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Mast cells regulate myofilament calcium sensitization
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Acute myocardial infarction (M) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells
orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor
c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect mul-
tiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after M, using
the c-Kit-independent MC-deficient (Cpa3““/*) mice. In response to MI, MC progenitors originated primarily from white adi-
pose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac
function and depressed cardiomyocyte contractility caused by myofilament Ca®* desensitization. This effect correlated with
increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin | and myosin-binding protein C.
MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis.
This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated
force-Ca®* interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the
cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically ad-
dressable regulators.

Acute myocardial infarction (MI) is a severe ischemic disease
responsible for sudden death and heart failure with prevalence
rates rapidly increasing worldwide (White et al., 2014). The
evolution in clinical practice has substantially reduced mor-
tality and morbidity associated with this condition. However,
given the adverse hemorrhagic effects of the integration of
antithrombotic therapy and the high socioeconomic burden
of ischemic heart disease, a need for novel effective targets
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Abbreviations used: AKAP, A kinase-anchoring protein; cTnl, cardiac troponin I;
DSCG, disodium cromoglycate; EF, ejection fraction; HSPC, hematopoietic stem/pro-
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tissue.
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is emerging (White and Chew, 2008). Hence, efforts are di-
rected toward pivotal pathways shaping cardiac homeostasis
such as the inflammatory cellular responses (Zouggari et al.,
2013; Boag et al., 2015; de Couto et al., 2015) as well as the
molecular mechanisms that drive cardiac contractile function
(Gorski et al., 2015; Movsesian, 2015).

Substantial interest has been drawn on the role of
cardiac mast cells (MCs) in mediating postischemic ad-
verse myocardial remodeling (Kritikou et al., 2016). MCs
are innate immune cells, characterized morphologically by
numerous cytoplasmic granules that contain a variety of
mediators such as proteoglycans, histamine, proteases (chy-
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mase and tryptase), and proinflammatory cytokines that are
released upon MC activation to influence the local tissue
microenvironment (Wernersson and Pejler, 2014). To date,
several studies investigating the role of MCs in cardiac func-
tion and remodeling have been contradicting (Janicki et al.,
2015), which may relate to the use of ¢-Kit mutant mice (the
c-kit W/Wv [Kitamura et al., 1978]) and the more recent
Kit W-sh/W-sh mice (Kitamura et al., 1978; Grimbaldeston
et al., 2005) with mutations in the gene encoding the recep-
tor tyrosine kinase c-Kit with subsequent MC deficiency.
Because deficient c-Kit signaling affects other lineages, in-
cluding hematopoietic stem cells, progenitor cells, red blood
cells, neutrophils, cardiomyocytes, melanocytes, and germ
cells (Katz and Austen, 2011), it remains ambiguous to what
extent MC absence is responsible for the observed pheno-
types. Therefore, the distinct role of MCs, independently of
c-Kit functions, on regulating postischemic cardiac remodel-
ing and function is unknown.

Here we addressed the role of MCs in regulating cardiac
function and contractility in response to acute MI by using
the recently developed “Cre-mediated MC eradication”
(Cre-Master or Cpa3“") mouse model, which yields con-
stitutive and c-Kit-independent MC deficiency (Feyerabend
et al., 2011). We show that MCs play a key role in regulating
cardiomyocyte contractility and subsequently cardiac func-
tion after MI. We describe an MC-dependent mechanism
of protein kinase A (PKA) activity and myofilament protein
phosphorylation through MC-released tryptase.

RESULTS

MCs accumulate in the heart at day 7 after Mi

To investigate the kinetics of mature MC infiltration after
MI, digested infarcted tissue underwent flow cytometry/im-
aging analysis. Mature MCs were identified as c-kit'FceRI"
by flow cytometry (Fig. 1 A), and the combination of these
markers’ expression was verified as corresponding to the
typical granulated morphology of MCs by the side scatter
light imaging on ImageStream (Fig. 1 B). MC numbers in
the sham-operated hearts were very low, but a significant
accumulation of MCs was observed at day 7 after MI (in-
farct: 30,341 £ 2,600 cells/g of tissue vs. sham: 628 + 218
cells/g of tissue, P = 0.0025; Fig. 1 C). This was followed
by a progressive decrease in MC numbers from day 10 until
day 21 (Fig. 1 C). Based on metachromatic toluidine blue
(TB) staining (Tallini et al., 2009), 91.3 £ 4.1% of cardiac
MCs were degranulated at day 7 after MI (Fig. 1, D and E).
In addition, there was a significant increase in the mRINA
expression of mouse MC chymase (mMCP4) and tryptase
(mMCPO6) starting and/or peaking at day 7 in the infarcted
myocardium (vs. sham-operated myocardium; Fig. 1, F and
G), consistent with the connective tissue MC phenotype
(CTMC; Forman et al., 2006). c-Kit tryptase” cells were also
identified in human biopsies from coronary artery bypass
surgery (not depicted).
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MC progenitors (MCPs) are recruited into the

heart and give rise to mature MCs in a stem cell

factor (SCF)-dependent manner

Mature MCs increase at tissue sites by infiltration of pre-
cursors from the peripheral blood and reach differentiation/
maturation by locally secreted growth factors (Welker et al.,
2000).To assess whether this is the case in response to MI, we
identified MCPs as Lin"CD45°CD34 " f7-integrin "FcyRI1/
1" cells (Fig. 2 A; Chen et al., 2005; Schmetzer et al., 2016)
and monitored their numbers in the BM, white adipose tissue
(WAT), heart (Fig. 2,B-D),blood, and spleen (Fig. 2,] and K).
MCPs increased significantly in numbers in the BM at days
3-5 and the WAT at day 3 in response to infarction (Fig. 2, B
and C). In the infarcted heart, an accumulation of MCPs was
observed at day 3 (infarct: 2,600 + 600 cells/g vs. sham: 506
* 215 cells/g of tissue, P = 0.017) that persisted until day 5
(Fig. 2 D). To evaluate whether the increase in MCP density
in the heart is a result of local cardiac proliferation, BrdU in-
corporation was measured at days 3,5,and 7 after infarction. A
significant increase in BrdU-labeled MCPs was observed at day
5,24 h after cumulative BrdU injections, with 2.8 + 0.3% of’
the MCP cells being in a proliferative state (P = 0.007 vs.0.27
£ 0.07% of BrdU* MCPs on day 3; Fig. 2, E and F). The c-kit
ligand SCF is responsible for the proliferation of MCPs both
in vitro (Kirshenbaum et al., 1992) and in vivo (Matsuzawa
et al., 2003) and can be produced by several tissue-resident
cells, such as fibroblasts, endothelial cells, and cardiac stem
cells (Guo et al., 2009; Xiang et al., 2013). SCF mRNA lev-
els significantly increased in the peri-infarcted tissue at day
5 after MI compared with sham-operated mice (Fig. 2 G).
Neutralization of SCF by the systemic administration of an
anti-SCF antibody (Oliveira et al.,2002) reduced proliferation
and numbers of MCPs at day 5 after MI (Fig. 2 H) as well
as numbers of mature MCs at day 7 after MI (SCF antibody:
0.01 £ 0.001% vs. rabbit serum: 0.03 + 0.005% of c-kit FceRIT"
cells, P = 0.026; Fig. 2 I). MCPs were also detectable in the
blood circulation, but numbers were too low to draw con-
clusions on their kinetics of circulation (Fig. 2 J). Similarly,
no significant differences were obtained in the splenic MCP
numbers in response to MI (Fig. 2 K).

MCs preserve cardiac function after Ml

We next evaluated the functional effect of MC accumulation
in the infarcted myocardium by evaluating cardiac function
2 wk after infarction in the MC-eradicated Cpa3“** mice,
which are selectively deficient for mature MCs (Feyerabend
et al., 2011). c-kit"FceRI" cells were absent in the heart of
Cpa3™’" mice at day 7 after the infarct, as confirmed both
by flow cytometry and TB staining—assisted counting (Fig. 3,
A and B). Heart function of Cpa3“** mice was comparable
with WT mice when sham operated. However, postinfarcted
hearts lacking MCs displayed a significantly lower shortening
fraction (SF [SF%]; Erdei et al., 2004;WT 28.15 + 1.7% SF vs.
Cpa3“":17.27 £ 1.9% SE P = 0.0043; Fig. 3 C). In addition,
the left ventricular internal postsystolic diameter was significantly
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Figure 1. Characterization of cardiac mature MCs after MI. (A and B) Representative fluorescence minus one control (FMO) and flow cytometry
gating for mature cardiac MCs (c-kit"FceRI*) at day 7 in sham-operated and infarcted myocardium (A) and representative image of ImageStream flow
cytometer showing the morphology of Viybrant*c-kit*FeeRI™ cells under brightfield and side scatter (SSC) imaging with corresponding negative controls (B).
(C) Time-dependent monitoring cardiac mature MCs/gram of cardiac tissue in response to infarction (n = 4-8, two independent experiments). *, P < 0.05;
* P < 0.01. Kruskal-Wallis and Dunn's post hoc test for comparisons for sham versus Ml at different time points. (D) Representative cardiac TB staining
of mature MCs at granulated (above) and degranulated (below) states found both in the myocardium (left) and at the periphery (right). Arrows point to
representative cardiac MCs. (E) Cardiac degranulated cells as the percentage of total cells counted by TB staining (n = 6, two independent experiments). *,
P < 0.05. Kruskal-Wallis and Dunn's post hoc test for comparisons at different time points. (F and G) Cardiac mRNA expression of chymase mMCP4 and
tryptase mMCP6 at different time points after the sham operation or infarction (n = 6-8). *, P < 0.05; **, P < 0.01. Kruskal-Wallis and Dunn's post hoc test
for comparisons for sham versus Ml at different time points. All data shown are representative of at least three independent experiments. All values are
presented as mean + SEM. Sham, sham-operated animals.
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Figure 2. SCF-dependent accumulation of cardiac mature MCs. (A) Representative flow cytometry gating for MCPs (Lin"CD45*CD34*B7-integrin*FCyRII/
I1I*) in the BM of sham-operated mice versus mice with Ml at day 3. (B and C) Time-dependent increase of MCPs at days 3 and 5 after Ml in the BM (B)
and at day 3 in WAT (C) compared with sham control mice (n = 4-9, two independent experiments). *, P < 0.05, Kruskal-Wallis and Dunn's post hoc test for
comparisons of sham versus Ml at different time points. (D) Numbers of MCPs/gram of cardiac tissue after infarct versus sham-operated mice (n = 4-9, two
independent experiments). *, P < 0.05, Kruskal-Wallis and Dunn's post hoc test for comparisons of sham versus Ml at different time points. (E) Increased
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increased in Cpa3™’" compared with WT mice after infarc-

tion. No significant differences were observed between the
two groups in left ventricular end-diastolic internal diame-
ter (Fig. 3 C) or heart rate (not depicted). Left ventricular
posterior wall end-diastolic thickness and interventricular
end-diastolic septal diameter were also decreased in Cpa3=’*
compared with WT mice (not depicted).

To identify the cause of reduced heart function in the
MC-deficient mice, we evaluated inflammation and cardiac
remodeling after infarction. There was no difference in the
levels of collagen deposition, infarct size, capillary density,
cardiomyocyte size, and number, as well as in the amount
of apoptotic resident cells in the Cpa3™" mice compared
with WT mice in response to infarction (Fig. 3, D and E).
In line with these results, we found no differences in the
numbers of recruited monocytes, macrophages, B lympho-
cytes, and CD8" and CD3" T lymphocytes to the infarcted
heart in Cpa3“" in response to MI compared with WT
mice (Fig. 4 A). Accordingly, we assessed the release of key
inflammatory mediators in the infarcted heart, including
CCL2,CCL7,IL-6,IL-1pB, and TNE and found no difference
in the Cpa3”" mice compared with WT mice at all time
points tested (Fig. 4 B).

Cardiac remodeling in c-Kit W/Wv and disodium
cromoglycate (DSCG)-treated mice after Ml

Accumulation of cardiac MCs after infarction was SCF de-
pendent, and a high percentage of cardiac MCs were de-
granulated in the infarcted heart. To assess whether these
mechanisms are involved in the MC-dependent decline in
cardiac function after the infarct, we used two widely stud-
ied animal models: the c-Kit W/Wv mice and systemic treat-
ment with the degranulation inhibitor DSCG (Zhang et al.,
2016). Both animal models are associated with impaired MC
function and have been extensively used to investigate the
biological role of MCs in a broad range of disease patholo-
gies (Kovanen, 2009; He and Shi, 2013). We first assessed the
number of cardiac MCs by TB staining after infarct in both
mouse models. c-Kit W/Wv mice were MC poor but not
completely deficient after MI, consistent with another report
where inflammatory signaling can reverse MC absence in
these mice (Feyerabend et al., 2011), and as expected, DSCG
treatment did not affect cardiac MC density (Fig. 5 A). We
next evaluated cardiac function at 2 wk after MI and found a
significant reduction in left ventricular ejection fraction (EF)

in both DSCG-treated (16.3 £ 1.6% EF) and c-Kit W/Wv
mice (20 * 2.5% EF) compared with their respective con-
trols and littermates (PBS: 30.2 + 2.8% EE c-Kit"/*: 25,5 +
4.6% EF; Fig. 5 B). However, in contrast with the Cpa3™*
mice, there were significant differences in cardiac remodel-
ing of these animal models of MC-impaired function. DSCG
treatment had no effect on the infarct size, capillary density,
or cardiomyocyte size but significantly increased levels of car-
diac interstitial fibrosis and cell apoptosis (Fig. 5, C and D).
In contrast, the c-Kit W/Wv mice had a significant increase
in the number of cardiac apoptotic cells after MI but no dif-
ference in the rest of the remodeling parameters evaluated
(Fig. 5, C and D). Because remodeling parameters were un-
affected in the MC-eradicated Cpa3™’" mice, we conclude
that MCs preserve heart function after infarction but do not
directly regulate cardiac remodeling.

Post-MI cardiac MCs originate primarily from the WAT

Most studies on MC origin, circulation, and maturation are
focused on BM-derived MCPs (Chen et al., 2005; Franco et
al., 2010), but a recent study by Poglio et al. (2010) identi-
fied the WAT as a reservoir of progenitor MCs that do not
originate from the BM and are able to home to peripheral
tissues. Because we observed increased numbers of MCPs in
both the WAT and the BM at days 3 and 5 (Fig. 2), we next
identified the primary source of origin of cardiac MCs after
infarction. We transplanted lethally irradiated C57BL/6 mice
with BM-derived cells from WT and Cpa3“** mice. SF% in
WT mice reconstituted with Cpa3“**-derived BM cells was
comparable with the SF% of WT animals reconstituted with
BM-WT as measured 2 wk after the infarct (Fig. 6 A). In
this line, reconstitution of WT mice with Cpa3™**-derived
BM cells did not lead to absence of mature cardiac MCs after
infarction, and conversely, reconstitution of Cpa3™’" mice
with WT-derived BM cells did not reverse the absence of ma-
ture MCs in the Cpa3™’" mice after infarction (Fig. 6 B). Po-
glio et al. (2010) developed a competitive repopulation assay
for assessing the function of WAT hematopoietic stem/pro-
genitor cells (HSPCs) in comparison with BM competitor
cells. WAT HSPCs (previously described as c-Kit Lin"Sca®;
Poglio et al.,2012) were FACS sorted from CD45.2 Cpa3=’*
mice or CD45.2 red MC and basophil mice (RMB), where
the 3'-UTR of the Ms4a2 gene encoding the FceRIf chain
includes a cassette composed of a sequence coding for the
bright td-Tomato (tdT) fluorescence protein (Dahdah et al.,

proliferation of cardiac MCPs at day 5 of infarct, 24 h after BrdU administration (n = 8, two independent experiments). **, P < 0.01, Kruskal-Wallis and
Dunn's post hoc test for comparisons at different time points. (F) Representative flow cytometry analysis of BrdU* MCPs at days 3, 5, and 7 after infarct.
(G) mRNA expression of SCF in the cardiac tissue in response to infarction (vs. sham) peaking at day 5 (n = 5-10, two independent experiments). *, P < 0.05,
Kruskal-Wallis and Dunn's post hoc test for comparisons of sham versus Ml at different time points. (H) No significant effect of SCF antibody treatment on
proliferation (left) and number (right) of CD45*B7-integrin*FCyRII/III* cells at day 5 after MI (n = 6-8, two independent experiments). Mann-Whitney test
for comparisons between groups. (I) SCF antibody reduced total numbers of mature MCs at day 7 after Ml (n = 6-8, two independent experiments). *, P <
0.05, Mann-Whitney test for comparisons between groups. (J and K) MCPs (Lin"CD45"CD34*FCyRII/lII*B7*) were identified circulating in the blood (J) at
low percentages and in the spleen (K) with no statistically significant changes in response to MI. Kruskal-Wallis and Dunn's post hoc test for comparisons of
sham versus Ml at different time points. All values are presented as mean + SEM. anti, antibody against; D, day; Rb, rabbit; Sham, sham-operated animals.
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Figure 3. Depressed cardiac function after Ml in Cpa3** MC-deficient mice. (A) Representative flow cytometry gating of c-kit"FeeRI* cells in WT
that are absent in Cpa3°’e/+ mice at day 7 after Ml (top); bar graphs show the numbers of mature MCs/gram of cardiac tissue (bottom; n = 5-8, two inde-
pendent experiments). (B) Representative cardiac TB staining (top) and quantitative evaluation of mature MCs in infarcted heart (n = 5-6, two independent
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2014). Lethally irradiated CD45.1 mice were cotransplanted
with 2 X 10°WAT HSPC CD45.2" and 2 X 10° BM CD45.1"
cells. WAT-HSPCs do not contain mature MCs (Fig. 6 C).
Chimerism in the WAT was confirmed at 8 wk after trans-
plantation by flow cytometry with a percentage of 20-30%
of CD45.2" cells present (Fig. 6 D). Because WAT-HSPCs do
not reconstitute hematopoietic organs (Poglio et al., 2012),
chimerism in the BM was very low (Fig. 6 D). Transplan-
tation of WT mice with WAT HSPCs from Cpa3“" mice
significantly reduced SF% after MI (WT WAT donor: 33.3
3.2% SF vs. Cpa.’)”“HWAT donor:21.7 =+ 1.8% SEP = 0.026;
Fig. 6 E). In addition, no significant differences were found
in BM and WAT transplanted mice on infarct size, capillary
density, or fibrosis at day 14 after infarction (Fig. 6, A and
E). To further investigate the origin of MCs, we compared
the levels of tdT c-Kit" cells in WT mice transplanted either
with both WAT-HSPCs from WT mice and BM cells from
RMB mice or with both WAT-derived HSPCs from RMB
mice and WT mice—derived BM cells. Similar numbers of
c-Kit"FceRI" cells were observed in the heart at day 7 after
infarction, regardless of the origin of transplanted cells. How-
ever, when tdT staining was used to monitor their origin,
the mice transplanted with RMB-BM cells had significantly
less tdT"c-Kit" cells in the infarcted myocardium at day 7
after MI compared with WT mice transplanted with RMB-
WAT cells (P = 0.0317; Fig. 6, F-H). Collectively, although
MCPs were detectable both in the BM and the WAT (Fig. 2),
WAT-derived MCPs appeared to be more efficient in hom-
ing toward the cardiac tissue after MI.

Cardiac MCs regulate myofilament sensitization to Ca*

MC eradication had negative effects on the cardiac func-
tion after infarction with decreased systolic left ventricular
diameter. There was no difference in infarct size or cardiac
remodeling in the hearts of Cpa3™" mice, suggesting a
more direct impact on the myocardial contractile function.
To further elucidate this MC-specific cardiac response, we
examined the function and contractility properties of car-
diomyocytes in the MC-depleted myocardial environment
14 d after the infarct. First, we assessed cardiomyocyte short-
ening (%) in response to field stimulation (1, 2, and 4 Hz).
As shown in Fig. 7 A, MC deficiency significantly depressed
the frequency response of left ventricular cardiomyocytes
(Cpa3™/*:6.08 £ 0.5% vs. WT: 8.8 + 0.8% 2Hz; P = 0.009).
Absence of MCs in the infarcted myocardium led to abnor-
mal contraction and relaxation kinetics of the left ventric-

ular cardiomyocytes (Fig. 7 B), but there was no effect on
the amplitude of Ca®" transient peak in electrically stimu-
lated cardiomyocytes (Fig. 7 C). In addition, sarcoplasmic
reticulum load was maintained, indicating that Ca®* influx
and efflux were unaffected by MC eradication (Fig. 7 D).
To further investigate contractile function, we determined
myofilament force—Ca** dependence of left ventricular en-
docardial skinned myocytes at a steady-state (at day 14 after
infarct). This dependence was markedly reduced in WT in-
farcted hearts compared with sham-operated hearts with
maximum Ca*"-activated force (Fy.y) declining nearly 50%
(sham: 42.3 + 0.5 mN/mm? vs. infarct: 19.8 + 3.5 mN/
mm?>, P = 0.0062; Fig. 7, E and F). Similar reduction in F,,,,
was exhibited by the myocytes from Cpa3“" mice (sham:
35.9 + 2.4 mN/mm? vs. infarct: 19.2 + 4.4 mN/mm? P =
0.0186; Fig. 7, E and F). Although F,,,, and Hill coeflicient
remained unchanged between WT and Cpa3™’" infarcted
hearts, skinned myocytes from the MC-deficient ventricular
environment displayed Ca®" desensitization, as quantified by
an increase in ECs, (Ca* required to achieve 50% maximal
force; WT: 2.8 + 0.09 uM vs. Cpa3<™/7: 3.5 + 0.11 uM,
P = 0.007; Fig. 7, E-H).

MC-dependent Ca?* sensitization is mediated

by myofilament phosphorylation

Ca”™ sensitivity is regulated by phosphorylation of several
sarcomeric proteins involved in the regulation of actomy-
osin interactions, including cardiac troponin I (¢Tnl) and
myosin-binding protein C (MyBPC), both catalyzed by
PKA (Layland et al., 2005; Stelzer et al., 2007). We evaluated
the phosphorylation levels of ¢Tnl and MyBPC at residues
known to confer a negative effect on Ca" sensitization in
the mouse myocardium (Chen et al., 2010). Myofilament
phosphorylation in response to infarction was significantly
higher in the peri-infarcted cardiac tissue of Cpa3™’*
mice compared with WT mice both on ¢Tnl (Ser22/23)
and on MyBPC (Ser282 and Ser273) in a time-dependent
manner, being observed 14 d after MI (but not at day 7;
Fig. 8, A—C). This hyperphosphorylation event correlated
with an increased activity of PKA in the Cpa3™’" peri-in-
farcted area compared with WT mice at day 14 after infarc-
tion (WT infarct: 1.2 £ 0.07% vs. Cpa3™" infarct: 2.3 +
0.2%, P = 0.0005; Fig. 8 D) that was not exhibited by the
sham-operated cardiac tissue.

experiments). Arrows point to representative cardiac MCs. (C) Left ventricular %SF, LVIDd (left ventricular internal end-diastolic diameter), and LVIDs (left
ventricular internal end-systolic diameter) measurements showing significant reduction of cardiac function (day 14) in Cpa3““/* infarcted mice compared
with WT [Cpa3*/*) infarcted mice, with no differences on basal heart function (n = 6-7, two independent experiments). *, P < 0.05; **, P < 0.01, Kruskal-Wallis
and Dunn's post hoc test for comparisons between groups. (D) Cardiac fibrosis, infarct size, capillaries' density, percentage of cell apoptosis, cardiomyocyte
size, and number after infarction (day 14) in WT and Cpa3““* mice (n = 6-7, two independent experiments). (E) Representative images used for quantifica-
tion of fibrosis, capillary density, infarct size, and density of apoptotic cardiac cells. Arrows point to representative apoptotic cells. All values are presented

as mean + SEM. Sham, sham-operated animals; WT, Cpa*/+ littermates.
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Figure 4. Cpa3“** mice have a normal inflammatory response after MI. (A) Inflammatory cell density (monocytes, macrophages, and B and T lym-
phocytes) in Cpa3* mice was comparable with that of WT mice at days 3, 5, and 7 after Ml (n = 7-8, two independent experiments). (B) Inflammatory
mediators' concentration (IL3, CCL7, CCL2, IL-6, IL-10, IL-1, IL12p70, and TNF; pg/ug of protein) was analyzed by FlowCytomix, and no differences were
observed between WT and Cpa3”e’+ mice at days 3, 5, 7, and 14 after MI (n = 6-8, 2 independent experiments). All values are presented as mean + SEM.

WT, Cpa*!* littermates.

Identification of tryptase-induced protease-activated
receptor 2 (PAR2) activation as a mechanism of
MC-regulated PKA activity

Because MC absence leads to increased PKA activity, we
hypothesized that activation of a Gi-coupled protein recep-
tor by an MC-released mediator could be involved. PAR2
can be cleaved by trypsin-like proteases such as MC tryptase
(McLarty et al., 2011; Weithauser and Rauch, 2014), leading
to the activation of Gi and consequential inhibition of the
adenylyl cyclase—c-AMP-PKA axis (Sriwai et al., 2013). We
analyzed the PAR2 cleaving capacity of both MC-specific

1360

tryptase and chymase that are all absent in the hearts of the
Cpa3”" mice after infarct (not depicted). Although MC
chymase (nMCP4) cleaved PAR2, cleavage was not sensitive
to replacement of arginine 36 of the canonical cleavage site
with glycine (Fig. 8 E) and therefore unlikely to be signal-
ing productive. Moreover, cardiac function at day 14 after in-
farction in mMCP4™'~ mice was comparable with WT mice
as analyzed by echocardiography (not depicted). In contrast,
tryptase showed canonical PAR2 cleavage consistent with
receptor activation (Fig. 8 F). We next investigated whether
tryptase-induced PAR2 cleavage could regulate intracellular
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Figure 5. Cardiac function and remodeling in c-KitW/Wv and DSCG-treated mice. (A) TB-assisted MC counting in c-Kit W/Wv and DSCG-treated
mice compared with their controls (c-Kit** and PBS treated, respectively) on 5-um slide sections (n = 6). (B) Reduced left ventricular (LV) cardiac function
(EF%0) at day 14 after Ml in Cpa3®/*, DSCG-treated animals and c-Kit W/Wyv compared with their respective controls (n = 6). (C) Evaluation of cardiac
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PKA activity in cardiomyocytes. As shown in Fig. 8 G,
IBMX-induced PKA activation in H9C2 cells was attenuated
by a PAR2-activating peptide (PAR2-AP; P = 0.04), which
is known to activate Gi (Sriwai et al., 2013). Consistent with
PAR2 cleavage, treatment with MC tryptase also significantly
inhibited IBMX-induced PKA activity (P = 0.03). Because
Cpa3“™" mice express very low levels of tryptase mRNA
(not depicted), we assessed whether the tryptase signaling is
responsible for reduced cardiac function in the MC-eradi-
cated mice. We sorted live (Vybrant") mature cardiac MCs
(c-Kit"FceRI") at day 6 after MI, which expressed both con-
nective tissue MC markers chymase (mMCP4) and tryptase
(mMCP6; compared with nondetectable expression in cells
sorted from the intestine; not depicted). Cardiac sorted MCs
were transfected with tryptase siRINA or scramble siRINA
(Fig. 8 H) for 16 h; viable cells were counted and were in-
jected transcutaneously under echo-guidance into the myo-
cardium of Cpa3™’* mice at day 6 after infarction, 1 d before
their physiological peak in the heart. Reconstitution of car-
diac MCs transfected with scramble siRINA restored SF%
of Cpa3“™" mice as assessed at day 14 after infarction (WT:
28.15 + 1.7% SE Cpa3™/*:18.5 £ 2.08% SE, Cpa3™’" receiv-
ing MCs transfected with scramble SIRNA:26.82 + 2.9% SF;
Fig. 8 I). However, injections with MCs transfected with MC
tryptase siRNA failed to restored SF% of Cpa3™’™ (Fig. 8 I).

DISCUSSION

Here we report a novel role for cardiac MCs in the regu-
lation of the myofilament force—Ca*" relationship. Mature
cardiac MCs respond functionally to MI and regulate myofil-
ament ¢Tnl and MyBPC phosphorylation. This integral MC-
dependent effect preserves the contractile reserve in concert
with Ca?" flux to the sarcomeres (Arteaga et al., 2005; So-
laro and Arteaga, 2007).

Mutations in c-Kit, as well as MC stabilization, have
served as standard models to decipher MC functions. How-
ever, studies using c-kit mutations do not provide an exclusive
functional role of MCs. As a prototypic example, kit mutant
animals are protective against antibody-induced arthritis in
contrast to Cpa3™’" mice that are susceptible, proving that
c-kit effects are not MC exclusive. Similarly, MC deficiency,
in the absence of c-kit mutations, plays neither a role in the
regulation of weight gain or insulin resistance (Gutierrez et
al., 2015) nor in wound healing and skin carcinogenesis
(Antsiferova et al., 2013). Similarly, the selectivity and the ef-
ficacy of using an MC stabilizer treatment, such as DSCG,
have been questioned. DSCG failed to inhibit IgE-dependent
MC degranulation in mice, and it had nonspecific inhibitory

effects on LPS-induced TNF release (Oka et al., 2012). In
addition, several studies have identified MC-independent ef-
tects of DSCG treatment, including regulation of heat shock
protein 90 (Okada et al., 2003), S100 proteins (Okada et al.,
2002; Arumugam et al., 2006), and G protein—coupled recep-
tor activation (Yang et al., 2010).

Hence, in an attempt to reevaluate the role of cardiac
MCs, we assessed the functional effect of MC deficiency
(Cpa3™* mice), c-kit deficiency (c-kitW/Wv mice), and in-
hibition of degranulation (DSCG administration) on cardiac
function after infarction. In agreement with previous studies,
we found increased MC density in the cardiac tissue after MI
(Frangogiannis et al., 1998; Reid et al., 2011). Nevertheless,
we show that, independently of c-Kit signaling, MCs preserve
heart function via a mechanism that does not involve changes
in cardiac remodeling after MI. Furthermore, we analyzed the
recruitment of inflammatory cells and release of their medi-
ators in the Cpa3™" mice. Our data showed no effects of
MCs deficiency in the regulation of local inflammation at
the times studied. However, besides the absence of MCs, a
reduced basophil compartment has previously been observed
in Cpa3“5/ * animals, and this decrease should be considered
when immunological functions are assessed in this model
(Feyerabend et al., 2011).

Depressed cardiac function in response to MC de-
ficiency is mediated by a reduction in cardiomyocyte cell
shortening, the kinetics of contraction/relaxation, and Ca**
sensitization, as reflected by a right shift on the Ca**—force re-
sponse curve and an increase in ECs,. These effects correlated
both with an increase in p-Ser22/23 c¢Tnl, p-Ser273, and
p-Ser282 MyBPC and increased PKA activity. Phosphoryla-
tion of ¢Tnl at its N-terminal Ser22/23 residues leads to its
dissociation (Finley et al., 1999) or low-affinity binding (Ward
et al., 2003) to the N-terminal domain of ¢TnC (NTnC),
blocking the transfer of the Ca®" signal through NTnC
to ¢Tnl, then to actin and further along the thin filament
(Sykes, 2003; Li et al., 2004). This PKA-dependent mecha-
nism leads to decreased Ca®" sensitivity (Ramirez-Correa et
al., 2010), increased cross-bridge cycling, and accelerated re-
laxation of the muscle (Herron et al., 2001). In agreement
with our findings, such posttranslational modifications on
cTnl have been previously described in postinfarcted stunned
myocardium and heart failure (Dong et al., 2012; Nixon et
al., 2014; Thoemmes et al., 2014). PKA also phosphorylates
Ser273, Ser282, and Ser302 of the N terminus of MyBPC,
the region that binds to the S2 segment of myosin, close to
its arm domain (Gruen et al., 1999). PKA-induced phos-
phorylation of MyBPC loosens the thick filament structure,

remodeling parameters in c-Kit W/Wv and DSCG-treated mice at day 14 after infarction, showing significantly increased levels of fibrosis in DSCG-treated
mice and increased number of apoptotic cells in c-Kit W/Wv mice and DSCG-treated mice, with no effect on other parameters (n = 6). (D) Representative
images of fibrosis, capillary density, infarct size, and apoptotic cardiac cells. Arrows point to representative apoptotic cells. All data represent two indepen-
dent experiments. *, P < 0.05; ™, P < 0.01; **, P < 0.001, Mann-Whitney nonparametric test. All values are presented as mean + SEM. PBS, PBS-treated

animals; WT, Cpa*/+ littermates.
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Figure 6. Cardiac MCs derive primarily from WAT HSPCs. (A) Transplantation of WT mice with Cpa3““*-derived BM cells had no effect on left ventric-
ular SFo%, infarct size, fibrosis, and capillary density in reference to WT animals receiving WT-derived BM cells (n = 16, from three independent experiments).
(B) Transplantation of lethally irradiated WT or Cpa3“"*/* mice with WT or Cpa3“*~derived BM cells showed no reconstitution or inhibition of cardiac MCs,
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preventing its binding to myosin, thereby changing force—
Ca** response (Levine et al., 2001; Kulikovskaya et al., 2003)
and altering contractile function (Stelzer et al.,2007). MyBPC
phosphorylation is necessary for basal myocardial function,
and both cardiac MyBPC-null mouse hearts and fully phos-
phorylated MyBPC show accelerated myofilament kinetics
(Barefield and Sadayappan, 2010). Although increased PKA
activity generally correlates with positive inotropic effects via
L-type Ca'? channel and phospholamban (PLB) phosphory-
lation, we saw no difference in Ca™ transients, but rather a
reduction in contractility via desensitization. The mechanisms
by which such modulation of PKA is strictly affecting myo-
filament proteins and not calcium handling proteins are not
clear. Specificity and efficiency of PKA substrate phosphory-
lation require spatial-temporal regulation of cAMP/PKA by
A kinase—anchoring proteins (AKAPs). The latter possess the
ability to coordinate signaling pathways by scaffolding dif-
ferent proteins and facilitating a unique PKA-regulated sig-
nal transduction (Manni et al., 2008). Possible changes that
disrupt AKAP/PKA complexes with PLB or L-type Ca*
channel or that regulate AKAPs docking PKA in proximity
of its sarcomeric substrates (Rababa’h et al., 2015), such as
the recently identified cardiac troponin C (Sumandea et al.,
2011), could be possible mechanisms involved in the MC-
dependent Ca*? desensitization. Extensive further investi-
gation will be needed to fully uncover how MCs regulate
the contractile machinery in a PKA-dependent mechanism.
Nevertheless, this 1s the first time that an MC to myofilament
signal exchange is documented.

To further elucidate the mechanism of MC-dependent
PKA inactivation, we sought to identify how MC signaling
interferes with intracellular cardiomyocyte PKA. The PAR2
receptor is known to be cleaved/activated by MC-derived
tryptases, and such cross-talk has already been identified be-
tween MCs and fibroblasts (McLarty et al., 2011; Murray et
al., 2012). Indeed, MC tryptase was able to cleave PAR2 in
vitro at the canonical site. Functionally, treatment of HOC2
cells with tryptase inhibited IBMX-induced PKA activa-
tion, and this effect was reproduced by treatment with the
PAR2-AP, which is known to lead to Gi activation. Tryptase-
induced PAR2 activation has been previously suggested to
be pertussis toxin sensitive in airway smooth muscle cells

(Berger et al., 2001). Although PAR2 deficiency has been
shown to be protective against infarct size and cardiac remod-
eling (Antoniak et al., 2010), studies with PAR2-AP in WT
mice showed that PAR-2 mediates protective effects in car-
diac ischemia/reperfusion injury (Napoli et al.,2000; McLean
et al., 2002; Jiang et al., 2007; Zhong and Wang, 2009). Such
difference in the functional outcome between PAR?2-defi-
cient mice and PAR2-AP rely on the fact that the activating
peptide changes the receptor’s three-dimensional structure
and subsequently its “biased agonism” in ways that cannot
be compared with its activation by proteases such as trypt-
ase (Rajagopal et al., 2010). In agreement with our findings,
however, Somasundaram et al. (2005) identified PAR2-AP
mimicking the signaling transduction of tryptase in canine
venous endothelial cells after ischemia/reperfusion, and oth-
ers have shown the same effects in a variety of pathological
models (Corvera et al., 1997; Akers et al., 2000; Berger et al.,
2001; Shpacovitch et al., 2002). In conclusion, our data pro-
pose a novel function of tryptase-induced PAR2 activation,
similar to that of PAR2-AP, which regulates the intracellular
PKA activity of cardiomyocytes.

MC trafficking in response to inflammatory or aller-
gic triggers has been mainly attributed to BM-derived MCPs
that circulate in the blood and home peripheral tissues before
reaching terminally differentiated mature MCs. WAT has been
described to contain stem cells with multilineage properties
(Cousin et al.,2003; Han et al., 2010; Poglio et al.,2010,2012)
that may be of clinical value in repair or replacement of vari-
ous cell lineages (Tran and Kahn, 2010). Recent studies have
described both MCs (Liu et al.,2009) and MCPs (Poglio et al.,
2010) in WAT. Poglio et al. (2010) documented that the WAT
stromal vascular fraction hosts an MC lineage that does not
originate from the BM and that can home to peripheral tissues
including the skin and the intestine. MCs of WAT origin are
infiltrating the cardiac tissue more efficiently than the BM
competitor cells. Similarly, in chimeric mice whose BM cells
were donated from GFP transgenic animals, cardiac MCs pop-
ulating the ischemic milieu did not carry the GFP transgene,
suggesting that MCs that home to the infarcted heart do not
arise from BM progenitors (Fazel et al., 2006). Nevertheless,
the density of MCPs was increased in the BM, and a small
proportion of the mature cardiac MCs after MI did originate

respectively, as counted on TB-stained heart sections (n = 6-12, two independent experiments). Kruskal-Wallis and Dunn's post hoc test for comparisons
between groups. (C) Representative flow cytometry gating strategy for isolation of HSPCs (CD45.2"c-kit"Sca-1*) in WAT showing the lack of mature FceRI*
MCs. (D, left) Schematic overview of co-transplantation of lethally irradiated CD45.1* WT mice with both FACS-sorted WAT-HSPCs (c-kit*Lin~Sca*) from
CD45.2* mice and BM cells from CD45.1* cells. WAT-HSPCs were isolated from WT, Cpa3”"’/*, or RMB mice. (right) Representative example of chimerism
evaluation in the WAT and the BM by flow cytometry-assisted counting of WAT-derived CD45.2* cells in CD45.1" recipient mice transplanted with both
FACS-sorted WAT-HSPCs from WT CD45.2* mice and BM cells from WT CD45.1* cells. (E) Transplantation of WT mice with WAT-HSPCs from Cpa3* led to
depressed left ventricular SF9% at day 14 after infarction (n = 7, two independent experiments) without any changes in infarct size, fibrosis, and capillary
density. *, P < 0.05, Mann-Whitney nonparametric test. (F) WT mice transplanted with either WAT-HSPCs and RMB-derived BM cells or RMB-derived WAT
HSPCs and BM cells have equal amounts of mature cardiac MCs at day 7 after infarction (n = 4-5, two independent experiments). (G) Cardiac tdT*c-kit*
cell numbers were higher in the WT mice transplanted with RMB-derived WAT HSPCs and BM cells compared with those transplanted with WAT-HSPC and
RMB-derived BM cells (day 7 after MI; n = 8-10, two independent experiments). *, P < 0.05, Mann-Whitney nonparametric test. (H) Representative image
of tdT* cells in the heart 7 d after infarction. All values are presented as mean + SEM. ns, not significant; WT, Cpa*/+ littermates.
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Figure 7. Reduced contractility and myofilament Ca?* sensitization in Cpa3“"* mice after infarction. (A) Depressed left ventricular cardiomyocyte
cell shortening (%) of Cpa3”e/*—derived intact cardiomyocytes versus WT cardiomyocytes in response to field stimulation (1, 2, and 4 Hz; n = 30-50, two
independent experiments). *, P < 0.05; **, P < 0.01, Kruskal-Wallis and Dunn's post hoc test for comparisons between groups. (B) Both contraction and
relaxation kinetics were significantly reduced in Cpa3“@*-derived cardiomyocytes versus WT cardiomyocytes (n = 30-50, two independent experiments).

JEM Vol. 213, No. 7 1365

920z Areniged g0 uo 3senb Aq 4pd-1.800910Z Wal/yz09G.L/ESEL/L/E L Z/Pd-BlonIe/wal/Bi0 sseidnu//:dny woy papeojumoq



from the BM progenitors. Therefore, although we cannot ex-
clude the BM as a source of cardiac MCs, MCPs originating
primarily from the WAT dominate in the infarcted heart in
our experimental conditions. Interestingly, in metabolic disor-
ders and obesity, MC density in WAT is increased, suggesting a
defect in their homing and/or production. Further studies are
required to understand how homing of WAT MC:s is regulated
in response to acute MI or other related morbidities such as
diabetes and obesity (Liu et al., 2009; Divoux et al., 2012) and
would be of great therapeutic interest.

We identified a novel role for cardiac MCs in pre-
serving postischemic cardiac function. In response to MI,
WAT-derived MCPs are mainly recruited to the cardiac
tissue, proliferate, and differentiate into mature cells in an
SCF-dependent manner. MC deficiency reduces PKA-me-
diated myofilament phosphorylation and Ca** sensitiza-
tion (Fig. 9). In conclusion, MCs can directly regulate the
contractile machinery of cardiomyocytes, and their pres-
ence in the infarcted myocardium is indispensable. Iden-
tification of the mechanisms that regulate MC activation
and its signaling on PKA-dependent sarcomere function
will provide novel insights in the regulation of contractile
function after acute MI.

MATERIALS AND METHODS

MI. All experiments were conducted according to the ethi-
cal committee for animal experimentation (Paris Descartes
University, CEEA 34) and the National Charter on the
ethics on animal experimentation from the French Minis-
ter of High Education and Research under the following
reference: Molecular and cellular mechanisms involved in
post-ischemic tissue remodelling (project n® 13-06/refer-
ence MESR:n° 01373.01).

C57BL/6] mice were obtained from Janvier (back-
crossed at least 12 times). MC-sufficient WBB6F1/]-Kit™*
and MC-deficient WBB6F1/]J-KitW/KitWv/] mice were
obtained from The Jackson Laboratory (backcrossed at least
10 times). C57BL/6] mMCP4™'~ and their WT littermates
(mMCP4"* WT) mice were provided by U. Blank (back-
crossed at least seven times). C57BL/6] Cpa3™’" mice and
their WT littermates (Cpa3"™’", WT) were a gift from H.-R.
Rodewald (backcrossed at least eight times). All mice were
studied at the age of 8 wk. MI was induced by left coronary
ligation as previously described (Kumar et al., 2005). Mice
were anesthetized using ketamine (100 mg/kg body weight)

and xylazine (10 mg/kg body weight) via intraperitoneal
injection, intubated, and ventilated using a small-animal res-
pirator. The chest wall was shaved, and a thoracotomy was
performed in the fourth left intercostal space. The peri-
cardial sac was removed, and the left anterior descending
artery was permanently ligated using a 7/0 monofilament
suture (Peters Surgical) at the site of its emergence close
to the left atrium. The thoracotomy was closed with 6/0
monofilament sutures. The exact same procedure was per-
formed for the sham-operated mice except that the liga-
tion was not tied. The endotracheal tube was removed once
spontaneous respiration resumed, and mice were placed
on a warm pad at 37°C until awakened. For the DSCG
treatment experiments, mice were treated with DSCG (50
pg/g/mouse) or PBS (150 pl) 1 h after the operation and
every day for 7 d. For evaluation of SCF effect on MC pro-
liferation and density, mice were treated with the anti-SCF
antibody provided by N.W. Lukacs and S. Morris (Medical
School, University of Michigan, Ann Arbor, MI; Dolgachev
et al., 2009) or rabbit serum (400 pl/mouse; Sigma-Aldrich)
at days 1, 3, and 5 after infarction. For assessment of cell
proliferation with the APC BrdU Flow kit (BD), 100 pl
BrdU was intraperitoneally injected into mice 24 h before
tissue isolation and digestion.

BM and WAT transplantation. BM cells were flushed from
the femurs of C57BL/6] under sterile conditions, and 8 x 10°
cells were injected into the retroorbital sinuses of C57BL/6]
mice irradiated with 10 Gy (one dose). Competitive repopu-
lation assays were conducted as described previously (Poglio
et al., 2010, 2012). In brief, 2 X 10’ ¢-Kit*/Lin™/Sca-1" cells
sorted from the WAT of donor mice were mixed with 2 X 10°
competitor BM total cells. The mixed population was intrave-
nously injected into lethally irradiated (10 Gy, 137Cs source)
recipient mice. Reconstituted mice were then allowed to re-
cover for 2 mo before MI.

Echocardiographic measurements. Transthoracic echocardi-
ography was performed 14 d after surgery using an echocar-
diograph (ACUSON S3000 ultrasound; Siemens AG)
equipped with a 14-MHz linear transducer (1415SP). The
investigator was blinded to group assignment. Mice were
anesthetized by isoflurane inhalation. Percentages of SF (%SF;
Zouggari et al., 2013) or EF (%EF) were calculated as previ-
ously described (Dormishian et al., 2013).

* P < 0.05, Kruskal-Wallis and Dunn's post hoc test for comparisons between groups. (C) MC deficiency had no effect on Ca®* transient peak (n = 30-50,
two independent experiments). (D) SR Ca®* content in response to 1-Hz electric stimulation and after caffeine (10 mmol/l) was similar in both WT and
Cpa3“*~derived cardiomyocytes (n = 30-50, two independent experiments). (E) Force-calcium fitted curves reflecting Ca** responsiveness of left ventricle
peri-infarcted skinned myocytes from WT and Cpa3“®/* mice after sham operation or MI. Reduced Ca?* sensitivity in both WT and Cpa3““/*~derived skinned
myocytes in response to Ml with a shift to the right in Cpa3“’*-derived myocytes versus WT (n = 5-8, two independent experiments). (F and G) F,,., was not
altered between WT and Cpa3”5/*—derived myocytes (F), but MC deficiency caused Ca’* desensitization with a significant increase in ECs, (G; n = 5-8, two
independent experiments). **, P < 0.01, Kruskal-Wallis and Dunn's post hoc test for comparisons between groups. (H) No difference in Hill coefficient as a
measure of Ca** cooperativity (n = 5-8, two independent experiments). All values are presented as mean + SEM. ns, not significant; Sham, sham-operated

animals; SR, sarcoplasmic reticulum.
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Figure 8. MC-dependent myofilament phosphorylation via tryptase-induced PAR2 activation. (A and B) Representative Western blots for phos-
phorylated cTnl (Ser22/23) and MyBPC (Ser273, Ser302, and Ser282) and total proteins levels from peri-infarcted cardiac tissue of WT and Cpa3“®/* at day
7 after MI (A) and at day 14 after infarction (B). (C) Quantified levels of p273-, p282-, and p302-MyBPC and p22/23-cTnl normalized to total protein levels
showing increased myofilament phosphorylation in Cpa3“*/* mice at day 14 after infarction (n = 7-13, three independent experiments). *, P < 0.05; ** P <
0.01, Kruskal-Wallis and Dunn's post hoc test for comparisons between groups. (D) Increased PKA activity (A.U) in peri-infarcted area of Cpa3“* cardiac
tissue at day 14 after infarction (n = 4 for sham, n = 10 for Ml from four independent experiments). *, P < 0.05; **, P < 0.01, Kruskal-Wallis and Dunn's
post hoc test for comparisons between groups. (E) Treatment with recombinant MC chymase cleaved PAR2 in a non-R36-specific/canonical manner (n =
3, two independent experiments). (F) Recombinant mouse tryptase cleaved PAR2 only at canonical R36 site (n = 4, two independent experiments). **, P <
0.01, Kruskal-Wallis and Dunn's post hoc test for comparisons between groups. (G) IBMX-induced activation of PKA in H9C2 cardiomyocytes is inhibited
in the presence of tryptase or PAR2-AP; 6-Bz-cAMP was used as a positive control (n = 4, two independent experiments). *, P < 0.05, Kruskal-Wallis and
Dunn's post hoc test for comparisons between groups. (H) siRNA-induced mRNA knockdown of tryptase in cardiac MCs at 16 h after transfection (n = 4,
two independent experiments). **, P < 0.01, Mann-Whitney nonparametric test. (/) Depressed SF% (day 14) is restored in CpaS“’+ mice by trans-cutaneous
(echo-guided) injection of cardiac FACS-sorted Vybrant* MCs (sorted at day 6 after infarction; n = 7) but not restored by MCs treated with tryptase siRNA
(n = 3). All data are from two independent experiments. *, P < 0.05; **, P < 0.01, Kruskal-Wallis and Dunn's post hoc test for comparisons between groups.
All values are presented as mean + SEM. ns, not significant.
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Figure 9. Schematic diagram showing the proposed
mechanism of MC-dependent myofilament Ca®* sensi-
tization after MI. MCs, originating primarily from WAT, in-
filtrate the heart after Ml and regulate cardiac function via
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cAMP/PKA activity. AC, adenylyl cyclase; p, phosphoryl group.

Immunohistochemistry. Cardiac remodeling after MI was as-
sessed at day 14. Hearts were excised, rinsed in PBS, and frozen
in liquid nitrogen. Hearts were cut by a cryostat (CM 3050S;
Leica) into 5—7-pum-thick sections. TB was used to assess MC
degranulation as previously described (Xaubet et al., 1991).
Masson’s trichrome and Sirius red stains were performed for
infarct size and myocardial fibrosis evaluation. Infarct size (in %)
was calculated as total infarct circumference divided by total
left ventricle circumference. The collagen volume fraction was
calculated as the ratio of the total area of interstitial fibrosis to
the myocytes area in the entire visual field of the section. En-
dothelial cells within capillaries were visualized after BS-1 lec-
tin staining (1:100, FITC-conjugated Griffonia simplicifolia;
Sigma-Aldrich) and cardiomyocytes with wheat germ aggluti-
nin (1:200, Texas red conjugated; Thermo Fisher Scientific).
Image analysis and measurements were conducted with Image]
processing program (National Institutes of Health).

Cleavage assay for PAR2 receptor. Secreted epithelial alkaline
phosphatase (SEAP)—tagged versions of human PAR2 (Uni-
ProtKB accession P55085; fused at Q27) protein as well as the
canonical cleavage site mutant R36G were generated to allow
quantification of receptor cleavage (Ludeman et al., 2004).
PART1 (F2r) knockout mouse lung fibroblasts (KOLFs; Trejo
et al., 1996) were grown in DMEM supplemented with anti-
biotics and 5% serum. Transfection was performed with Tran-
sitLCT1 transtection (Euromedex) in complete medium as
recommended. 48 h after transfection, cells were washed with
Opti-MEM for 1 h and incubated for one additional hour in
Opti-MEM with or without the respective MC-specific pro-
teases (500 ng/ml), and supernatants were collected. A second
20-min incubation with 10 nM trypsin stripped all remaining
SEAP moiety (as verified in separate experiments) from the
cell surface. SEAP activity in the conditioned media was de-
termined at OD405 after hydrolysis of para-nitrophenyl
phosphate (pNPP; Sigma-Aldrich). This permitted calcula-
tion of percentage of surface receptors cleaved during the
initial 60-min incubation.
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Membrane-permeabilized myocytes. Membrane-permeabi-
lized or “skinned” myocyte experiments were performed as
previously described (Kirk et al., 2014). Tissue from the
peri-infarct zone was flash frozen in liquid nitrogen and
stored at —80°C. At the time of the experiment, the tissue
was homogenized in isolation solution (5.5 mM Na,ATP,
7.11 mM MgCl,, 2.0 mM EGTA, 108.01 mM KCl,8.91 mM
KOH, 10 mM imidazole, 10 mM DTT, protease inhibitors
[Sigma-Aldrich], and phosphatase inhibitors [Roche] with
0.3% Triton X-100).Triton X-100 is a detergent that perme-
abilizes the myocyte membrane, allowing the free movement
of calcium into the cell. Myocytes were then washed in iso-
lation solution without Triton X-100 to remove the deter-
gent. Using silicone, a single myocyte was glued to the tips of
150-pm diameter minutia pins. One pin was attached to a
force transducer (Aurora Scientific Inc.). A video camera
(Imperx) and the high-speed video sarcomere length pro-
gram (Aurora Scientific Inc.) were used to continuously
monitor sarcomere length. Studies were conducted at a sar-
comere length of 2.0 pm. The mounted myocytes were kept
in a relax buffer (5.95 mM Na,ATP, 6.41 mM MgCl,, 10 mM
EGTA, 100 mM BES, 10 mM phosphocreatine, 50.25 mM
potassium propionate, 10 mM DTT, and protease and phos-
phatase inhibitors) with no calcium. Force was measured as
the myocyte was exposed to increasing calcium concentra-
tions, by moving the myocyte from baths containing differ-
ent ratios of relax and activating solutions. The activating
solution contained 5.95 mM Na,ATP, 6.2 mM MgCl,,
10 mM Ca**EGTA, 100 mM BES, 10 mM phosphocreatine,
29.98 mM potassium propionate, 10 mM DTT, and protease
and phosphatase inhibitors. All buffers were adjusted to a pH
of 7.0.A complete activation of the myocyte occurred at the
beginning and end of the experiment, and the myocyte was
discarded if there was <10% rundown. Force—calcium data
were fit to the Hill equation: F = F,, X cly (EChm + Cah),
yielding F,.., calcium sensitivity (Ca** required to achieve
50% maximal force, ECs), and cooperativ-
ity (Hill coeflicient, h).
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Organ digestion/cell isolation. Peripheral blood was isolated
from the inferior vena cava puncture with heparin solution.
Whole blood was lysed after immunofluorescence staining
using the FACS lysing solution (BD), and total blood leu-
kocyte numbers were counted using trypan blue (Sigma-
Aldrich). BM cells were washed through the femur and the
tibia and filtered through a 40-pm nylon mesh (BD). Spleens
were collected, minced with fine scissors, and filtered through
a 40-pm nylon mesh (BD). For both splenocytes and BM-
erived cells, the cell suspension was centrifuged at 400 g for
10 min at 4°C. Red blood cells were lysed using red blood
cell lysing buffer (Sigma-Aldrich), and splenocytes and BM
cells were washed with PBS supplemented with 1% vol/
vol fetal bovine serum. Hearts were collected, and the left
ventricle was isolated, minced with fine scissors, and gently
passed through the Bel-Art Scienceware 12-well tissue dis-
aggregator (Thermo Fisher Scientific). Cells were collected,
filtered through 40-um nylon mesh, and washed with PBS
with 1% vol/vol fetal bovine serum. Subcutaneous WAT was
dissected and mechanically dissociated. WAT fragments were
digested with collagenase, and stroma-vascular cells were
collected by centrifugation after elimination of undigested
fragments by filtration as described previously (Poglio et al.,
2010). Red blood cells were removed by incubation in hemo-
lysis buffer (STEMCELL Technologies). Cells were counted
and used for HSPC sorting.

Flow cytometry. Cells isolated from the tissue of interest were
incubated in the dark at 4°C for 30 min with the following
antibody mix. For mature MCs: APC-conjugated ckit/
CD117 (2B8; BD) and PE-Cy7—conjugated Ly-6A/E (Sca-1;
D7; BD). For MCPs: DAPI-conjugated Lineage (eBiosci-
ence), FITC-conjugated CD45.2 (BD), CD45.1 (BD),
APC-conjugated CD34 (HM34; BioLegend), PerCP/
Cy5.5-conjugated CD16/32 (FcylIl/III; Thermo Fisher Sci-
entific), and PE-conjugated Integrin-p7 (FIB504; eBiosci-
ence). When cardiac-derived cells were analyzed for marker
expression, Vybrant DyeCycle violet stain (Thermo Fisher
Scientific) was used to stain live cells and eliminate both de-
bris subsequently nonspecific autofluorescence. For detection
of cardiac MCs, granulated cells were first gated on SSC/FSC.
The total number of cells was normalized to tissue weight.
Cells were analyzed using a flow cytometer (LSR II; BD) or
were sorted with FACSAria IT (BD).The APC BrdU Flow kit
(BD) was used for analysis of proliferation according to the
manufacturer’s instructions. HSPC isolation was performed as
previously described (Poglio et al., 2010). In brief, freshly iso-
lated WAT—stromal vascular fraction (SVF) cells were stained
in PBS containing FcR Block reagent and CD117 (2B8; BD),
Lineage (BD), Sca-1 (E13-161.7; BD), and CD45.2 (BD) an-
tibodies. Cells were washed in PBS and sorted with FAC
SAria II. Data acquisition and analysis were performed using
FACSDiva software (BD) or FlowJo 7.5.

For detection of inflammatory cells, total cardiac cells
were gated on PerCP-conjugated CD45 (BD), and the fol-
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lowing antibodies were used: DAPI-conjugated anti-CD11b
(BD), PE-conjugated anti-Ly6G (1A8; BD),APC-conjugated
anti-F4/80 (BioLegend), FITC-conjugated anti-Ly6C (Bio-
Legend), APC-conjugated anti-CD8a (BD), PE-conjugated
anti-CD45R /B220 (R A3-6B2;eBioscience), PE-Alexa Fluor
700—conjugated anti-CD3 (eBioscience), and FITC-conju-
gated anti-CD4 (eBioscience). All antibodies were used at a
dilution of 1:100. Monocytes were identified as CD11b""
Ly6G~7/4"* Neutrophils were identified as CD11b"Ly6G".
Macrophages were identified as CD11b*Ly6G~F4/80". Ma-
ture B lymphocytes were identified as B220*CD3” and T
cells as CD4"CD3" or CD4"CD8".The total number of cells
was then normalized to heart weight. Cells were analyzed
using a flow cytometer (LSR II).

Transcutaneous echo-gquided intramyocardial injections
of cardiac MCs. For each experiment, cardiac MCs were
FACS sorted as Vybrant'c-kit"FceRI" cells from a total
of 30 C57BL/6]J mice at day 6 of MI. Hearts were col-
lected, and the left ventricle was isolated, minced with
fine scissors, and gently passed through the Bel-Art Sci-
enceware 12-well tissue disaggregator (Thermo Fisher
Scientific). Cells were then collected and filtered through
40-pm nylon mesh. During sorting, cells were kept al-
ways in PBS complemented with 5% fetal calf serum at
4°C under sterile conditions. FACS-sorted MCs were
counted, plated at a density of 2.5 X 10° cells/ml, and cul-
tured in DMEM complemented with 20 mM r-glutamine,
10% fetal calf serum (inactivated at 56°C), 2 mM L-gluta-
mine, 1 mM pyruvate, 100 U/ml penicillin/streptomycin,
and 1% MEM nonessential amino acid solution (Sigma-
Aldrich) in the presence of 0.1 mg/ml recombinant mouse
SCF for MC survival overnight. Cells were then trans-
fected with the Nucleofector 2B device (program C-005)
in 100 pl Nucleofector solution T (Lonza) with ON-TAR
GETplus Mouse Tpsb2 (mMCP6) siRNA (L-064669-02-
0005; GE Healthcare) or non-targeting (scramble) siRINNA
(GE Healthcare) for 16 h according to the manufacturer’s
instructions. Cells were washed, their viability was assessed
with Trypan blue, and they were counted and resuspended
in PBS to give a total of 80,000 cells/60 pl of suspension for
trans-cutaneous injections. Closed-chest, trans-cutaneous,
echo-guided injections were then used to deliver cells or
PBS directly to the peri-infarcted myocardium as previously
described (Toeg et al., 2013). In brief, Cpa3“’" mice with
6-d-old infarcts were anesthetized by isoflurane inhalation
and fixed in a supine position on a heating pad. The infarct
region was located by echocardiography using a Vevo 2100
imaging system and a MS400 probe appropriate for mouse
cardiovascular imaging (18-38 MHz; VisualSonics Inc.). A
micromanipulator (VisualSonics) was used to guide a 1.5-in-
long 27-G needle (Dominic Dutscher) into the hypokinetic
anterior wall of the peri-infarcted myocardium under con-
tinual echo guidance. Four 15-ul injections were used to
deliver a total of 80,000 cells resuspended in sterile PBS.
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FlowCytomix. The bead-based multiplex immunoassay for the
flow cytometer (eBioscience) was used to measure the levels
of inflammatory mediators in the cardiac tissue. Peri-infarcted
left ventricular tissue was homogenized using a glass Dounce
homogenizer in ice-cold Tris-HCl (50 mmol/]l, pH 7.5),
NaCl (150 mmol/1), EDTA (1 mmol/l), NP-40 (1%), Na-or-
thovanadate (1 mM), pB-glycerophosphate (40 mM; Sigma-
Aldrich), and protease cocktail inhibitors (Roche). 500 pg
protein homogenates was incubated with antibody-coated
beads recognizing IL3, Mcp3, Mcpl, IL-6, IL-10, IL1p,
IL12p70, and TNE The target analytes were captured by the
specific antibodies, and the samples were incubated with bio-
tin-conjugated secondary antibodies. Streptavidin-PE was
added for detection, and flow cytometry was used to differen-
tiate bead populations according to size and fluorescent signa-
ture. Analyte concentration was measured using standard
curves on the FlowCytomix Pro Software (eBioscience). Data
were expressed as picogram of analyte per microgram of car-
diac protein homogenate.

Quantitative real-time PCR. Quantitative real-time PCR was
performed on a Step-One Plus (Applied Biosystems). GAPDH
was used to normalize gene expression. The following primer
sequences were used: SCF forward, 5'-GGAGATCTGGAA
TCCTGTGA-3’; and reverse, 5'-CCCGGCGACATAGTT
GAGGGTTAT-3; mMCP6 forward, 5-CTGGGGCGA
CATTGATAATGACGAGCCTCT-3"; and reverse, 5'-CCC
CCTGAATCGCCCTGGCAGGAGT-3"; and mMCP4 for-
ward, 5'-CTGGGGCTGGAGCTGAGGAGATTA-3'; and
reverse, 5'-CAACACAAATTGGCGGGTTATGAGAA-3'.

Tissue homogenization and Western blot. Cardiac tissue was
homogenized using a glass Dounce homogenizer in ice-cold
Tris-HCI (50 mmol/], pH 7.5), NaCl (150 mmol/1), EDTA
(1 mmol/1), NP-40 (1%), Na-orthovanadate (1 mM), f-glyc-
erophosphate (40 mM; Sigma-Aldrich), and protease cocktail
inhibitors (Roche). After homogenization, protein concentra-
tion was measured by the SMART Micro BCA Protein Assay
kit (Intron).Total tissue homogenate was denatured in loading
buffer and 0.1 M DTT at 95°C for 5 min, and 30 pg was
loaded on freshly prepared 9% Bis-Acrylamide gels (ratio
29:1), transferred onto nitrocellulose membranes (Bio-Rad
Laboratories), and blotted using custom MyBPC antibodies
against phospho Ser-273 (1:2,500), Ser-282 (1:2,500), and
Ser-302 (1:10,000) and total (1:5,000; Kirk et al., 2014);
phospho Tnl (1:1,000; Cell Signaling Technology); and total
Tnl (1:10,000; Spectral Diagnostics). In some cases, blots were
stripped with freshly prepared stripping buffer (2 M Tris-
HCL, pH 6.8, 10% SDS, and 100 mM p-mercaptoethanol)
and reprobed. Blots were scanned before being reprobed to
ensure efficient stripping. All phosphorylated protein levels
were normalized to total protein levels.

Cardiomyocyte contractility and Ca’*-transient measure-
ments. Left ventricle myocytes were freshly isolated from the
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noninfarcted free wall and recorded as previously described
(Fauconnier et al., 2010). Real-time Ca*" measurements and
cell shortening were performed on freshly isolated myocytes
incubated 1n a physiological Tyrode solution (140 mM NaCl,
5 mM KCI, 8 mM NaH,PO,, 1 mM MgSO,, 10 mM HEP
ES, 5 mM Taurine, and 10 mM glucose). Cardiomyocytes
were loaded with the ratiometric Ca®" dye Fura-2AM at
room temperature for 20 min (2 pM, Invitrogen), and cell
shortening/Ca?" transients were recorded using electrical-field
stimulation (1, 2, and 4 Hz). Fluorescence wavelengths emit-
ted at 340 nm (F340) and 380 nm (F380) were simultane-
ously recorded using the IonOptix system coupled to a
microscope (X40; ZEISS). SR Ca*" content was evaluated by
measuring the peak amplitude of the cytosolic Ca®" transient
induced by rapid perfusion of caffeine (10 mM) after a 20-s
pacing period (1 Hz) followed by a 10-s rest period with a
calcium-sodium—free solution containing 140 mM LiCl,
6 mM KCIl, 1 mM MgCl, 1 mM EGTA, 10 mM glu-
cose, and 10 HEPES, pH 7.4.

Cell culture. H9¢2 cells, derived from the embryonic rat ven-
tricle (ATCC CRL1446), were seeded at a density of 5 x 10°
cells/100-mm plate and cultured at 37°C in a 5% CO, hu-
midified atmosphere in DMEM supplemented with 0.2 mM
glutamine, 100 U/ml penicillin, 100 pg/ml streptomycin, and
10% FBS. When cells reached a subconfluence state (80%),
they were treated with IBMX (3-isobutyl-1-methylxanthine;
Sigma-Aldrich) at 100 pM for 5 and 10 min with or without
co-treatment with 500 ng/ml mouse recombinant tryptase
(R&D Systems) or the 100 uM PAR2-AP SLIGRL-NH,
(Abcam). Cells were homogenized and sonicated in cell lysis
buffer (#9803; Cell Signaling Technology), and protein con-
centration was measured by the SMART Micro BCA Pro-
tein Assay kit (Intron).

PKA activity assay. PKA activity was measured by the com-
mercial kit (Enzo Life Sciences) according to manufacturer’s
instructions. In essence, active PKA was used to generate a
standard curve, and 15 pg of cardiac peri-infarcted tissue ho-
mogenate or 10 pg of cell lysate was used for the assay.

Statistical analysis. Group comparisons were made using the
Kruskal-Wallis test by ranks (nonparametric one-way analysis
of variance), with Dunn’s post hoc comparisons. Normal dis-
tribution was evaluated with the Shapiro—Wilk test. For indi-
vidual comparisons, Mann—Whitneys U test was used as
described in the figure legends. All values are presented as
mean = SEM, and a p-value <0.05 was considered significant.
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