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Individuals with type 2 diabetes have an increased risk for developing Alzheimer's disease (AD), although the causal relation-
ship remains poorly understood. Alterations in insulin signaling (IS) are reported in the AD brain. Moreover, oligomers/fibrils
of amyloid-p (Ap) can lead to neuronal insulin resistance and intranasal insulin is being explored as a potential therapy for
AD. Conversely, elevated insulin levels (ins) are found in AD patients and high insulin has been reported to increase Ap levels
and tau phosphorylation, which could exacerbate AD pathology. Herein, we explore whether changes in ins and IS are a cause

or consequence of AD.

Alzheimer’s disease (AD) is a devastating neurodegenera-
tive disorder affecting roughly 30 million people worldwide.
Although some cases of AD (<1%) are caused by autoso-
mal-dominant inherited mutations that typically lead to clin-
ical disease onset before the age of 60, the majority of AD is
late-onset AD (LOAD) where age, genetics, environment, and
other diseases likely play a role (Holtzman et al.,2011; Musiek
and Holtzman, 2015). AD is characterized by a cascade of
pathological events, including the formation of amyloid
plaques (made up of aggregated forms of Ap), neurofibril-
lary tangles (composed of aggregated, hyperphosphorylated
tau), synapse loss, brain hypometabolism, neuroimflammation,
and brain atrophy that is accompanied by severe and pro-
gressive cognitive impairment. Amyloid plaques, consisting of
aggregated forms of AP in the extracellular space, are gen-
erated in a concentration-dependent manner. The buildup
of hyperphosphorylated and aggregated tau protein leads to
the development of intracellular neurofibrillary tangles. Ac-
cumulation of AP occurs ~15 yr before patients experience
cognitive decline, whereas tau begins to accumulate in the
neocortex later but before the onset of dementia, adding to
the complexity of this disease. Many risk factors for LOAD,
both genetic and nongenetic, have been identified. Apart from
aging, the strongest known risk factor for LOAD is genetic
variation in the apolipoprotein E (APOE) gene. The APOE4
allele increases AD risk by 12-fold (two copies) or 3.7-fold
(one copy) in part by influencing A accumulation. However,
APOE4 is only present in ~50-60% of individuals with AD,
suggesting that other factors are involved in AD pathogenesis
(Holtzman et al., 2011).
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One such risk factor for LOAD, which has received
considerable attention is type 2 diabetes (T2D), which in-
creases AD risk by at least twofold (Sims-Robinson et al.,
2010). Also a disease of aging, T2D is characterized by hy-
perglycemia, hyperinsulinemia, and insulin resistance (a lack
of response in the insulin signaling [IS] pathway). Normally,
insulin binds to the insulin receptor (IR) which phosphor-
ylates IR substrate (IRS) on a tyrosine residue, leading to
activation of the canonical signaling cascade (Fig. 1). In pe-
ripheral tissues, such as muscle, fat, and liver, this signaling
ultimately leads to the uptake and sequestration of glucose
to satisfy cellular energy requirements and plays a key role
in lipid metabolism (Dimitriadis et al., 2011). Contrary to
the periphery, where glucose uptake is largely insulin depen-
dent, the brain uses nearly 20% of all glucose in the body in
a process that is largely insulin independent. However, brain
IS is robust and has pleotropic effects due to the widespread
distribution of IRs throughout the brain and the complexity
of IR signaling. For example, hippocampal activation of IR
signaling can modulate memory (McNay et al., 2010) and
IR signaling in the hypothalamus can affect feeding behavior
and peripheral metabolism (Brief and Davis, 1984). Similar
to AD, pathological changes in insulin occur years before pa-
tients receive a diagnosis of T2D, which typically occurs once
pancreatic P cell dysfunction and insulin resistance produce
chronic hyperglycemia (Dankner et al., 2009). Interestingly,
T2D alone has been associated with cognitive decline (Allen
et al.,2004), brain hypometabolism (Roberts et al.,2014), and
regional brain atrophy (Last et al., 2007). The cognitive defi-
cits in T2D are proposed to be mediated by changes in brain
IS (McNay and Recknagel, 2011), although there is little data
from T2D patients measuring insulin/IS in the CNS to sup-
port this assertion (Liu et al., 2011).
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Figure 1. Canonical IR signaling cascade. Insulin binds to the insulin receptor (IR), a receptor tyrosine kinase, which autophosphorylates and activates a
cascade of phosphorylation events. IRS1 is phosphorylated on a tyrosine residue to activate further signaling, which ultimately leads to the translocation of
glucose transporter 4 (GLUT4) to the membrane and uptake of glucose for energy in peripheral tissues. Solid arrows represent activation upon insulin stim-
ulation. Blocked arrows represent inhibition. Glycogen synthase kinase 3 (GSK3) is serine phosphorylated and inhibited in response to insulin stimulation.
Dashed arrows represent downstream effectors that have been found to phosphorylate IRS1 on a serine residue (p(Ser)-IRS1), which is thought to lead to
less activation of the signaling cascade through negative feedback (dashed blocked arrow). p(Ser)-IRS1 is a marker of insulin resistance.

There are two broad ways in which T2D could influ-
ence the risk of AD: (1) T2D can lead to small vessel disease,
which can cause or contribute to dementia, independent of
or together with AD pathology, by disrupting proper function
of the brain vasculature (Biessels and Reijmer, 2014), and (2)
T2D can result in changes of brain function directly or in-
teract with key proteins or pathways involved in AD pathol-
ogy, such as AP or tau. This review will focus on mechanisms
specific to AD pathology, but acknowledges the significant
impact that vascular alterations may have on the brain in
AD and other dementias.

Over the past 15 yr, many studies have reported changes
in insulin levels (ins) or IS (ins/IS) in LOAD patients (Table 1),
suggesting that individuals with AD experience hyperinsulin-
emia and brain insulin resistance. One interpretation is that
the brain becomes insulin resistant as a consequence of AD
pathology and hyperinsulinemia is compensatory, producing
what has been termed type 3 diabetes (Steen et al., 2005).
Insulin resistance in the AD brain may lead to cognitive im-
pairment, similar to that observed in T2D patients, therefore
treating individuals with AD with intranasal insulin to im-
prove memory is currently under investigation in clinical
trials (Reger et al., 2008; Craft et al., 2012; Wadman, 2012).
Conversely, hyperinsulinemia and insulin resistance can mod-
ulate AP and tau in ways that can put the brain at risk to
develop further AD pathology, so that changes in the ins/IS
in AD patients may represent a contributor/cause of disease
progression (Fig. 2). If so, increasing brain insulin could ex-
acerbate AD pathology and cognitive decline over time. This
proposes a unique problem as it relates to AD; whereas insulin
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treatment may lead to modest cognitive improvement in AD
patients, it could also worsen underlying pathology. In this
review, we will analyze the changes in ins/IS that have been
reported in AD and speculate if they are a cause or conse-
quence of disease based on experimental evidence and the
timeline of AD progression. Critical evaluation of this liter-
ature as well as a determination of essential future experi-
ments is crucial, as rates of both T2D and AD are on the rise
and insulin therapy is actively being pursued worldwide in
older adults and patients.

INSULIN-RELATED CHANGES IN AD

Brain insulin. Many groups have analyzed postmortem brain
tissue from AD patients of varying severity and controls to
look for alterations in Ins/IS through changes in mRNA,
protein, or phosphorylation (Table 1). Insulin has been mea-
sured in relatively low levels in brain tissue of humans and ro-
dents (Banks et al., 1997; Frolich et al., 1998). Only one study
reports insulin levels in the AD brain. They found that brain
insulin was equally reduced in AD patients and age-matched
controls, indicating that reductions in brain insulin are likely a
result of age, not AD (Frolich et al., 1998).Two other groups
report reductions in insulin mRNA in AD (Rivera et al.,
2005; Steen et al., 2005), yet questions remain as to whether
insulin is synthesized in the brain to an appreciable level be-
cause there is evidence that a majority of brain insulin comes
from the blood (Banks, 2004). Specifically, one study could
not detect insulin mRNA in the cortex (Steen et al., 2005)
but another did (Rivera et al., 2005), making this mRNA
data difficult to interpret. Ultimately, a greater understand-
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ing of insulin in the brain relative to the severity of AD and
age-matched controls needs to be obtained in order to fully
comprehend insulin’s function in healthy and diseased brains.

Brain IS. IRs are widely distributed throughout the brain,
with relatively high concentrations in the olfactory bulb, hy-
pothalamus, and hippocampus (Fernandez and Torres-Aleman,
2012). IRs are largely localized to neurons (Unger et al.,
1989), although IR mRNA is present in glia and endothelial
cells (Zhang et al., 2014). Although alterations in IR levels
(Frolich et al., 1998; Steen et al., 2005) and its phosphoryla-
tion (Steen et al., 2005) are reported in AD, other studies

Table 1. Insulin-related changes in AD

found no differences (Moloney et al., 2010; Liu et al., 2011;
Ho et al., 2012; Talbot et al., 2012). The most convincing,
consistent change in IS is a lower level of IR substrate 1
(IRS1) and higher p(Ser)-IRS1, a marker of insulin resistance,
in AD brains (Steen et al., 2005; Moloney et al., 2010; Bom-
fim et al., 2012; Talbot et al., 2012; Yarchoan et al., 2014).
Higher p-JNK, which can lead to p(Ser)-IRS1, has also been
found in AD brains (Bomfim et al., 2012; Talbot et al., 2012),
suggesting some level of insulin resistance in AD. Questions
still remain as to what are the physiological and pathological
implications of increased markers such as p(Ser)-IRS1 and
p-JNK and how thatrelates to AD pathology and brain function.

Parameter AD 1| Study

Details

Blood insulin 1 Bucht et al., 1983; Fujisawa et al.,
1991; Stolk et al., 1997; Craft

et al, 1998; Ma et al., 2016

CSF insulin 1 Fujisawa et al., 1991
| Craft et al., 1998; Gil-Bea et al.,
2010
No change Molina et al., 2002
Brain insulin No change Frélich et al., 1998
| Frélich et al., 1998; Rivera et al.,
2005; Steen et al., 2005
Brain IR (total) | Frolich et al., 1998; Rivera et al.,
2005; Steen et al., 2005
1 Frolich et al., 1998
No change Moloney et al., 2010; Liu et al.,
2011; Ho et al., 2012; Talbot et
al., 2012
Brain p-IR and activity | Frélich et al., 1998; Rivera et al.,
2005; Steen et al., 2005
Brain IRS1 (total) 1 Steen et al., 2005; Moloney et
al,, 2010
No change Liu et al,, 2011; Talbot et al., 2012
Brain p(Ser)-IRS1 1 Moloney et al., 2010 Talbot et
al., 2012 Bomfim et al., 2012
Yarchoan et al., 2014
Brain AKT (total) 1 Griffin et al., 2005; Liu et al., 2011
No change Steen et al., 2005; Talbot et al.,
2012
Brain p-AKT t Pei et al., 2003; Griffin et al.,
2005; Talbot et al., 2012;
Yarchoan et al., 2014
l Steen et al., 2005
No change Liu et al.,, 2011
Brain GSK3 (total) 1 Ho et al., 2012
No change Steen et al., 2005; Liu et al., 2011;
Talbot et al., 2012
Brain p(Ser)-GSK3 1 Steen et al., 2005 Griffin et al.,
2005
No change Liu et al,, 20Mm
Brain p-GSK3 t Pei et al., 2003
Brain p-JNK 1 Bomfim et al.,, 2012; Talbot et
al., 2012
Other IR signaling | Griffin et al., 2005; Liu et al., 2011;
molecules Talbot et al., 2012

-Fasting or after glucose tolerance test -In women only (1 study) -Only in non-APOE4 and
moderate/severe AD (1 study) -Meta-analysis of 11 studies: 5 report overall 1, 1 1 in

women, 1 1 with advanced stage (Ma et al., 2016)
-Also found small increase with vascular dementia

-Only in non-APOE4 and moderate/severe AD -No relationship to APOE or AD severity

-No relationship with AD severity or cognition
-Comparing controls >65 y/o and AD patients

-Comparing controls <65 y/o and AD patients -mRNA: in hippocampus and hypothalamus

-mRNA: progressive reduction with Braak stage

-Comparing controls <65 y/o and AD patients -mRNA and protein -mRNA: progressive

reduction with Braak stage
-Comparing controls >65 y/o and AD patients

-Potential changes in cellular distribution -Also no change in p-IR -Only reduced in patients

with T2D and AD

-In hippocampus -Reduced insulin binding -TK activity reduced compared to all controls

-mRNA in 3 regions -Also reductions in IRS2

-Also no change in IRS2 -Only reduced in patients with T2D and AD

-Regardless of APOE status and reduced ex vivo insulin stimulation -Highest in AD, but also

elevated in some tauopathies

-Reduced in AD and in patients with T2D and AD

-Associated with tangles

-In hippocampus
-Only reduced in patients with T2D and AD
-With advanced AD
-Only reduced in patients with T2D or T2D and AD

-In hippocampus
-Only reduced in patients with T2D or T2D and AD

-Associated with tangles

-PDK1, p-PDK1 and p-PI3K -PIP3, PKC, p-mTOR, p-ERK2 -PTEN

Reported alterations in ins and brain IS in AD are categorized by the specific component measured, whether there have been reports of an increase, decrease (up and down arrows), or no
change in individuals with AD, the studies that report this specific alteration, and important details. For blood and CSF insulin, AD diagnosis was based on clinical criteria. For postmortem
analysis of brain insulin and IS components, AD was confirmed by clinical diagnosis and histological analyses. All reported changes were at the protein level unless mRNA is specified in the
details. Overall, data from this table supports a higher level of blood insulin in individuals with AD and some degree of brain insulin resistance.
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Type 2 diabetes

* Does insulin dysregulation increase p-tau and tau aggregation?
* Does insulin resistance increase p-tau and tau aggregation?

» Does insulin dysregulation increases AB?

* How do vascular contributions of diabetes contribute to dementia and AD?

Alzheimer‘s disease

* Will peripheral or central delivery of insulin improve cognitive function in Alzheimer’s

disease?

* Does Alzheimer’s disease pathology lead to brain insulin resistance?
¢ |f insulin resistance is present in the Alzheimer’s disease brain, does it contribute to

cognitive dysfunction?

e Does Alzheimer’s disease pathology increase the brain’s vulnerability to the cognitive

effects of diabetes and insulin resistance?

¢ Are brain networks affected by Alzheimer’s disease more sensitive to metabolic

changes?

Figure 2. Connections between T2D and AD: cause or consequence? Big picture questions that need to be addressed to determine if insulin-related
changes represent a cause or consequence of AD. In regards to the evidence that T2D increases the risk of AD, answering the questions in the top arrow
will determine how and why T2D is a risk factor and the potentially causal role of insulin/IS. In regards to the idea that AD progression may lead to a dia-
betic phenotype, answering the questions in the bottom arrow will determine if and how AD pathology may affect insulin homeostasis and the potential

consequences of these changes on cognition.

Canonical IS posits that, upon activation of AKT by in-
sulin, glycogen synthase kinase 3 (GSK3) is serine phosphor-
ylated to reduce its activity. Active GSK3 phosphorylates tau
among other substrates, suggesting that overly active GSK3
may exacerbate tau phosphorylation and, ultimately, its aggre-
gation. In postmortem brain samples, there are reductions in
p-AKT and p(Ser)-GSK3, suggesting increased GSK3 activity,
which can lead to tau phosphorylation (Steen et al., 2005;
Liu et al., 2011). In contrast, other groups report increases in
p-AKT and p(Ser)-GSK3, even in the presence of elevated
phosphorylated tau (p-tau) and tangles (Pei et al., 2003; Grif-
fin et al., 2005;Yarchoan et al., 2014), making this particular
signaling component difficult to interpret. Reductions in the
level or phosphorylation of other IS molecules are reported
in AD brains (Liu et al., 2011; Talbot et al., 2012) and ex vivo
activity assays have shown that tyrosine kinase activity, insu-
lin binding, and insulin stimulation are reduced in AD brains
(Frolich et al., 1998; Rivera et al., 2005; Talbot et al., 2012).

Overall, there does appear to be some level of insulin re-
sistance in the AD brain. However, this is not specific to insu-
lin, as there are also reductions in both the levels and signaling
of insulin-like growth factor (IGF) I and II (Steen et al., 2005;
Moloney et al., 2010) and leptin signaling (Maioli et al., 2015).
Although brain insulin and IGF resistance in the human AD
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brain are seen as detrimental, mouse studies have paradoxi-
cally shown that deleting IRs or IGF1 receptors in the brain
is protective against amyloid plaque deposition (Freude et al.,
2009; Stohr et al., 2013) and improves survival (Freude et
al., 2009), demonstrating that there is much left to elucidate
about the physiological consequences of reduced insulin or
IGF1 signaling in the brain.

Blood and cerebrospinal fluid (CSF) insulin. Studies reported
alterations in blood insulin in AD as early as 1983 (Table 1).
Fasted blood insulin or insulin in response to a glucose chal-
lenge are higher in AD patients (Bucht et al., 1983; Fujisawa
et al., 1991; Stolk et al., 1997; Craft et al., 1998; Ma et al.,
2016). The transport of insulin from blood to brain and CSF
is a receptor-mediated process. This transport is saturable
within physiological levels and is affected by numerous vari-
ables (Banks, 2004). The CSF/serum insulin ratio is subtly de-
creased with age (Sartorius et al., 2015). Craft and colleagues
also found the CSF/serum insulin ratio to be lower in AD,
where higher blood and lower CSF insulin was more prom-
inent with disease progression. Interestingly, they only found
this change in AD patients without an APOE4 allele (Craft et
al., 1998). Other groups who measured CSF insulin reported
reductions but no difference with APOE4 (Gil-Bea et al.,
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Figure 3. Where and when do changes
in ins and IS affect AD? Colored lines
represent our current understanding of the
pathological timeline in AD. It is currently
unclear when and where changes in ins/IS
occur in this timeline. If changes in ins/
IS happen early, (1) they could initiate or
potentiate amyloid accumulation to casu-
ally influence AD. If ins/IS changes appear
around the time of symptoms (4), this
could be a consequence of years of patho-
logical changes and may be directly related
to cognitive decline. If changes in ins/
IS occur in the presymptomatic period (2
and 3), they could be interacting with AB,
tau, or metabolism to contribute to disease
progression. Conversely, presymptomatic

I
Normal Presymptomatic

O
O I
O
O "I

2010), no difference (Molina et al., 2002), or increases with
higher CSF/plasma ratios (Fujisawa et al., 1991), making in-
terpretations of this data difficult. While reports of CSF insulin
are variable, current data suggests that AD patients are likely to
experience higher blood insulin. When trying to determine
if this hyperinsulinemia could be a cause or consequence of
disease, it is important to consider when hyperinsulinemia
occurs in relation to the development of AD. Table 1 demon-
strates that blood insulin is higher in AD patients, and it may
increase with disease progression (Craft et al., 1998), but other
studies suggest that higher blood insulin, before diagnosis,
may be present and influencing disease progression.

Changes in ins and IS: cause of AD?

A longitudinal study found that fasting hyperinsulinemia,
even without T2D, doubled the risk of developing AD
(Luchsinger et al., 2004). A cross-sectional study found that
in AD patients without an APOE# allele, hyperinsulinemia
was also associated with an increased risk of AD (Kuusisto
et al., 1997) and higher insulin was associated with amyloid
deposition, visualized by amyloid imaging on positron emis-
sion tomography (PET) scans, before symptom onset (Wil-
lette et al., 2015). Taken together, these studies suggest that
high insulin could play a causative role in AD, although the
AD population can be heterogeneous and it is possible that
causal mechanisms differ across subgroups of patients. Since
AP and tau deposition begin to occur ~15 yr before symp-
tom onset, these studies are difficult to interpret (Fig. 3). For
example, high blood insulin before the onset of AD pathol-
ogy could increase the risk of Af/tau deposition because

JEM Vol. 213, No. 8

changes could be a result of tau or Ap
accumulation or metabolic perturbation.
Additionally, it is possible that changes in
ins/IS could simply push the symptomatic
period to the left (earlier) without directly
interacting with these pathologies.

I
Symptomatic

ins/IS is a primary instigator of disease. In contrast, amyloid
accumulation which begins ~15 yr before cognitive decline
could lead to brain insulin resistance, with hyperinsulinemia
acting as a secondary indicator of underlying pathology in
AD, and contribute to cognitive decline. To properly clarify
whether insulin is a cause or consequence of disease, blood
and CSF insulin should be tracked longitudinally, beginning
before the onset of AD pathology, during AD pathology
accumulation while individuals are still normal (preclinical
AD), and then during the clinical stage of AD.To date, no
such study has been reported. Recent studies have started to
analyze the relationship between insulin resistance and AD
biomarkers during the asymptomatic, preclinical stage in at-
risk populations. In asymptomatic middle-age adults, insulin
resistance was associated with higher CSF tau, p-tau (Starks
et al., 2015) and AP42 (Hoscheidt et al., 2016). CSF insulin
was not measured, but baseline levels of blood glucose, insu-
lin, and insulin resistance were no different between APOE4
carriers and noncarriers at this early stage of disease (Starks
et al., 2015). Additional studies of this type, measuring CSF
insulin in addition to traditional AD biomarkers, will help
to determine the temporal relationship between insulin dys-
regulation and AD progression.

Ins, IS, and Ap. There are many studies suggesting that hyper-
insulinemia may be directly influencing the risk of AD by
modulating AB. In vitro studies demonstrate that high insulin
can lead to higher extracellular AP by affecting clearance
mechanisms and AP degrading enzymes. Both insulin and Ap
are degraded by insulin degrading enzyme (IDE), and in the
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presence of high insulin, IDE will preferentially degrade insu-
lin over AP (Qiu et al., 1998). In vivo experiments corrobo-
rate in vitro findings where AP clearance is significantly
reduced in rats in the presence of high insulin (Shiiki et al.,
2004). In addition to affecting AP clearance, in vitro work
demonstrates that high insulin increases extracellular Ap con-
centrations by increasing production through IS (Gasparini et
al., 2001). Conversely, inhibition of PI3K leads to reduced Ap
production (Stohr et al., 2013). Crossing neuronal IR knock-
out mice to an APP transgenic mouse abolishes IR signaling
in the brain and leads to reduced A levels and amyloid depo-
sition, indicating that endogenous IS elevates AP in vivo
(Stohr et al., 2013). A recent study in mice found that injec-
tion of supraphysiological levels of insulin increased brain IS
and possibly AB (Sajan et al., 2016). In earlier work by Craft
and colleagues, intravenous infusion of insulin in healthy
older adults by hyperinsulinemic-euglycemic clamps im-
proved performance on a declarative memory task, but in-
creased CSF AP in ‘older’ participants (Watson et al., 2003).
These clamps also increased plasma and CSF AP in another
cohort, and increased inflammatory markers in the CSF
(Fishel et al., 2005). Collectively, data suggests that elevated ins
can modulate AP, suggesting T2D could exacerbate AD
pathogenesis over time via this mechanism.

A crucial, remaining question is whether physiolog-
ical, peripheral hyperinsulinemia seen in AD or T2D raises
brain insulin enough in vivo to actively compete with IDE,
activate IS, or increase AP since insulin transport across the
blood brain barrier (BBB) is saturable at normal physiologi-
cal levels (Banks, 2004). A recent paper found that in several
mouse models of T2D and in T2D monkeys, hyperinsulin-
emia was associated with higher brain IS and higher A levels
at baseline. Murine Ap was reportedly measured by Western
blot in these experiments but the concentration is typically
so low that this method may not be sufficient to detect small
changes. Regardless, insulin injection did not further increase
IS or AP, which could be due to transport or receptor satu-
ration (Sajan et al., 2016). Overall, it still appears that hyper-
insulinemia can positively regulate AP, though further studies
are needed to clarify this.

‘While high blood insulin may indicate higher brain ins/
IS, it is also possible that lower brain ins/IS leads to higher
blood insulin as an attempt to compensate for the reduction.
A longitudinal study found that both the highest and lowest
quartiles for fasting insulin were associated with the devel-
opment of dementia (Peila et al., 2004). One mouse model
of AD was found to have reduced brain insulin and some
changes in IS that preceded the deposition of AP (Chua et
al., 2012). These results suggest that low brain ins/IS may also
affect AP. Unfortunately, they did not measure blood or CSF
insulin to know how these measures fluctuate overtime in
relation to amyloid deposition and brain ins/IS.

GSK3 can increase AP levels in vitro and inhibition of
GSK3 by lithium can reduce APP processing and Af levels
(Phiel et al., 2003). As shown in Fig. 1, insulin also inhib-
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its GSK3 through canonical signaling which would suggest
that adequate ins/IS may contain AP levels. So far, this has
not been validated experimentally. Lowering blood insulin by
destroying insulin-producing cells in a mouse model of AD
reduces brain ins/IS and results in elevated AP levels (Wang
et al., 2010). While the authors conclude that insulin defi-
ciency raised AP, these mice also have extreme hyperglycemia
which we and others have recently shown can independently
increase extracellular AR (Macauley et al., 2015; Chao et al.,
2016). Moreover, decreasing insulin production would lead
to decreased IDE levels, which could affect A since IDE is
an AP degrading enzyme.

While hyperinisulinemia can initially increase brain
insulin and positively regulate AP acutely, chronic
hyperinsulinemia can down-regulate transport leading to
lower blood:brain insulin (Banks et al., 1997).This decrease in
BBB transport may also increase A, although there is no
direct experimental evidence supporting this claim. Since it is
unclear whether chronic hyperinsulinemia (described in
Table 1) leads to increased brain insulin or to decreased insulin
transport, additional experimental confirmation is required to
identify a causal relationship with AP and AD.

Ins, IS, and tau phosphorylation. GSK3 activity is often con-
nected to the phosphorylation of tau. Neuronal IR knockout
mice have higher p-tau, presumably due to more active GSK3
(Schubert et al., 2004). Interestingly, these IR knockout mice
do not have any memory deficits despite evidence that IS is
connected to cognition and p-tau is linked with memory
deficits in mice (Schindowski et al., 2006). Peripheral injec-
tion of supraphysiological insulin is capable of elevating IS in
the mouse brain and increases p-tau even though GSK3 is
serine phosphorylated by p-AKT to reduce activity and pre-
sumably p-tau (Freude et al., 2005). Hyperinsulinemia also
increases p-tau in aged, wild-type mice (Becker et al., 2012).
In vivo studies from mice agree with the complex findings
from AD brains (Table 1) which found GSK3 to be both
more active and less active while p-tau was high. Overall,
these data suggest, again, that both high ins/IS (from hyperin-
sulinemia) and low IS (from insulin resistance) may put the
brain at risk to exacerbate AD.

One study found that chronically raising blood insu-
lin in mice via a high fat diet had no effect on p-tau in the
brain, but they also reported no change in brain IS (Becker
et al., 2012). When injected peripherally with supraphysio-
logical insulin, p-tau was unchanged in mice with chronic
hyperinsulinemia (Becker et al., 2012). Brain IS in response
to the peripheral injection was not measured, but this likely
demonstrates that insulin transport is reduced with chronic
hyperinsulinemia. Additional evidence from a study in mice
and monkeys demonstrates that chronic hyperinsulinemia re-
sulted in higher brain IS and higher p-tau (Sajan et al., 2016).
They also found no further increase in IS with insulin injec-
tion, confirming that chronic hyperinsulinemia is most likely
saturating BBB transport and/or IS. These studies highlight

Insulin signaling in Alzheimer's disease | Stanley et al.

920z Areniged 60 uo 1senb Aq 4pd-g6¥0910Z Wal/L06£9LL/SLEL/8/ELZ/Pd-BlonIE/Wal/BI0 sseidnu//:dRy WOl papeojumog



the complexity between acute and chronic changes in blood
insulin and insulin sensitivity in the brain that need to be
considered when trying to understand how hyperinsulinemia
and brain insulin resistance relate to each other and AD.

Changes in ins and IS: consequence of AD?

One AD population study found that up to 80% of AD pa-
tients had either T2D or insulin resistance, suggesting that
AD may lead to a diabetic phenotype (Janson et al., 2004).
Unfortunately, there are no longitudinal studies showing
whether or not diabetic phenotypes occur after AD onset or
precede AD diagnosis. Tissue analysis (Table 1) supports that
brain insulin resistance worsens with advancing AD, but it
is unclear how early in disease progression insulin resistance
occurs (Fig. 3). If reduced brain IS is associated with cog-
nitive decline, one would expect changes to occur around
the time that symptoms start to appear, which may be after
blood insulin is already high. In T2D patients, insulin resis-
tance is also associated with brain hypometabolism (Baker et
al., 2011). In AD, hypometabolism occurs before symptom
onset and is likely related to synaptic dysfunction and neu-
ronal loss, and worsens with disease progression (Sperling et
al., 2011). It is unclear how hyperinsulinemia, insulin resis-
tance, brain hypometabolism, and cognitive decline are tem-
porally related in AD (Fig. 3). A recent study used plasma
exosomes from neural sources to measure p(Ser)-IRS1, a
marker of insulin resistance, longitudinally in individuals
with AD, T2D, or healthy controls (Kapogiannis et al., 2015).
In these exosomes, p(Ser)-IRS1 was found to be higher in
AD and T2D compared with controls, and was elevated up
to 1-10 yr before AD diagnosis. However, there was no
association of exosome p(Ser)-IRS1 with AD severity or
insulin resistance, which is contrary to results from postmor-
tem brain tissue (Table 1). Determining which comes first,
hyperinsulinemia or brain insulin resistance, would be the
key to understanding which is a cause or consequence of
AD and how they relate to AD pathogenesis.

In T2D, hyperinsulinemia is capable of leading to in-
sulin resistance through negative feedback at the IR (Fig. 1).
Thus, it is possible that the hyperinsulinemia seen in AD pa-
tients may lead to brain insulin resistance or reduced insulin
transport, which can modulate both Af and p-tau to con-
tribute to AD in a causal way. Although there is currently
no longitudinal data demonstrating that hyperinsulinemia
precedes the onset of AD pathology, there is mechanistic ev-
idence that it is possible for hyperinsulinemia to drive both
insulin resistance and AD. Alternatively, insulin resistance in
T2D can also be initiated by other processes, such as cellular
stress and inflammation, which activate signaling molecules
like p-JNK to increase p(Ser)-IRS1, causing hyperinsulin-
emia as a compensatory mechanism (Draznin, 2006). More-
over, oxidative stress and neuroinflammation are key features
of the AD brain, which may promote brain insulin resistance,
but most experiments have yet to explore these mecha-
nisms in the context of AD.
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Ap and brain insulin resistance. There is substantial evidence
from in vitro experiments that Ap may directly contribute to
neuronal insulin resistance. Af can competitively inhibit the
binding of insulin to the IR (Xie et al., 2002). AP oligomers
(APO) are thought to be the more toxic species of AP, and
synthetic APOs bind to and internalize IRs causing an in-
crease in neuronal p(Ser)-IRS1 and p-JNK, markers of insulin
resistance (Zhao et al., 2008; Bomfim et al., 2012). In vivo
experiments found higher p(Ser)-IRS1 and p-JNK in human
AD brains (Table 1) and aged APP transgenic mice. They also
found that intracerebroventricular injection of APO’ into
monkeys elevated p(Ser)-IRS1 and p-JNK, demonstrating
that these ABO’s can cause resistance in vivo (Bomfim et al.,
2012). ABO’s increase p-tau, which may result from activation
of GSK3 as a result of reductions in IS (Ma et al., 2009). Taken
together, these data suggest that AP has the ability to induce
insulin resistance in vitro and in vivo using several dif-
ferent model organisms.

Insulin treatment for brain insulin resistance. Craft et al.
(1996, 1999, 2003,2012) continue to demonstrate that insulin
treatment, either by intravenous infusion or intranasal deliv-
ery, can modestly enhance performance on memory tasks in
healthy adults and patients with AD or mild cognitive impair-
ment (MCI) at specific doses (Watson et al., 2003; Reger et
al., 2008; Claxton et al., 2015). Gender and APOE4 modulate
the beneficial effects of insulin (Craft et al., 2000, 2003; R eger
et al., 2008; Claxton et al., 2013). In mice, intranasal adminis-
tration of insulin increases insulin in the cortex and hippo-
campus to some extent (Salameh et al., 2015), but whether or
not it increases IS and confers protection against neuronal
damage is still unknown. In vitro studies show that synthetic
ABOs co-cultured with neurons can bind to synapses and re-
duce dendritic spines, an effect that is rescued when treated
with high insulin and IS is activated (De Felice et al., 2009).
Increasing hippocampal insulin and IS in rats also enhances
memory. However, rats with T2D induced by a high fat diet
did not show improvement with insulin treatment (McNay et
al., 2010), suggesting that once brain insulin resistance has
developed, insulin treatment may not be sufficient to over-
come resistance at a cellular level. In a mouse model of AD,
high fat diet led to insulin resistance and exacerbated amyloid
pathology and memory impairment. A single, supraphysio-
logical injection of insulin was found to improve IS in pe-
ripheral tissues and reduce soluble AP in the brain, but brain
IS was not measured (Vandal et al., 2014). If insulin resistance
is severe and causing brain insulin to be too low, increasing
insulin under these conditions may help mitigate AP levels;
however, this hypothesis was not directly tested. If brain IS is
within normal range, insulin injection can increase IS and
possibly AP levels (Sajan et al., 2016). Additionally, raising
brain insulin by intranasal delivery appears to elevate brain
insulin high enough that it may increase AP or p-tau, al-
though this has not been addressed in studies to date. Prelim-
inary reports using intranasal insulin in mouse models suggests
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that this treatment may have some positive effects on memory
and pathology (Chen et al., 2014; Zhang et al., 2016). Exten-
din-4, an antidiabetic medication thought to enhance IS by
activating similar pathways, was able to prevent the develop-
ment of insulin resistance (p(Ser)-IRS1) in neuronal cultures
and APP transgenic mice (Bomfim et al., 2012). Insulin sensi-
tizers that are used to treat peripheral insulin resistance, rather
than insulin itself, may also be beneficial in AD. However, it is
unclear if enhancing IS through insulin sensitizers can
also modulate AP or p-tau.

The current hypothesis is that intranasal insulin is di-
rectly influencing cognition by acting on neuronal IRs to
overcome resistance, but this has not been shown directly.
Recent evidence has shown that intranasal insulin may be
working through indirect pathways to influence cognition.
For example, there have been reports of intranasal insulin in-
creasing regional cerebral blood flow and cognition in T2D
patients (Novak et al., 2014). Insulin is thought to act through
IRs on endothelial cells in the brain, but a recent study could
not detect significant IR peptide in this cell type, despite IR
mRNA being abundant (Zuchero et al., 2016). Determining
the mechanism of intranasal insulin’s cognitive enhancement,
and whether or not neuronal IS is necessary, will ultimately
allow a more targeted therapeutic approach that may not have
the potential side effect of raising A or p-tau.

Concluding remarks

There 1s substantial experimental evidence that hyperin-
sulinemia and brain insulin resistance, seen in LOAD pa-
tients, is capable of increasing AP and p-tau to initiate or
exacerbate the pathological cascade associated with AD.
If patients experience high blood insulin before early AD
alterations, hyperinsulinemia could causally contribute to
both AD pathology and insulin resistance. However, there
is not significant data to confirm this hypothesis in humans.
Alternatively, initial AP accumulation can lead to neuronal
insulin resistance and secondary hyperinsulinemia, which
further exacerbates AD progression. Both longitudinal and
biomarker studies need to be performed to properly under-
stand how high insulin in the blood, brain, or CSE com-
bined with insulin resistance, relate to the progression of
AD. Until that time, we should assume that the alterations
in ins and IS represent both a cause and consequence of
disease and need to be closely monitored as insulin therapy
is investigated for AD.
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