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Recent successes in malaria control are threatened by drug-resistant Plasmodium parasites and insecticide-resistant Anopheles
mosquitoes, and first generation vaccines offer only partial protection. New research approaches have highlighted host as well
as parasite molecules or pathways that could be targeted for interventions. In this study, we discuss host—parasite interactions
at the different stages of the Plasmodium life cycle within the mammalian host and the potential for therapeutics that prevent
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parasite migration, invasion, intracellular growth, or egress from host cells, as well as parasite-induced pathology.

Malaria control has been a success story in recent years:
mortality has roughly halved with expanded access to
existing tools like insecticide-treated bed nets and artemisinin
combination therapies, but the landscape is concerning.
Malaria still caused an estimated 584,000 deaths in 2013
(http://www.who.int/mediacentre/factsheets/fs094/en/).
Intensive efforts have reduced the malaria burden but have
not eliminated infection in some low transmission areas
(Kleinschmidt et al., 2015); in some high-transmission areas,
malaria burden increased despite the application of existing
tools (Kakuru et al.,, 2013). Artemisinin-resistant parasites
have emerged across Southeast Asia and are poised to enter
India (Tun et al., 2015) while insecticide-resistant mosquitoes
threaten vector control measures in many areas (Knox et
al., 2014). The first malaria vaccine is being considered for
deployment by the World Health Organization; however, thus
far it only confers partial protection against clinical malaria
and no protection against severe malaria in infants (RTS,S
Clinical Trials Partnership, 2015). New therapeutic and
prophylactic tools are urgently needed.

Past approaches to developing interventions have been
largely empirical and used traditional platforms such as small
molecule drug screens and vaccines. Many vaccine targets
have proved unsuccessful, for reasons that include polymor-
phisms (Thera et al., 2011), poor immunogenicity, and inad-
equate understanding of protein function and its role in the
parasite life cycle. Furthermore, protective immune mecha-
nisms are complex and poorly understood. Similarly, although
many drug candidates have been screened, few have advanced
to clinical trials, and frontline therapy for malaria now re-
lies on artemisinins. Small molecule screens have identified
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many exciting targets, such as DDID 107498 that targets trans-
lation elongation factor 2 at multiple parasite stages (Baragafa
et al., 2015) and imidazopyrazines targeting phosphatidyli-
nositol-4-OH kinase (McNamara et al., 2013), but the de-
velopment path has a high failure rate. Efforts at adjunctive
therapies have been unsuccessful to date, and in some cases
harmful (John et al., 2010). Against this backdrop, we need
not only new interventions but also new approaches to iden-
tify targets for intervention.

Two recent papers published in The Journal of Exper-
imental Medicine (Cha et al., 2015; Zenonos et al., 2015)
highlight the possibility of targeting host factors for antima-
laria therapy. This has been highly successful in other infec-
tions, such as HIV (Lieberman-Blum et al., 2008; Bruno and
Jacobson, 2010; Jacobson et al., 2010), but has not so far been
investigated for Plasmodium. In parallel, new high through-
put approaches are rapidly expanding our understanding of
host—parasite interactions, and genome-wide association
studies are identifying host factors that could influence ma-
laria pathology (Malaria Genomic Epidemiology Network et
al., 2015). This review focuses on the potential for therapeu-
tics that exploit host—parasite interactions as a strategy to de-
velop new antimalarials, highlighting recent discoveries that
illustrate this approach.

Exo-erythrocytic stages of Plasmodium

The exo-erythrocytic stages of Plasmodium comprise the
sporozoites injected into the mammalian host by the mos-
quito and the developing forms within the hepatocyte
(Fig. 1). These stages of the life cycle in the mammalian host
are clinically silent but offer great potential for malaria pre-
vention. Plasmodium sporozoites are deposited in the skin
when the female Anopheles mosquito takes a blood meal.
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Traversal of Kupffer cells
Block CD68 sporozoite interaction?

Figure 1. Potential points of intervention in
the preerythrocytic stages of the Plasmodium
life cycle. (1) Frevert et al, 1996; Coppi et al,,
2007; (2) Mota et al., 2002; Cha et al., 2015; (3)
Yalaoui et al., 2008; Foquet et al., 2015; (4) Liehl
et al,, 2014; (5) Epiphanio et al., 2008; Sinnis and
Ernst, 2008; (6) Prado et al.,, 2015.
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Within minutes, they leave the skin, circulate in the blood,
and enter hepatocytes. To exit the blood, sporozoites ac-
tively penetrate and traverse Kupffer cells (Pradel et al., 2002;
Frevert et al., 2005) and, to a lesser extent, endothelial cells
(Tavares et al., 2013). Sporozoites may then traverse several
hepatocytes before productively invading a terminal hepato-
cyte and replicating (Mota et al., 2001). This replicative stage
in the hepatocyte leads to a dramatic amplification of parasite
numbers, with 10,000 merozoites or more formed from one
infected hepatocyte. Transfer from skin to blood, from blood
to liver, and subsequent infection of hepatocytes represent the
first “bottlenecks” in the life cycle. Interventions that target
the underlying host—parasite interactions could be deployed
to prevent infection or interrupt transmission (Fig. 1).

One of the first prehepatocyte interactions with the host
is between circumsporozoite protein (CSP), the immunodom-
inant Plasmodium protein that covers the entire surface of the
sporozoite, and heparan sulfate proteoglycans (HSPGs) on si-
nusoidal endothelium (Frevert et al., 1996; Coppi et al., 2007).
Although CSP/liver HSPGs do not appear to be essential for
sporozoite invasion (Frevert et al., 1996), they are important for
attachment to liver sinusoids and liver arrest. CSP has long been
targeted for vaccine development, in part because high titers of
antibodies to its peptide repeats can inhibit the invasion of liver
cells. Nevertheless, the recently tested RTS,S vaccine contain-
ing these repeats has conferred only modest protection against
infection, possibly because antibody titers dropped rapidly after
vaccination. Targeting the host molecule, HSPG, is a more dif-
ficult option, as the level of sulfation of HSPGs seems to deter-
mine whether there is productive invasion of hepatocytes or
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not (Coppi et al., 2007), and the vital roles that HSPGs play in
the liver would preclude their use as targets for intervention.

Traversal through Kupffer cells is thought to activate the
sporozoite for invasion (Mota et al., 2002). Using a complex
phage display library screen comprising >10° peptides, Cha
et al. (2015) recently identified the host molecule, CD68, as
an important surface receptor on rat Kupffer cells for sporo-
zoite entry. CD68 is a member of the scavenger receptor R
family, owing to its lysosome-associated membrane protein—
like domain and predominant endosomal distribution. It is a
highly glycosylated glycoprotein on myeloid cells that binds
to low-density lipoproteins. Its property of rapid internaliza-
tion and recycling could aid in moving sporozoites through
the cell. Before targeting host CD68 as a potential therapeutic
to prevent traversal through Kupffer cells, we need a better
understanding of its role in macrophages. Although CD68
KO mice have no discernible phenotype except enhanced
antigen processing for CD4 T cells (Song et al., 2011), the
longer-term effects of blocking a low-density lipoprotein
receptor are unknown. Importantly, the blocking or loss of
CD68 does not completely abolish sporozoite infection in
vivo, which is not surprising if some sporozoites can traverse
via endothelial cells (Tavares et al., 2013). Although Cha et
al. (2015) identified a peptide from the phage display library
that bound CD68 and inhibited sporozoite entry, its parasite
ligand remains unknown. Techniques such as avidity-based
extracellular interaction screening (AVEXIS; Frei et al., 2012;
Bartholdson et al., 2013) should make it possible to define the
parasite molecules that bind to CD68, which may be more
feasible targets for prophylactic intervention.
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Another such target is CD81, a member of the tetra-
spanin 4 family, which can be a coreceptor with the scav-
enger receptor type B class I (SR-BI) on the surface of host
hepatocytes. Both play an important role during sporozoite
invasion (Rodrigues et al., 2008;Yalaoui et al., 2008). In a hu-
manized mouse model, monoclonal antibodies to CD81, but
not to SR-BI, completely blocked invasion by Plasmodium
falciparum sporozoites (Foquet et al., 2015), confirming the
potential of CD81 as a therapeutic target.

Within hepatocytes, there are likely to be unique host
factors and interactions that permit or control parasite devel-
opment. Different groups using transcriptional profiling have
identified changes in several hundred host genes in hepatocytes
or HEP-2 cells after infection with Plasmodium berghei or P
falciparum, with a large proportion from those that regulate
immune processes, cell adhesion and communications, metab-
olism pathways, cell cycle regulation, and signal transduction
(Albuquerque et al., 2009; Chattopadhyay et al., 2011). Of
particular interest are those host responses in the hepatocyte
activated as a defense against the invading parasite. Liehl et al.
(2014) described Plasmodium RINA as a pathogen-associated
molecular pattern capable of activating a type I IFN pathway in
the hepatocyte via a cytosolic receptor, mda5, which is thought
to lead to the recruitment of leukocytes to the infected cell.
This innate pathway can reduce the number of parasites that
will subsequently emerge to give rise to the erythrocytic stages.

Heme oxygenase 1 (HO-1),a host protein that is up-reg-
ulated in Plasmodium-infected hepatocytes (Albuquerque et
al., 2009), has been shown to promote liver infection, prob-
ably by down-regulating chemokines MIP1-a and MCP-1,
as well the cytokines TNF and IL-12 in the innate immune
response. This may protect the parasite in the hepatocyte from
immune-mediated attack (Epiphanio et al., 2008; Sinnis and
Ernst, 2008). Blocking HO-1 reduces liver stage parasite bur-
den, but doing so may lead to unwanted effects at the eryth-
rocytic stage of infection. Because of its antiinflammatory
properties, HO-1 protects against experimental cerebral ma-
laria (CM) in the mouse P, berghei ANKA model (Pamplona
et al., 2007). Thus, immunotherapeutics that block HO-1 to
attack liver-stage parasites seem an unlikely strategy, unless
they might be shown to remove hypnozoites of Plasmodium
vivax when there is no accompanying blood-stage infection.

Parasites in the hepatocyte exist within the parasitopho-
rous vacuole (PV).The PV is formed by the invagination of
host cell membrane during sporozoite invasion,and it is exten-
sively modified by the parasite through the insertion of parasite
proteins and the loss of some host proteins. Although several PV
membrane resident parasite proteins are known to be essential
(e.g., UIS3 and UIS4; Mueller et al., 2005a,b) for parasite de-
velopment in the liver, we still do not know their function. The
fact that they are on this host—parasite interface suggests that
they might be involved in some host interaction that is critical
for infection. Understanding these interactions might lead to
the development of novel strategies to combat the parasite.

JEM Vol. 213, No. 2

The PV can be targeted by selective autophagy host
proteins such as light chain 3, ubiquitin, and SQSTM1/p62
and lysosomes (Prado et al., 2015). As the parasite develops,
these are lost from the PV membrane, suggesting protection
of the parasite from selective autophagy. It is interesting to
speculate  whether augmentation of selective autophagy,
if possible, would enhance the killing of the parasite and
whether this could be of use for treatment of the hypno-
zoite forms of P, vivax.

The exciting prospect of obtaining the full life cycles
of P, falciparum and Plasmodium ovale (Soulard et al., 2015)
and complete liver-stage development of P vivax (Mikola-
jezak et al., 2015) in the laboratory, as well as new in vitro
systems with primary human hepatocytes to follow P falci-
parum and P, vivax liver-stage infection (March et al., 2013),
will really advance our understanding of the exo-erythrocytic
stages of the human malarias, aspects of which can presum-
ably be exploited for antimalarial interventions. The complete
development of P vivax liver stages, including hypnozoites
and persistence in vivo in human liver—chimeric FRG KO
huHep mice, will allow us to identify host and parasite mol-
ecules involved in the latency and activation of hypnozoites.
This could lead to the identification of possible alternative
interventions that target the hypnozoite stage of P vivax and
P ovale to prevent relapses.

Erythrocytic stages of Plasmodium

Disease and death occur during Plasmodium erythrocytic
stages, making these a priority for new interventions (Fig. 2).
Upon completing development within hepatocytes, mero-
zoite progeny are released into hepatic sinusoids as clusters
within vesicles, called merosomes (Sturm et al., 2006). Mer-
osome membranes are derived from the host cell, although
host proteins are lost (Graewe et al., 2011), and phosphati-
dylserine display is inhibited (Sturm et al., 2006), perhaps
to mask the parasite from immune clearance. Thereafter, the
parasite undergoes repeated rounds of erythrocyte invasion,
intracellular multiplication, egress, and reinvasion. During
this cycle, parasite biomass can reach 10e12-13 organisms per
host (Dondorp et al., 2005).

Invasion of erythrocytes has long been an attractive tar-
get for vaccines but is increasingly viewed as a potential drug-
gable target. Invasion involves a sequence of events, including
initial attachment, reorientation of the apical end of the par-
asite toward the host cell, formation of a tight junction, and
then invasion with concomitant formation of the PV.This is
orchestrated through a series of receptor—ligand interactions
whose timing is determined by protein release and process-
ing events in conjunction with signaling cascades (Gaur and
Chitnis, 2011). For example, the Plasmodium homologue
of calcineurin, a calcium-regulated protein phosphatase, has
recently been shown to play a critical role in merozoite at-
tachment and invasion by regulating specific merozoite—host
cell binding interactions (Paul et al., 2015; Philip and Waters,
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Figure 2. Potential points of intervention in the
erythrocytic stages of the Plasmodium life cycle.
(1) Horuk et al., 1993; Chitnis et al., 1996; (2) Zenonos
et al,, 2015; (3) Egan et al., 2015; (4) McMorran et al.,
2009; Love et al,, 2012; (5) Dormeyer et al., 2006; So-
erli et al., 2009; (6) Butler et al., 2012; Horne-Debets
et al, 2013: (7) Berretta et al,, 2011; Abel et al,, 2012;
(8) Grau et al, 1987, 1989; Engwerda et al., 2002;
(9) Epiphanio et al., 2010; Hempel et al., 2014; (10)
Raj et al,, 2014; (11) Chandramohanadas et al., 2009;
Millholland et al., 2011.
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2015), as well as roles in other stages of parasite development
(Philip and Waters, 2015).

The earliest described host receptor for invasion is the
Dufly antigen receptor for chemokines (DARC), a member
of the G protein—coupled receptor family, which is required
for P, vivax to infect erythrocytes (Adams et al., 1990). This
requirement explains the paucity of P vivax in sub-Saharan
Africa, where the near universal penetration of a mutation
in its gene promoter ablates the expression of DARC on
the erythrocytes (but not other cells) of ethnic Africans. In-
dividuals lacking DARC on erythrocytes suffer no adverse
effects, and although DARC has seven transmembrane do-
mains, as do other G protein—coupled receptor family mem-
bers, it does not couple G proteins, explaining the absence
of downstream signaling (Horuk et al., 1993). These features
make the DAR C—parasite interaction an attractive target for
interventions against P vivax infections. Several studies have
shown that the interaction between Duffy binding protein
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and DARC can be competitively inhibited using chemok-
ines, Duffy binding protein, or the monoclonal antibody to
DARC (Horuk et al., 1993; Chitnis et al., 1996), and a mod-
ified chemokine inhibits both binding and invasion by the
parasite (Lu et al., 1995).

Invasion of P, falciparum was thought to be a less tracta-
ble target until recently because of multiple redundant path-
ways and extensive sequence variation in parasite proteins
involved in this process. However, nonredundant pathways for
P, falciparum invasion have been identified. Among the eryth-
rocyte-binding antigens and reticulocyte-binding protein ho-
mologue (Rh) proteins, only Rh5 cannot be deleted in any
P, falciparum strain, suggesting that it is essential for invasion
(Baum et al., 2009). Using the AVEXIS assay to screen an
erythrocyte ectodomain library, PfRh5 prey interacted with a
single bait, basigin. Merozoite invasion is inhibited by soluble
basigin, basigin knockdown, or antibasigin antibodies for all
parasite strains tested (Crosnier et al., 2013). In a recent study
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(Zenonos et al., 2015), a recombinant chimeric antibody
against basigin was shown to inhibit the interaction of basigin
with PfRh5, thus blocking merozoite invasion of multiple P
falciparum strains, which resulted in rapid clearance of para-
sitemia in an in vivo model. As monoclonal antibodies against
basigin have already undergone clinical trials for cancer and
graft versus host disease and have been well tolerated by pa-
tients (Chen et al., 2006; Xu et al., 2007), targeting this host
molecule in P, falciparum infections could be an effective and
feasible therapeutic approach.

Meanwhile, a forward genetic screen has identi-
fied CD55 (decay-accelerating factor) as another erythro-
cyte surface protein that is essential for merozoite invasion
(Egan et al., 2015). Because erythrocytes are not amenable
to genetic manipulation, hematopoietic stem cells were ex-
ploited to knock down the expression of 42 blood group
antigens using RINA interference with shRNA. In a com-
parison of shRINNA abundance, CD55 hairpins were ranked
as the most underrepresented in invaded versus control cells.
CD55 knockdown reduced parasite invasion significantly, and
CD55-null cells from genetically deficient individuals resisted
invasion by all P, falciparum isolates tested, apparently because
merozoites failed to attach properly (Egan et al., 2015). In-
terestingly, CD55-deficient individuals are rare but hemato-
logically normal, making this molecule an attractive target
for intervention. However, because the null phenotype has
not been selected nor spread in malaria-exposed populations,
the possibilities remain that the antimalarial benefits of CD55
deficiency do not occur in vivo, or that its deleterious effects
might be unmasked during malaria episodes or in relation to
other conditions that are common in these populations, like
polyparasitism and gastrointestinal infections.

Once inside the erythrocyte, the parasite extensively
remodels its host cell. In particular, P falciparum exports
proteins to the erythrocyte surface that serve as ligands for
adhesion to endothelial receptors and thereby mediate par-
asite sequestration in deep vascular beds. Sequestration is
implicated in P falciparum virulence; for example, coma is
associated with the burden of parasites sequestered in cere-
bral vessels (Dorovini-Zis et al., 2011). Treatments that re-
verse or prevent parasite sequestration might alleviate local
and systemic inflammation (Dondorp, 2008) and restore mi-
crovascular blood flow, thereby alleviating severe symptoms
and promoting parasite clearance in the spleen. Antiadhesion
agents could target the cell surface to block the ligand—recep-
tor interaction and hence could be immediately active upon
reaching adequate plasma levels.

Parasite adhesion has been ascribed to the P, falciparum
EMP1 (PtEMP1) family (~60 members) of clonally variant,
surface-expressed erythrocyte multidomain transmembrane
proteins (Smith et al., 2013). PEEMP1 displays enormous an-
tigenic diversity, making the task to design vaccines or im-
munotherapeutics against these targets daunting. However,
broad immunity against severe malaria develops quickly in
early childhood (Goncgalves et al., 2014), suggesting that the
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diversity of protective epitopes might be restricted. Similarly,
African women develop antibodies against placental parasites
and become clinically immune over only a few pregnancies
(Fried and Dufly, 1996), and placental parasites uniformly
bind chondroitin sulphate A and express a single member of
the PEEMP1 family called VAR2CSA (Salanti et al., 2003).
A human monoclonal antibody derived from African multi-
gravidae inhibits the binding of several malaria parasite strains
to chondroitin sulphate A (Soerli et al., 2009), indicating that
antiadhesion molecules directed against parasite surface anti-
gens can be broadly effective.

Conversely, therapies can be designed to mimic the
binding motifs of host receptors. For example, a small mol-
ecule that mimics an ICAM-1 loop was shown to inhibit
the binding of two parasite variants to the ICAM-1 receptor
(Dormeyer et al., 2006). Thus, a single adhesion-inhibiting
molecule might exhibit cross-strain and multi-PfEMP1 ac-
tivity for a particular host receptor. A major obstacle for the
rational design of antiadhesion therapy has been the iden-
tification of the PfEMP1 variants and endothelial receptors
responsible for severe malaria. Recent evidence suggests that
individual domains or combinations of domains (called do-
main cassettes), rather than full-length PfEMP1, may be the
key virulence factors. Domain cassettes DC8 and DC13 in
particular have been associated with severe malaria (Avril et
al., 2012; Claessens et al., 2012; Lavstsen et al., 2012). DC8
and DC13 bind to endothelial protein C receptor (EPCR),
and parasites collected from children with severe malaria
commonly bind to EPCR (Turner et al., 2013). Interestingly,
DC8 and DC13 competitively inhibit the binding of acti-
vated protein C to EPCR, and recombinant activated protein
C has been given to a limited number of individuals suffering
from severe malaria with anecdotal success, suggesting a po-
tential approach to adjunctive therapy.

One domain of PFEMP1, DBL1-a, plays a key part in
mediating binding to uninfected erythrocytes via glycosami-
noglycan heparan sulfate (Vogt et al., 2003) in a process called
rosetting. Rosetting has long been thought to contribute to
the obstruction of blood flow in the microcapillaries and has
also been associated with severe forms of malaria (Kaul et al.,
1991). Recently, low anticoagulant heparins such as DFX232
and sevuparin have been demonstrated to block rosetting and
have therefore been proposed as possible adjunct therapies for
severe malaria (Leitgeb et al., 2011).

Apart from their surface antigens, intraerythrocytic
parasites themselves were thought to be inaccessible to host
macromolecules such as antibody. However, recent evidence
suggests that certain biologics may access and impair intracel-
lular parasites. Platelets can bind infected erythrocytes and kill
intracellular malaria parasites (McMorran et al., 2009), lead-
ing to speculation that host defense peptides (HDPs) might
contribute to parasite control. HDPs have an amphipathic
topology and act by binding and aggregating on membranes,
leading to permeabilization and disruption. In a screen of dif-
ferent HDPs for antiparasitic activity, human platelet factor
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4 (hPF4) was shown to rapidly accumulate in infected, but
not uninfected, erythrocytes and to kill malaria parasites by
selectively lysing the parasite digestive vacuole (Love et al.,
2012). The mechanism by which large molecules like hPF4
entered infected erythrocytes was not clear, but uptake is
blocked by preincubation with protamine sulfate, suggesting a
role for electrostatic interactions. Selective uptake by erythro-
cytes infected with viable parasites implies a parasite-derived
mechanism or, alternatively, an activated endocytosis-like
mechanism, for large molecules such as PF4. A screen of small
nonpeptidic mimics of HDPs identified compounds that rap-
idly lyse digestive vacuoles and kill the parasite without af-
fecting the erythrocyte plasma membrane (Love et al., 2012).

The process of parasite egress from erythrocytes has re-
ceived increasing attention and may be a potential target for
immunotherapeutics. In a differential screen of the P falci-
parum blood-stage proteome, plasma from Tanzanian children
who controlled parasite density during infection preferen-
tially reacted to a large antigen expressed in schizont-infected
cells, PfSEA-1 (Raj et al., 2014). Disruption of PfSEA-1
impaired parasite replication, and antibodies to PfSEA-1 de-
creased parasite replication by arresting schizont rupture. As
with PF4, the mechanism by which anti-PfSEA-1 antibodies
access intracellular schizonts is not clear, although they were
observed inside the erythrocyte in immunolocalization stud-
ies with intact nonpermeabilized schizont-infected cells, con-
sistent with the increased permeability of these cells observed
in earlier studies (Ahlborg et al., 1996; Goodyer et al., 1997;
Bergmann-Leitner et al., 2009).

Several other host proteins have been implicated in par-
asite egress from the red cell. Host-derived protease calpain
is required and is thought to proteolyze the actin cytoskele-
ton (Chandramohanadas et al., 2009; Millholland et al.,2011).
A G-a(q)—coupled host signaling cascade is necessary, pro-
moting protein kinase C (PKC)-mediated loss of the host
cytoskeletal protein adducin with cytoskeletal compromise.
This leads to a Ca®" influx mediated by the mechanosensitive
cation channel TRPC6 and subsequent activation of host cal-
pain (Millholland et al., 2013). Notably, PKC inhibitors have
been shown to have antiparasitic activity in mouse models of
malaria: mammalian PKC inhibitors demonstrated activity in
these models, and an orally bioavailable PKC inhibitor pro-
longed survival in an experimental CM model.

Manipulating inflammation and immune responses

Host immune responses contribute to the pathogenesis of
malaria. Therefore, targeting the pathways involved could
lead to therapeutic interventions in severe disease, deviate
the immune response away from inflammation, and/or po-
tentiate protective immunity. Immune responses involved
in any of these processes are inextricably linked in a highly
complex self-regulating immune system, and without fully
understanding the dynamics and interactions involved, inter-
vention could be detrimental to the outcome of infection
(Frosch and John, 2012). Furthermore, with such diverse dis-
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ease manifestations as fever, severe anemia, CM, pregnancy
malaria, acute lung injury (ALI), and acute respiratory distress
syndrome (ARDS), it is unlikely that a single molecule or cell
could be targeted to alleviate all forms of severe malaria. It is
very important to determine whether a particular response
or biomarker is in the causal pathway. This can be examined
in experimental animal models; however, although they can
determine causality, they may offer only approximate repre-
sentations of the different severe malaria syndromes.

Manipulating host responses using antibodies or im-
mune cells has been pioneered in cancer treatment, where
immune “checkpoint” therapy has recently become a major
component of the treatment repertoire. This approach targets
regulatory pathways either to enhance T cell responses or to
remove inhibitory pathways that block effective immunity.
Most recently, antibodies against surface receptors that inhibit
effector T cells such as CTLA-4, PD-1, and Lag3 (Topalian
et al., 2012; Powles et al., 2014) have been used successfully
(Hodi et al., 2010; Robert et al., 2011; Nguyen and Ohashi,
2015). Blockade of PD-1 can reverse T cell exhaustion and
promote T cell effector responses in chronic infections and
cancer (Barber et al., 2006; Sakuishi et al.,2010), and blockade
of Lag3 in mice results in defective down-regulation of T' cell
responses (Workman et al., 2004).

Up-regulation of PD-1 and Lag3 on T cells have both
been implicated in impeding development of protective im-
munity in experimental malaria, leading to high parasitemias
and chronic Plasmodium chabaudi malaria (Butler et al., 2012;
Horne-Debets et al., 2013). Blocking or removing these mol-
ecules results in better clearance of parasites and elimination
of chronic infection. Blockade of CTLA-4, in contrast, has
different effects on Plasmodium yoelii infections depending
on parasite virulence; nonlethal infections in mice are cleared
more effectively, whereas treatment increases parasitemia in
lethal P yoelii (Lepenies et al., 2007). Would blocking these
molecules really be a feasible means of redirecting the host
response to eliminate parasites and prevent chronic malaria?
One major problem could be the potential for enhancement
of potentially pathogenic T cell responses, thereby increas-
ing the risk of severe disease, and the timing of intervention
would be hard to define. Furthermore, as a loss of PD-1 re-
sults in fewer long-lived plasma cells (Good-Jacobson et al.,
2010), blockade of this molecule may impair antibody re-
sponses that are thought to be important for long-term con-
trol of blood-stage malaria.

Regulatory T (T, cells (CD4 Foxp3'CD25") are
key regulators of immune responses. They can suppress tu-
mor-specific responses, and selective antibody depletion of
T\ cells is being tested in various tumor settings. Additionally,
novel approaches exploiting the different cytokine and meta-
bolic responses of T,, cells are being investigated to try to de-
viate immune responses away from T,, cells toward dominant
effector responses (Nishikawa and Sakaguchi, 2014). Manipu-
lation of T, cell responses as therapy against malaria is more

difficult to envisage. Although T, cell depletion during vac-
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cination augments T effector responses against liver stages of’
experimental malaria, it does not enhance memory responses
(Espinoza Mora et al., 2014), and the role of T\, cells during
blood-stage infections is not at all clear. T\, cells in human
malaria are sometimes associated with malaria disease or as-
ymptomatic infections and sometimes not (Scholzen et al.,
2010; Torres et al., 2014). Similarly, in experimental models,
T,y cells can dampen or enhance both clearance of malaria
and infection-induced pathogenic responses (Berretta et al.,
2011;Abel et al., 2012). With our current state of knowledge,
it is not possible to say whether targeting T,., cells would
benefit the host, the parasite, both, or neither, or whether such
treatment could be effective or even feasible for patients al-
ready presenting with severe malaria.

Cytokines or chemokines present in plasma, or the types
of effector cells responding to Plasmodium antigens, have
long been known to associate significantly with severe symp-
toms of, or protection from, the consequences of blood-stage
malaria (Freitas do Rosario and Langhorne, 2012; Crompton
et al., 2014; Ioannidis et al., 2014). Although potentially valu-
able as prognostic biomarkers of the severity or otherwise of
malaria, association does not necessarily indicate causation.
However, some cytokines such as TNF (Grau et al., 1987),
lymphotoxin (Engwerda et al., 2002), and IFN-y (Grau et al.,
1989) have long been known to contribute to the develop-
ment of severe malaria in experimental models, and blocking
these cytokines and/or the pathways leading to their induc-
tion in human CM have been proposed as possible therapies.
Indeed, if given at the time of infection or before the onset of
symptoms in the mouse P, berghei ANKA model, experimen-
tal CM can be prevented, but not if given once symptoms
have started. For human CM, however, intervention can only
start when the patient presents with symptoms, and if not
already present, CM can develop within a very short time, at
which point cytokine blockade may well be too late.

The problems with manipulating cytokines or chemok-
ines for the treatment of severe disease are their multiple po-
tentiating and suppressive effects on the host response. IL-10 is
a good example. Despite its importance in controlling immune
responses in autoimmune diseases such as rheumatoid arthritis,
multiple sclerosis, Crohns’s disease, and type 1 diabetes, admin-
istration of IL-10 has never been very effective and in some
cases is detrimental, even though animal model studies show
that the removal of IL-10 can exacerbate disease caused by
infectious agents (Kugelberg, 2014; Saxena et al., 2015).IL-10,
particularly from CD4 T cells, is important for down-regu-
lating host responses and pathology in experimental malaria
(Freitas do Rosario et al., 2012;Villegas-Mendez et al., 2013),
and its expression in these cells is increased in humans with,
or after, acute malaria (Jagannathan et al., 2014). However,
IL-10 1s produced by many different cells during rodent ma-
laria infection (Freitas do Rosario et al.,2012; Liu et al., 2013),
is regulated differently in the various cells (GabrySova et al.,
2014), and is involved in multiple pathways to suppress, or
even stimulate, immune responses. It would be necessary to
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understand exactly what is required to promote the right cells
producing IL-10 at the appropriate time and place. With that
knowledge, potentiation of endogenous IL-10 in the right
location and from the appropriate sources could be explored.

Vascular endothelial growth factor (VEGF) has been
proposed as a possible adjunct treatment for some severe ma-
laria syndromes. VEGF is necessary for survival of endothe-
lium and also stimulates the permeability of the blood—brain
barrier to allow angiogenesis and oxygenation of the tissues.
High levels of circulating VEGF are associated with human
and mouse ALI/ARDS and are also elevated in the P, berghei
model of experimental CM (Epiphanio et al., 2010; Hempel
et al., 2014) as well as during chronic inflammatory P, falci-
parum placental malaria (Muehlenbachs et al., 2006). Both
inflammation and hypoxia can drive the induction of VEGE
and in mouse models, reduction of VEGF levels by treatment
with antiinflammatory agents such as carbon monoxide or
erythropoietin reduce ALI/ARDS (Epiphanio et al., 2010).
However, to translate this to treating human severe disease, it
has to be effective when given after the onset of severe disease.
If raised VEGF levels were observed in blood film—positive
children, an adjunct therapy such as erythropoietin could be
considered in combination with antimalarials.

Concluding remarks

New screening platforms, together with many hypothe-
sis-driven studies, are expanding our knowledge of host—
parasite interactions that could be targeted for therapeutic
intervention in malaria. More emphasis should be placed on
agonists, antagonists, or mimics that exploit these interactions
for clinical benefits. Until now, a major limitation in validating
such molecules has been the lack of appropriate animal mod-
els for P falciparum and P, vivax. The recent advances in the
development of humanized mice (Mikolajczak et al., 2015;
Soulard et al., 2015) for malaria research has the potential to
revolutionize the elucidation and efficacy testing of therapeu-
tics against specific molecular pathways in malaria. Together
with traditional approaches of vaccine and drug development,
an additional focus on parasite and host molecules that are key
in the life cycle can replenish our diminishing pharmacopeia.
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