment with Nb resulted in transcrip-
tional changes in all DC subsets examined, albeit to differing
degrees (Fig. 3, B and C;and Table S1). CD103" DCs, which
are not required for the response to Nb, exhibited the least
number of DEG, and few with log, fold-changes (FCs) outside
the —1 to +1 range. CD11b" DCs, which transport Nb antigen
into the LN (Connor et al., 2014), showed an intermediate
number of DEG, with comparable numbers of down-regu-
lated and up-regulated genes. Finally, TN DCs, which are also
involved in Nb antigen transport, had the most DEG, and these
were mostly up-regulated by Nb. Interestingly, 24 DEG were
shared between the three subsets and only 18 were similarly
regulated, indicating that Nb immunization induced a unique
although related gene signature in each DC population.

Heat maps illustrating a selection of the top DEG from
each DC subset also revealed that the response to Nb varied
considerably among DC populations (Fig. 3 D). This vari-
ability was most evident for genes encoding cytokines and
secreted proteins, but was also observed in genes involved in
cell metabolism, where a clear reduction in mitochondrial
DNA transcription was detected selectively in CD11b" DCs.
Genes sharing similar expression patterns across DC subsets
included those encoding molecules involved in DC activa-
tion and motility. Ubd, which regulates NF-xB activity via
IkB ubiquitination, and Serpincl or antithrombin, which
may moderate DC activation and inflammation during sepsis
(Niessen et al., 2008), were both selectively up-regulated in
the CD11b" subset. Message for the IL-27 p28 subunit 1127
was also up-regulated in CD11b" DCs, whereas mRNA for
the second subunit of this heterodimeric cytokine, IL-27B or
Ebi3, was expressed at stable but detectable levels in all DC
subsets (not depicted). Notably, IFN-I response genes were
also up-regulated in all three DC subsets.

Similar analyses were performed on DCs after DBP-
FITC treatment.Again,a PCA indicated that subset differences
accounted for the largest proportion of the variability among
samples (PC1; 38.37%), whereas transcriptional changes asso-
ciated with DBP-FITC treatment were revealed on PC2 and
represented ~20% of the variability (Fig. 4 A). Comparison
of DEG numbers in the CD11b* and TN DC subsets showed
that DBP-FITC treatment induced transcriptional changes in
both populations, but DEG were much more abundant in the
TN DC subset and more frequently down-regulated (Fig. 4,
B and C; and Table S1). A substantial proportion of the DEG
were shared between CD11b and TN DCs, with all 59 shared
DEG concordantly regulated. As shown in the heat maps in
Fig. 4 D, several genes associated with inflammation, cyto-
kine secretion, and signal transduction were down-regulated
in both DC subsets. However, genes associated with chemo-
kine secretion, motility, and metabolism were up-regulated
compared with untreated DCs, suggesting that DCs were
functional and maintained their ability to interact with T cells.

DCs in Th2 responses | Connor et al.

920z Arenigad 60 uo 1senb Aq 4pd-0.70910Z Wel/e5695.1L/GZ L/ LIvLZ/pd-ajoie/wal/Bio sseidny//:dpy wouy pepeojumoq



Steady-state & Regulatory

Cd200 Cd200
Etv3 Etv3
o Itgh8 | ] s lgbs
Pias3 Pias3
Sbno2 Sbno2
Spred1 Spred1
Tnfaip3 Tnfaip3
.~ Fas Fas
Socs1 Socs1
N S [ Socs2
Socs3 ok x Socs3
ilﬁ Stat3 Stat3
Stats Stat
Antigen presentation
Cd74 Cd74
H2-aa * *kk H2-aa
Icam1 * Icam1
Swap70 Cowex e Swap70
Costimulation
Cd40 Cd40
-~ Cd8o - Cd8o
[ | . cdse Cdgé
Tnfsf9 Tnfsf9
Tnfrsf9 Tnfrsf9

Inflammatory
Gn I o
8052 « [N geg
Cl C
- i | Ccrl2 ‘ Cerl2

Cxcl9 Cxcl9
Cxcl10 Cxcl10
I11a ]

116
1112b
Nfkbiz
Tnf
Th2 related
Ccl17 Ccl17
e — > e .
Cish Cish
Crif2 Crif2
Cxcr5 I Cxcr5
Dil4 1B Dll4
Fos Fos

***  Jcosl
*  ll4Ra

[ ] 1 i S s . Stat6 * [ x| Stat6
Tnfst4 I Tnfsf4
Tyro3 Tyro3
vdr vadr
PBS Nb PBS Nb PBS Nb UT DBP-F UT DBP-F CD103* CD11b* TN CD11b* TN
CD103* CD11b* TN CD11b* TN Nb DBP-FITC
0 5 10 15 -3-2-1 0 1 2 3
Expression Log2FC
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similarities between the DCs that drive these responses, we
compared genes that are differentially expressed in CD11b"
or TN DCs exposed to Nb, and TN DCs exposed to DBP-
FITC. CD11b" DCs from DBP-FITC—treated mice were

DCs in Th2 responses | Connor et al.
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excluded from the comparison because of the low number
of DEG in this population. Comparing DEG in these three
DC populations revealed 20 genes that were similarly regu-
lated in all subsets, corresponding to only 3-5% of the DEG
in each population (Fig. 5 A). The most substantial similarity
was between CD11b* and TN DCs from Nb-treated mice,
with 144 of 157 genes being similarly regulated in both pop-
ulations. In contrast, the DEG shared between TN DCs from
DBP-FITC—treated mice, and either CD11b" or TN DCs
from Nb-treated mice, were much fewer and more likely to
be discordantly regulated, suggesting that the transcriptional
programs initiated by Nb or DBP-FITC were considerably
different from each other.

Heat maps of the 20 shared DEG showed a predictable
regulation of genes involved in DC motility and co-stimu-

JEM Vol. 214, No. 1

lation (Fig. 5 B). The up-regulation of the gene encoding
the Th2-associated chemokine CCL17 and the down-regu-
lation of Scube3 that encodes for a TGFBRII ligand are also
notable. Interestingly, several transcription factors were also
similarly regulated in each DC population. Irf4, a key regula-
tor of the differentiation and function of Th2-inducing DCs,
was up-regulated, whereas Bcl6, Ets2, Nr4al (Nur77), and
St18 were down-regulated.

To evaluate more broadly the relationship among DC
subsets, we used the Canonical Pathway function of Ingenuity
Pathway Analysis (IPA) to search for common signaling path-
ways in Nb and DBP-FITC DCs. Initial analyses using the
recommended IPA thresholds of z-scores >+2 or <-2,and P <
0.05, identified very few potential pathways, which were spe-
cific to either Nb or DBP-FITC (Fig. 5 C). Similar results were
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Figure 5. The transcriptional profiles of DCs that prime Th2 responses are heterogeneous. (A) Venn diagram showing the relationship between
the numbers of DEG in CD11b* and TN DCs from mice treated with 600 Nb versus PBS, and TN DCs from mice treated with DBP-FITC versus UT. The total
number of DEG in each subset is given in parentheses. The numbers of DEG unique to each DC subset or shared between populations are shown within the
diagram; the numbers of genes that were up-regulated (up), down-regulated (down), or, for the intersection, discordantly regulated (opposing) are also
shown. (B) Heat map of the 20 genes that were concordantly regulated in CD11b* and TN DCs from Nb mice, and TN DCs from DBP-FITC. DC expression data
are the mean of three replicate samples each from an independent experiment for each Th2 condition. P-values were calculated by DESeq2; **, P < 0.01;
** P < 0.001. (C) Venn diagram showing the number of canonical signaling pathways identified as differentially regulated in each DC subset using IPA.
Pathways were scored as differentially requlated when the z-score was >+2 or <=2, and P < 0.05. (D) As in C, except that differentially requlated pathways
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shared between CD11b* and TN DCs from Nb mice, and TN DCs from DBP-FITC as identified in D. Where z-score = 0, the direction of a pathway could not

be predicted; —, z-score was not assigned.

obtained when using conditions that were made less stringent
by either lowering the IPA z-score threshold to *1.5, or by
increasing the number of DEG by removing the cut-off of a
log,FC of at least £0.585. In either case, no shared pathways
between Nb and DBP-FITC conditions became apparent,
despite a substantial increase in potential pathways specific to
either condition (unpublished data).When the requirement for
a minimum IPA z-score was removed altogether, a small num-
ber of shared pathways could be identified (Fig. 5 D and Table
S2), these included generic pathways such as communication
between immune cells and GM-CSF signaling. Interestingly,
similarities with signaling in Th cells were also detected.

Altogether, these analyses identified few similari-
ties between the transcriptomic profiles of DCs from Nb-
or DBP-FITC—treated mice.

132

DCs isolated from Nb-treated mice express a

pronounced IFN-| signature

Data in Fig. 3 show that several IFN-I signaling pathway
transcripts were up-regulated in Nb-treated DCs. There-
fore, we used the Interferome database (v2.01; Rusinova
et al., 2013) to identity all potential IFN-I-regulated genes
in our DC populations. As shown in Fig. 6 A and Table
S3, as many as 30% of the DEG in DCs from Nb-immu-
nized mice could be linked to IFN-I signaling, including
transcripts for molecules involved in sensing nucleic acids,
antiviral defense mechanisms, IFN-a/f3 receptor (IFNAR)
signaling, apoptosis, and immune functions such as anti-
gen presentation and cytokine production (Fig. 6 B). No
similar changes could be detected in DBP-FITC DCs,
suggesting that IFN-I signaling was not activated by this

DCs in Th2 responses | Connor et al.
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treatment. Interestingly, IFN-I cytokine transcripts were
undetectable in every DC subset (not depicted). Thus, DCs
from Nb-treated mice had been recently exposed to IFN-
I, but whether the source of IFN-I was cell-autonomous
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Figure 6. Expression of genes associated
with IFN-I signaling in DCs from Nb or DBP-
FITC-treated mice. (A) Venn diagram showing
the relationship between numbers of IFN-I-reg-
ulated DEG after treatment with Nb versus PBS
in CD11b*, TN, and CD103* DC subsets. The total
numbers of IFN-I-regulated DEG in each subset is
given in parentheses. The numbers of IFN-I-reg-
ulated DEG unique to each DC subset or shared
between populations are shown within the dia-
gram; the numbers of genes that are up-regulated
(up), down-regulated (down), or, for intersections,
discordantly regulated (opposing) in different DC
subsets compared with control are also shown.
(B) Heat maps showing a selection of IFN-I-reg-
ulated DEG in DC subsets from Nb-treated and
DBP-FITC-treated mice. DC expression data are
the mean of three replicate samples each from an
independent experiment for each Th2 condition.
P-values were calculated by DESeq2; *, P < 0.05;
* P <0.01;™* P<0.001.

or from other cells could not be established from the sin-
gle time point measured.

To validate the observation that IFN-I signaling is ac-
tivated in DCs exposed to Nb, we used an anti-IFNAR
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(eaIFNAR) antibody to block IFN-I signaling at the time of
Nb immunization. Mice were injected i.d. with Nb-AF488
together with alFNAR or isotype control, and dLNs were
examined 2 d later. Treatment with «IFNAR had a modest
effect on DC migration to the dLN. The number of total
MHCII™ DCs in LN (Fig. 7 A), and the number of DCs
in each subset (Fig. 7 B), were decreased by alFNAR, but
this was not statistically significant. Similarly, comparable
numbers of Nb-AF488" CD11b" and TN DCs could be
demonstrated in the dLN of IgGl-treated and alFNAR-
treated mice (Fig. 7 B). The number of type 2 innate lym-
phocytes (1ILC2) in the skin, and their expression of I1L-13
(Fig. 7 C), were also not affected by immunization or by
olFNAR treatment, suggesting that differences in iLC2 ac-
tivity were unlikely to explain differences in dLNN DC num-
bers, phenotype, or function.

We then assessed expression of IFN-I-induced mark-
ers and co-stimulatory molecules on DC subsets over time.
CD86 was up-regulated on total and Nb-AF488" CD11b*
and TN DCs (Fig. 7 D). Treatment with «IFNAR reversed
CD86 up-regulation as assessed on the total DC subset, but
had little effect on Nb-AF488" DCs, suggesting that [FN-I
was mainly driving bystander CD86 expression. Expression
of BST2 (CD317 or PDCA-1; Blasius et al., 2006), CD25,
Ly6A/E (Sca-1), and PD-L1 on CD11b" and TN DC was
up-regulated after Nb immunization (Fig. 7 E). Treatment
with alFNAR reversed this up-regulation, confirming that
increased expression of these markers was driven by IFN-
I. In contrast, expression of PD-L2 remained stable after
Nb, and was not affected by alFNAR. Expression of all
these markers on DCs from DBP-FITC mice was not af-
fected by alFNAR (Fig. 7 E).

To determine whether other LN populations were
also exposed to IFN-I, we assessed expression of IFN-I-
induced markers on CD4" T cells 2 d after Nb. As shown
in Fig. 7 F, CD69 was up-regulated on CD4" T cells after
immunization, but this up-regulation was not affected by
olFNAR, suggesting that IFN-I was not involved. Ex-
pression of BST2 on total CD4" T cells (not depicted) or
CD4"CD69" T cells (Fig. 7 F) was not increased after Nb
immunization. As also observed in DCs (Fig. 7 E), treat-
ment with alFNAR reduced BST2 expression to below
the levels in PBS-treated mice, suggesting the presence of
homeostatic IFN-I signaling in vivo. Thus, IFN-I induced
through Nb immunization appeared to have little or no
impact on CD4" T cells in LN.

Finally, we also assessed expression of BST2 on skin
LN DCs 48 h after injection with live N. brasiliensis. As
shown in Fig. 7 G, BST2 expression on CD11b" and TN
DCs was increased in an IFN-I-dependent fashion, sug-
gesting that induction of IFN-I was not limited to immuni-
zation with nonviable Nb.

Thus, alFNAR treatment could prevent IFN-I signal-
ing in DCs with little impact on DC migration to the dLN,
or their transport of AF488-labeled Nb material.
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Treatment with IFNAR-blocking antibodies impairs Th2
induction after Nb, but not DBP-FITC, immunization

To assess the effect of alFNAR on the priming of IL-4—
producing T cells, we used IL-4-GFP reporter mice treated
with Nb. Compared with isotype controls, treatment with
ol FNAR led to a marked reduction in the number and pro-
portion of CD4" IL-4-GFP" T cells in dLN (Fig. 8 A). Re-
duced numbers of IL-4" CD4" cells were also observed when
cytokine production was assessed by in vitro restimulation
and intracellular cytokine staining. In addition, the IFN-y re-
sponse observed after Nb immunization was not increased by
ol FNAR treatment, but reduced, and the IL-17 response re-
mained very low (Fig. 8 B). In contrast, treatment with «IFIN
AR did not affect the number or percentage of IL-4-GFP* T
cells after DBP-FITC treatment (Fig. 8 C).

Treatment with aIFNAR reduced but did not block Th2
development after Nb immunization. To establish whether
IFN-I may act in concert with other Th2-inducing cytokines,
we assessed the effect of aJFINAR in TSLPR KO mice, as Nb
injection induced low but detectable levels of Tslp transcripts.
Compared with C57BL/6 mice, TSLPR KO mice generated
lower numbers and lower percentages of IL-4—producing T
cells after Nb immunization. Treatment with alFNAR fur-
ther reduced the response in TSLPR KO mice to very low
levels, suggesting that IFN-I and TSLP promote Th2 immune
responses via independent pathways (Fig. 8 D).

DISCUSSION
In this study, we show that the transcriptional profiles of DC
subsets from skin dLN of mice treated with two different
Th2-inducing agents, Nb and DBP-FITC, are diverse and
may represent differential abilities and modes to instruct Th2
immune responses. Among the four main migratory DC
populations in the skin dLN, the IRF4-dependent PD-L2*
CD11b" subset and the TN DC subset have both been shown
to be necessary for Th2 immunity (Gao et al., 2013; Kuma-
moto et al., 2013; Murakami et al., 2013; Tussiwand et al.,
2015). Here, we show that both of these subsets undergo sub-
stantial transcriptional changes after exposure to Th2-induc-
ing agents, and that a large proportion of those changes are
both DC subset—specific and treatment-specific, suggesting a
considerable degree of specialization within DC subsets.
The divergence of the DC transcriptomes associated
with Th2 responses to Nb and DBP-FITC is consistent with
the observation in this paper that these agents elicit different
cytokines. Previous work has demonstrated that TSLPR sig-
naling in DCs is essential for Th2 responses to DBP-FITC
(Bell et al., 2013), whereas the immune response to Nb can
develop in the absence of TSLPR (Connor et al., 2014). Ac-
cordingly, we find that DCs from DBP-FITC-treated mice
up-regulate TSLP-regulated genes such as Cd86, Ccl17, and
Cish (Zhong et al., 2014) and down-regulate IL12b (Taylor
et al., 2009). This signature was only partly observed after Nb
immunization, suggesting that additional factors other than
TSLP were influencing expression of those markers. We show

DCs in Th2 responses | Connor et al.
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Figure 7. DCs from Nb-treated mice express a pronounced IFN-I signature. C57BL/6 and (C57BL/6 x 4C13R)F1 IL-4/IL-13 double reporter mice were
treated with PBS, 300 Nb, or DBP-FITC coadministered with alFNAR or IgG1 isotype control as indicated. Ear skin or dLN were harvested at the indicated
time points for flow cytometric analysis. (A) Numbers of total MHCII"CD11c* DCs in the dLN of C57BL/6 mice treated 48 h earlier with Nb and alFNAR, as
indicated. Bar graphs show mean + SEM for six separate experiments each with four to five mice/group, except for the Naive group, which refers to one
experiment with four mice. (B) As in A, except that mice were injected with Nb-AF88 48 h earlier. Numbers of total CD326" (which includes the CD103*
DC and LC subsets), CD11b*, and TN DCs, and of Nb-AF488* DCs, are shown. Bar graphs show mean + SEM for three separate experiments each with three
to five mice/group. (C) Numbers of iLC2 per ear and percentage of IL-13-dsRed" iLC2 as measured in 4C13R double reporter mice 24 h after the indicated
treatments. Bar graphs show mean + SEM for three to four mice/group. Data refer to one of two repeat experiments that gave similar results. (D) Flow cyto-
metric analysis of DC subsets from C57BL/6 mice immunized with Nb or Nb-AF488 and treated with alFNAR or IgG1 isotype control as indicated. Mean MFI
values + SEM for five mice/group are shown for each time point. Data refer to one of two repeat experiments that gave similar results. (E) Flow cytometric
analysis of DC subsets from C57BL/6 mice immunized with Nb or DBP-FITC and treated with «lFNAR or IgG1 isotype control as indicated. Mean MFI values

JEM Vol. 214, No. 1 135

920z Arenigad 60 uo 1senb Aq 4pd-0.70910Z Wel/e5695.1L/GZ L/ LIvLZ/pd-ajoie/wal/Bio sseidny//:dpy wouy pepeojumoq



in this paper that DCs from Nb-treated mice, and especially
the CD11b" and TN subsets, express a clear IFN-I signature.
Flow cytometry experiments confirmed that the IFN-I-
responsive markers BST2, Ly6A/E, CD25, and PD-L1 were
up-regulated on CD11b" and TN DCs after Nb, but not after
DBP-FITC, and that this up-regulation could be blocked by
olFNAR treatment. We also show that IFNAR signaling is
functionally important, as blocking IFNAR signaling led to
impaired IL-4 responses after Nb immunization without af-
fecting the response to DBP-FITC. Thus, the effects of the
powerful innate cytokines TSLP and IFN-I can explain the
transcriptional heterogeneity of DCs in the Th2 immune re-
sponse models used in this study.

Our observation that IFN-I is involved in the priming
of Th2 cells was surprising because this cytokine has been
shown to play important roles in the induction of type I CD4"
and CD8" T cell responses to viruses and tumors (Trinch-
ieri, 2010), and immune responses to fungal pathogens, such
as Candida albicans or vaccine adjuvants like chitosan (del
Fresno et al., 2013; Carroll et al., 2016). Interestingly, immune
responses to these agents are reported to require DC sub-
sets, such as the CD103" DCs for antiviral and antitumor
immune responses (Hildner et al., 2008), and Langerhans
cells for the immune response to Candida (del Fresno et al.,
2013; Smeekens et al., 2013), that are distinct from the DC
subsets that induce Th2 responses. These results may suggest
that other DC subset-specific and/or antigen-specific signals,
cytokines, or cell populations differentially induced by these
very different agents may also contribute to the diversity of
the resulting response.

Experiments in TSLPR KO mice suggested that IFN-I
and TSLP both contributed to the Th2 response to Nb, with
IFNAR signaling making the larger contribution to the
number, but not the percentage, of IL-4—producing T cells in
dLN. However, simultaneously blocking signaling by both cy-
tokines was still insufficient to fully ablate Th2 priming after
ND injection, suggesting that additional cytokines or cell-
mediated signals were probably involved. This observation
may reflect the complexity of multicellular organisms such as
parasites, which are likely to trigger multiple innate response
mechanisms. The production of IFN-I by DCs exposed in
vitro to parasite products, such as SEA has been reported in
previous studies (Trottein et al., 2004), and we show in this
paper that live N. brasiliensis infection could also induce ex-
pression of IFN-I responsive markers in DCs. In addition,
experiments in our laboratory showed that IFN-I signaling

was also required for immune responses to nonparasitic al-
lergens, such as the common household allergen house dust
mite (unpublished data). Experiments to identify the cellu-
lar sources and signaling pathways that drive IFN-I produc-
tion after Nb injection will be essential in understanding the
basis of these responses.

The IFNAR is widely expressed on most cells in the
body, and our IFNAR -blocking experiments could not dis-
tinguish between IFN-I effects on DCs versus other cell types.
Therefore, we used BST2 expression as a readout of IFN-I
exposure in vivo as this marker is sensitively and specifically
induced by IFN-I (Blasius et al., 2006). We found that after
Nb immunization BST2 was only marginally up-regulated
on CD4" T cells, and was highest on MHCII™ CD11b" and
TN DCs, suggesting that these DC populations were pref-
erentially exposed to IFN-I. We also examined iLC2 in skin,
as IFN-I can affect the function of these cells (Duerr et al.,
2016). We found that iLC2 numbers and their production of
IL-13, which can support DC migration and function (Halim
et al., 2014, 2016), were also not affected by IFN-I. Thus, our
data are consistent with IFN-I primarily affecting the func-
tion of the DC subsets that transport Nb-AF488 to the LN.

IFN-I-dependent activation of DCs is critical for the
immunostimulatory function of adjuvants such as polyl:C,
through the up-regulation of the co-stimulatory molecules
CD86 and CD70 (Longhi et al., 2009). In our model, block-
ing IFN-I signaling did not significantly affect the number
of Nb-AF488" DCs in the LN or their up-regulation of
CD86, suggesting that DC migration and activation were not
exclusively IFN-I dependent. Nonetheless, adaptive T cell
immunity to Nb was impaired by anti-IFNAR treatment,
perhaps suggesting that other DC functions were affected. In
this context, it is interesting to note that IFN-I is reported
to inhibit inflammasome activation (Guarda et al., 2011) and
down-regulate TLR-dependent production of inflammatory
cytokines during late phases of the immune response (Roth-
lin et al., 2015). Consistent with this possibility, we show
that genes that inhibit cytokine production, such as Cish,
Socs2, and CD200, were up-regulated in DCs conditioned
by either Nb or DBP-FITC.

The absence of proinflammatory cytokine production
by DCs has previously been linked to Th2 development. Mice
lacking MyDS88, a critical component of the TLR signaling
pathway and the initiation of proinflammatory cytokine pro-
duction, develop a Th2 immune profile when exposed to Th1
microbial stimuli (Jankovic et al., 2002). Similarly, DCs acti-

+ SEM for five mice/group are shown for each time point. Analyses of Nb or DBP-FITC responses were performed in different experiments, thus MFI values
are not directly comparable across treatments. Data refer to one of two repeat experiments that gave similar results. (F) C57BL/6 mice were treated as in B.
Bar graphs show expression of CD69 and BST2 on LN CD4" T cells at 48 h after Nb immunization. Mean + SEM for five mice/group; data refer to one of two
repeat experiments that gave similar results. (G) As in B, except that C57BL/6 mice were injected with 300 live N. brasiliensis L3 larvae; dLN were collected
for flow cytometric analysis at 48 h after immunization. Bar graphs show mean + SEM for five mice/group. Data refer to one of two repeat experiments that
gave similar results. P-values were determined using one-way ANOVA with the Bonferroni post-test, except for panels in E, which were determined using a
two-way ANOVA with the Bonferroni post-test; *, P < 0.05; ™, P < 0.01; ***, P < 0.001; ***, P < 0.0001; ns, not significant.
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vated in vitro under suboptimal conditions fail to produce
proinflammatory cytokines and preferentially prime T cells
to Th2 (Pletinckx et al., 2011). We show that DCs exposed
to Th2 conditions in vivo up-regulate transcripts for some
proinflammatory molecules; however, up-regulation was vari-
able with respect to Th2 condition, DC subset, and the proin-
flammatory molecule involved. Comparison to published
data shows that CD11b" DCs from DNFB-treated mice (Ta-
moutounour et al., 2013) and human monocyte-derived DCs
exposed to E. coli or influenza virus in culture (Huang et al.,
2001) up-regulate transcripts for Tnfsf9 (CD137L), Tnfrsf9
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Nb

(CD137) and Icam1. These molecules, which are reported to
favor Th1 differentiation by supporting IL-12 production by
DCs and strengthening DC-T cell interaction (Futagawa et
al., 2002; Smits et al., 2002; Wilcox et al., 2002), were either
stably expressed or down-regulated in our Th2 conditions.
In addition, transcripts for the transcription factors Ets2 and
St18 were also down-regulated; these molecules are reported
to promote inflammatory cytokine production and apoptosis
in different models (Wolvetang et al., 2003;Yang et al., 2008;
van der Pouw Kraan et al., 2009). Thus, the simple lack of
proinflammatory cytokine production by DCs, also known as
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the default hypothesis, may be one element involved in DC
instruction of Th2 responses.

Our analysis of DC subsets isolated from Th2-inducing
conditions revealed few genes that were concordantly regu-
lated by Nb and DBP-FITC, a finding also reflected in the
very low number of shared signaling pathways as identified
by IPA. However, among the shared DEG were several that
have been previously associated with DCs and Th2 immunity,
including Ccl17 (Alferink et al., 2003; Gros et al., 2009; Fujita
et al., 2011; Kitajima and Ziegler, 2013) and Irf4 (Gao et al.,
2013; Williams et al., 2013). The transcription factor IRF4
has a well-recognized role in the development and function
of Th2-inducing DCs, but was initially identified for its role
in modulating IL-4 responsiveness and production in lym-
phocytes (Gupta et al., 1999; Rengarajan et al., 2002). Inter-
estingly, analysis of shared DEG in DCs identified additional
transcripts that can be linked to Irf4 through their known
interactions in lymphocytes. BCL6 and NR4A1, whose
transcripts are down-regulated in Th2 DCs, are reported to
suppress IRF4 activity in B cells and CD8" T cells, respec-
tively (Gupta et al., 1999; Nowyhed et al., 2015). In addi-
tion, BCL6 KO mice develop exaggerated Th2 inflammation
caused by dysregulated STAT6 activity (Dent et al., 1997).
Although the precise role of BCL6 in DC function is only
starting to be characterized (Zhang et al., 2014), the obser-
vation that multiple cell types similarly regulate overlapping
transcriptional networks during Th2 responses may suggest
the activation of common genetic programs after exposure
to Th2-inducing agents.

In conclusion, we report an unanticipated diversity in
the transcriptional profile of CD11b" and TN DC subsets
priming different Th2 responses in the skin. This diversity
reflects differences in the cytokines, IFN-I and TSLP, driv-
ing the Th2 responses under investigation, and might in turn
underlie different properties of the Th2 immune responses
being generated (Bouchery et al., 2014). Studies to examine
additional allergens might reveal further heterogeneity. Alto-
gether, our findings pose the question of how the observed
diversity may translate into a common instructive DC signal
that drives Th2 differentiation.

MATERIALS AND METHODS

Mice

Age- and sex-matched specific pathogen—free C57BL/6],
Langerin-DTR (Kissenpfennig et al., 2005), TSLPR KO (Al-
Shami et al., 2004), C57BL/6"™* "™ (Hu-Li et al., 2001),
and (C57BL/6 X 4C13R)F1 (Roediger et al., 2013) mice,
all on a C57BL/6 background, were bred and housed at the
Malaghan Institute of Medical Research Animal Facility.
Batf3™'~ (Hildner et al., 2008) were backcrossed to C57BL/6]
in our facility for 10 generations. In all experiments, C57BL/6
mice were used as controls. To deplete Langerin® DCs, Lan-
gerin-DTR mice were given 1.p injections of 0.35-1 ug DT
(Sigma-Aldrich) 1 d before and 1 d after Nb or DBP-FITC
treatment, respectively. All experimental protocols were ap-
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proved by the Victoria University Animal Ethics Committee
and performed according to institutional guidelines.

Immunizations and in vivo treatments

N. brasiliensis infective L3 larvae were prepared, washed in
sterile PBS, killed by three freeze—thaw cycles, and injected
into the ear pinna of anaesthetized mice, as previously de-
scribed (Camberis et al., 2013). In some experiments live L3
larvae were injected using the same protocol. For fluorescent
labeling, nonviable L3 were incubated in 0.05 M NaHCO;
buffer and 0.1 mg of Alexa Fluor 488 Microscale Protein la-
beling dye (Molecular Probes), and then washed with 0.1 M
Tris buffer. For DBP-FITC application, hair was removed
from recipient mice 1 wk before sensitization and 20 ul of a
solution of 0.5% FITC (Sigma-Aldrich) in 50% DBP (BDH
Laboratory Supplies)/50% acetone (Pacific Sphere Limited)
were applied epicutaneously on the back, abdomen, and ear
as previously described (Ochiai et al., 2014). To block IFN-I
cytokine signaling in vivo, recipient mice were injected on
day 0 with 200 pg anti-mouse IFNAR1 (MAR1-5A3) or
mouse IgG1 (MOPC-21) antibodies (Bio X Cell) given i.d.
with the Th2 immunizations. A second injection of 200 pg
antibody was given 1.p. on day 2.

Quantitative real-time RT-PCR

Ears were collected at indicated times after injection with 600
Nb, or topical application of DBP-FITC. Epidermal layers
were separated from the dermis by digestion with Dispase II
(Roche), and total RNA was extracted from the tissue using
an RNeasy mini kit (QIAGEN). cDNA was synthesized by
using a High-Capacity RNA-to-cDNA kit (Applied Biosys-
tems), and quantitative PCR was performed using TagMan
gene expression master mix and primers (Applied Biosys-
tems). TSLP data are normalized to 18S RINA and expressed
as relative to control samples.

DC sorting

For Nb-treated mice, auricular LN were collected from 15
mice at 48 h after treatment and made into single-cell sus-
pensions by digestion with DNase I and Liberase TL (Roche).
CD11c" cells were enriched by negative magnetic selection
(Dynabead Mouse DC Enrichment Kit; Invitrogen). Enriched
cells were labeled with a cocktail of fluorescent antibodies spe-
cific for: CD11¢ (HL3) and CD11b (M1/70; both from BD);
and MHCII (M5-114), CD326 (G8.8), and CD103 (2E7; all
from BioLegend). Anti-Ly6C (AL-21; BD) was also added
when sorting CD11b" DCs from Nb-treated mice. For DBP-
FITC treatment, brachial, axillary, inguinal, and auricular LN
were collected from seven donor mice per group at 24 h after
treatment, and processed as for Nb DC preparation. Enriched
cells were labeled with fluorescent antibodies specific for
CD11c¢ (HL3), MHCII (M5-114), CD11b (M1/70), CD326
(G8.8), CD24 (M1/69), and anti-Ly6C (AL-21; eBioscience).
Dead cells were identified and excluded from analysis using
DAPI labeling (Molecular Probes). DC populations were
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sorted and isolated using a FACSVantage Diva (BD) with BD
FACSDiva software, version 5.0.3 (BD). Cell pellets of sorted
DC populations were frozen at —80°C until RNA extraction.
Three biological replicates for each treatment were prepared
in three separate DC sorting experiments.

RNA isolation and sequencing
Total RNA was prepared from frozen cell pellets using
QIAzol Lysis Reagent and the RNeasy Micro Kit (all from
QIAGEN). RNA was quantified using a Qubit Fluorometer
(Invitrogen) and RNA integrity was checked using an Agilent
Bioanalyzer and RNA 6000 Nano Kit (Agilent Technologies).
Library preparation and RNA sequencing were con-
tracted out to New Zealand Genomics Limited. Samples
were spiked with External RNA Controls Consortium mix
(Ambion; Life Technologies) and ribosomal RNA was de-
pleted using RiboZero (Illumina) before library preparation.
Paired-end stranded RNA sequencing was performed on an
[Mumina HiSeq system using Illumina TruSeq kits. Between
10 and 30 million read pairs were generated per sample.

Read mapping and differential expression analysis
Paired-end raw read FASTq files were preprocessed using
Trimmomatic (v0.32) and quality checked using the qrqc
R package (v1.20.0). Reads were mapped to the C57BL/6]
mouse reference genome, version GRCm38.p3, using Top-
Hat2 (v2.0.10). Read hits to annotated genes were counted
using HtSeq-count (HT-Seq, v0.6.0) excluding Y chromo-
some genes. Statistical analysis of gene expression counts
was performed in R (v3.1.3) using the R package DESeq2
(v1.6.3; Anders and Huber, 2010). A variance-stabilizing
transformation (VST) was applied to count data using the
DESeq2 function varianceStabilizingTransformation, pro-
ducing gene expression values that are adjusted for variance
across sample conditions. To compare different genes to each
other, this matrix was further transformed by dividing by
transcript length in kbp to generate VSTPk values. For each
desired comparison, gene differential expression was calcu-
lated from regularized log-fold-changes and multiple-test-
ing-corrected P-values. Where mouse sex was a covariate, it
was included in the experimental model supplied to DESeq?2.
Genes were considered to be differentially expressed when
P < 0.01 and log,FC was >0.585 in either direction (which
corresponds to FC > 1.5 in either direction).

Volcano plots, PCA plots (using R package FactoM-
ineR), and Venn diagrams were generated from genes that
were initially filtered to exclude those with low overall ex-
pression in all samples. VSTPk values were compared across
all samples and genes with a maximum VSTPk of —2 or less
were excluded, leading to a quasi-normal VSTPk distribu-
tion. Heat maps were generated excluding noncoding genes,
genes where transcript mapping was unclear, and genes that
are known not to be expressed in cDCs.

For comparisons to published data (Fig. S2; Miller et
al., 2012), a generalized linear model was fitted to the rela-
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tionship between log-transformed microarray and VSTPk ex-
pression levels obtained from the ImmGen Project database,
and was used to transform the microarray data into values
comparable to our VSTPks.

Pathway analysis

Datasets obtained after DESeq2 analysis were analyzed
through the use of QIAGEN' Ingenuity Pathway Analysis
(IPA). Canonical pathway and upstream regulator analyses
were performed on genes that were up- and down-regulated,
using a P-value cut-off of 0.01 and a log,FC of 0.585. In IPA,
the pathways were compared using a P-value cut-off of 0.05
with and without an activation z-score threshold of 2.

Cell preparations

For DC preparation, auricular LN were collected and di-
gested with DNase I and Liberase TL (Roche) for 25 min
at 37°C. For skin ILC2 preparation, ears were split into dor-
sal and ventral layers and digested in collagenase IV (Sigma-
Aldrich) and DNase I (Roche) for 30 min at 37°C. Cells
were passed through a 70-pm nylon cell strainer and washed
in flow cytometry buffer in preparation for staining. ILC2
cells were identified as CD45"CD90.2"CD2"CD3 NK1.1".
To assess IL-13 production by iLC2 cells, 4C13R mice were
used and IL-13-DSred reporter expression was detected by
flow cytometry.

Flow cytometry

For staining of cell surface molecules, cells were incubated
with anti-mouse CD16/32 (clone 2.4G2; afhnity purified
from hybridoma culture supernatant) before labeling with
cocktails of fluorescent antibodies specific for: CD11c¢ (HL3),
CD86 (GL1), MHCII (M5/114), CD326 (G8.8), CD4
(RM4-5), CD3 (145-2C11), and CD44 (IM7; all from BD);
CD11b (M1/70), CD25 (7D4), Ly6A/E (D7), CD45 (30-
F11),CD90.2 (53.2.1), CD2 (RM2-5), NK1.1 (PK136; BD);
Ly6C (HK1.4),CD317 (BST2, PDCA-1; clone 927), CD273
(PDL2, Ty25), CD69 (H1.2F3; all from BioLegend); CD274
(PDL1, MIH5) and B220 (RA3-6B2; both from eBiosci-
ence). For intracellular cytokine staining, cells were surface
stained, and then fixed and permeabilized using the Cyto-
fix/Cytoperm kit (BD), and labeled with anti-IL-4 (11B11),
anti-IFN-y (XMG1.2), or respective IgG1 isotype con-
trols (all from BD). Anti—IL-17A (eBio17B7) was obtained
from eBioscience. Dead cells and doublets were identified
and excluded from analysis using DAPI labeling or LIVE/
DEAD Fixable Blue dead cell stain kit (both from Molecu-
lar Probes). Compensation was set in each experiment using
CompBeads (BD). All samples were collected on a LSR
II SORP flow cytometer (BD) and analyzed using FlowJo
version 9.6.2 (Tree Star).

Assessment of in vivo T cell responses

7 d after i.d. challenge, mice were sacrificed and auricular LN
were collected for analysis. To assess IL-4 production using
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IL-4-GFP reporter expression, live CD3" CD4" T cells were
identified by flow cytometry, and the percentage of IL-4-
GFP* cells was determined by comparison to an IL-4-GFP"¢
C57BL/6 control. To assess IL-4, IFN-y, and IL-17 produc-
tion by intracellular cytokine staining LN cells were cultured
in fetal bovine serum—supplemented Iscove’s modified Dul-
becco medium in the presence of 1 pg/ml ionomycin, 50 ng/
ml PMA, and GolgiStop (BD) for 5 h, or cultured on plate-
coated anti-CD3 with soluble anti-CID28 and IL-2 for 4 h,
with GolgiStop added during the final 2 h. Cells were then
fixed and permeabilized as described (Connor et al., 2014).
Statistical analyses were performed using Prism 5.0 GraphPad
Software. Mean + SEM is shown in all graphs. Data were an-
alyzed using one-way or two-way ANOVA with Bonferroni
post-test; p-values < 0.05 were considered significant.

Data access
RNA-seq data are deposited in Gene Expression Omnibus,
available under accession no. GSE88998.

Online supplemental material

Fig. S1 shows the gating strategy used for DC flow-sorting
and back-gating analysis of individual DC subsets. Fig. S2
shows the expression of genes associated with LN migratory
DCs, LN resident DCs, LN monocytes, and LN pDCs in
individual DC subsets in this study. Table S1 shows a list of
all DEG in DC subsets, by DC subset and Th2 condition.
Table S2 shows a list of canonical pathways in DC subsets as
detected by IPA. Table S3 shows the list of IFN-I regulated
genes in each DC subset as determined using the Interferome
database. Tables S1-S3 are available as Excel files.
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