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Type | interferon is a potent substance. As such, the induction, transmission, and resolution of the type | interferon-mediated
immune response are tightly requlated. As defined, the type | interferonopathies represent discrete examples of a disturbance
of the homeostatic control of this system caused by Mendelian mutations. Considering the complexity of the interferon re-
sponse, the identification of further monogenic diseases belonging to this disease grouping seems likely, with the recognition
of type | interferonopathies becoming of increasing clinical importance as treatment options are developed based on an
understanding of disease pathology and innate immune signaling. Definition of the type | interferonopathies indicates that
autoinflammation can be both interferon and noninterferon related, and that a primary disturbance of the innate immune
system can “spill over” into autoimmunity in some cases. Indeed, that several non-Mendelian disorders, most particularly
systemic lupus erythematosus and dermatomyositis, are also characterized by an up-regulation of type I interferon signaling
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suggests the possibility that insights derived from this work will have relevance to a broader field of clinical medicine.

Introduction

In 2003 we highlighted aspects of phenotypic overlap be-
tween the rare Mendelian encephalopathy Aicardi-Goutieres
syndrome (AGS), the complex autoimmune disease systemic
lupus erythematosus (SLE), and certain congenital viral in-
fections, including transplacentally acquired human immu-
nodeficiency virus (HIV-1), and postulated that this overlap
might result from the common pathological feature of an up-
regulation of interferon o activity (Crow et al., 2003). The
subsequent partial dissection of the genetic basis of AGS
(Crow et al., 2006a,b; Rice et al., 2009), the molecular defi-
nition of a monogenic form of SLE associated with up-
regulated type I interferon (Briggs et al., 2011; Lausch et al.,
2011), and the developing understanding of a primary link
between nucleic acid metabolism and interferon induction
led to the proposition, in 2011, of the grouping of Mendelian
disorders associated with an up-regulation of type I interferon
signaling as a novel set of human inborn errors of immunity,
in which such constitutive up-regulation is central to patho-
genesis (Crow, 2011). In 2015, a framework was proposed for
the consideration of the pathogenesis of this group of diseases
(Crow, 2015; Crow and Manel, 2015), which can be viewed
as analogous to previously described single-gene defects in
immune signaling pathways leading to primary immunodefi-
ciency (Casanova et al., 2005) and monogenic autoinflamma-
tion (Kastner et al., 2010).

Correspondence to Yanick J. Crow: yanickcrow@mac.com

Abbreviations used: AGS, Aicardi-Goutieres syndrome; CNS, central nervous sys-
tem; ISG, interferon-stimulated gene; RARP, RNA-dependent RNA polymerase; SLE,
systemic lupus erythematosus; THES, tricho-hepato-enteric syndrome.
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At the outset, it is important to state that, as strictly
defined, the central tenet of the type I interferonopathy con-
cept remains unproven; i.e., definitive evidence that pathology
is determined by an up-regulation of type I interferon signal-
ing is lacking. Indeed, it will not be until we have therapeutic
agents that specifically target type I interferon signaling, and
use them in putative type I interferonopathy patients, that
the contribution of type I interferon to clinical phenotype
will become clear. Simply put, at this time, it is still possible
that the finding of up-regulated type I interferon signaling
in certain phenotypes represents an association rather than a
pathologically causal relationship. That being said, as we argue
below, the observation of phenotypic overlap, the elucidation
of shared pathomechanisms through human genetics, in vitro
and in vivo experimentation, and the first results of early
treatment trials all give support to the scientific validity of the
type I interferonopathy grouping.

Because this is a field in its infancy, it is necessary to
avoid being overly didactic. Thus, except in a few cases, most
notably perhaps disease related to mutations in TREX1 and
RNASEH?2B, it is important to acknowledge that the true
clinical spectrum and frequency of features associated with
particular genotypes is likely not known. This point is well
illustrated by the expansion of the phenotype associated
with mutations in TMEM173 in a period of a little over two
years, now spanning early-onset systemic inflammation with
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mutilating skin lesions and lethal pulmonary inflammation
(Jeremiah et al., 2014; Liu et al., 2014), through to “idio-
pathic” lung fibrosis (Clarke et al., 2016; Picard et al., 2016)
and 1solated chilblain lupus inherited stably across several
generations (Konig et al., 2016). Similar uncertainty exists in
regard to questions central to disease pathogenesis, e.g., the
exact source and nature of the endogenous ligands considered
to induce a type I interferon response in certain of the type
I interferonopathies. As such, the aim here is to draw out
general themes relating to phenotype and pathology, fully
expecting that our understanding of detail will change over
the short to medium term.

Which diseases should be considered

as type | interferonopathies?

Given that the acid test of response to anti-interferon ther-
apy is not yet available, here we base our inclusion of distinct
monogenic disorders as type I interferonopathies on evidence
indicating a persistent up-regulation of type I interferon sig-
naling, assessed by measuring the expression of interferon-
stimulated genes (ISGs) and/or in vivo (animal)/ex vivo/in vitro
experimental evidence This group thus comprises 18 genotypesin
which we consider that the link to enhanced interferon signaling
is established (Table 1 and Fig. 1). The somewhat imprecise nature
of these criteria means that we do not include, for example, gain-
of-function mutations in STAT, although it may be that future
studies will demonstrate a functional relationship of ISG produc-
tion to phenotype. For similar reasons, we exclude discussion of
DNASE1L3, chronic granulomatous disease, prolidase de-
ficiency, and some early components of the complement

cascade, all of which are associated with an increased risk of SLE,
so that one might predict an up-regulation of type I interferon
signaling but where the point rests unproven. Other diseases that
may also come to be considered in this grouping, but where
we feel that the evidence currently remains uncertain, are those
caused by mutations in CECR1 (Belot et al., 2014; Uettwiller
et al., 2016), TRNT1 (Frans et al., 2016), and RNASET2
(Tonduti et al., 2016).

It is of course the case that dysfunction of certain proteins
can have more than one biological consequence. For example,
in the context of the putative type I interferonopathies, ADAR 1
has both an interferon-related and a distinct developmental
(MDA5/MAVS independent) function (Pestal et al., 2015). Of
possible note also, Rnaseh2b knockout confers embryonic
lethality in the mouse (Hiller et al., 2012; Reijns et al., 2012), in
the absence of the induction of an interferon response, which
is seen in the corresponding hypomorphic model (Mackenzie
et al., 2016; Pokatayev et al., 2016). Whether or not this differ-
ence reflects distinct biological roles of the RNase H2 complex
or the timing/degree of a shared disturbance of ribonucleo-
tide excision repair remains unknown. The situation appears
clearer with respect to mutations in SKIV2L causing tricho-
hepato-enteric syndrome (THES). Here, there is a markedly
elevated ISG expression and a proven link to interferon signal-
ing via a disturbance of the unfolded protein response (Eckard
et al.,2014). However, the same disease phenotype can be caused
by mutations in TTC37, where no such interferon signature
is present, and where, in contrast to SKIV2L, in vitro assays do
not suggest a role in interferon signaling. These data lead to the
conclusion that most of the features of THES are the consequence

Table 1.  Genotypes considered as type | interferonopathies in this manuscript, with protein function, link to interferon signaling, proposed
molecular mechanism, and currently recognized associated clinical phenotypes

Gene Protein function Sensing/activation pathway related to Mutation effect Major patient
type | interferon signaling phenotypes
TREX1 Deoxyribonuclease Cytosolic DNA LOF (recessive or dominant-negative) AGS, FCL, SLE
SAMHD1 Control of dNTP pool (+nuclease) Cytosolic DNA (+cytosolic RNA) LOF (recessive) AGS, FCL, CVD
TMEM173 Transduction of cytosolic type | interferon Cytosolic DNA (xcytosolic RNA) GOF (dominant) SAVI, FCL
signal
RNASEH2A Ribonuclease Cytosolic RNA:DNA hybrids LOF (recessive) AGS
RNASEH2B Ribonuclease Cytosolic RNA:DNA hybrids LOF (recessive) AGS, SP
RNASEH2C Ribonuclease Cytosolic RNA:DNA hybrids LOF (recessive) AGS
POLAT Polymerase Cytosolic RNA:DNA hybrids X-linked recessive XLPDR
ADAR1 RNA editing Cytosolic RNA LOF (recessive or dominant-negative) AGS, DSH, BSN, SP
IFIH1 dsRNA sensor Cytosolic RNA GOF (dominant) AGS, SP, SMS
RIG-1 dsRNA sensor Cytosolic RNA GOF (dominant) Atypical SMS
SKIV2L RNA helicase Cytosolic RNA LOF (recessive) THES
UPS18 Inhibition of ISG transcription IFNAR1 signaling LOF (recessive) pseudo-TORCH
ISG15 Inhibition of ISG transcription IFNAR1 signaling LOF (recessive) MSMD, ICC
PSMB8 Proteasome Unknown LOF (recessive) PRAAS
PSMB4 Proteasome Unknown LOF (recessive) PRAAS
PSMA3 Proteasome Unknown LOF (recessive) PRAAS
ACP5 Phosphatase activity related to Unknown LOF (recessive) SPENCD, SLE, cytopenias
osteopontin
Ciq Alternative complement pathway activity Unknown LOF (recessive) SLE

BSN, bilateral striatal necrosis; CVD, cerebrovascular disease; DSH, dyschromatosis symmetrica hereditaria; FCL, familial chilblain lupus; GOF, gain-of-function; ICC, intracranial calcification;
LOF, loss-of-function; MSMD, Mendelian susceptibility to mycobacterial disease; PRAAS, proteasome-associated autoinflammatory syndrome; SAVI, STING-associated vasculopathy with
onset in infancy; SMS, Singleton-Merten syndrome; SP, spastic paraparesis; SPENCD, spondyloenchondrodysplasia; XLPDR, X-linked reticulate pigmentary disorder.
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Figure 1. Type | interferon signaling and type | interferonopathies as currently assigned. Diseases considered as monogenic interferonopathies

are represented by blue boxes. This schema alludes to at least seven possible cellular mechanisms resulting in sustained activation of interferon signaling
caused by the following: (1) loss-of-function mutations leading to increased cytosolic DNA (TREX1 [Stetson et al., 2008] and SAMHD1 [Behrendt et al.,
2013; Rehwinkel et al., 2013]) or RNA/DNA hybrid (RNASEH2A, RNASEH2B and RNASEH2C, POLA1) sensing (Hiller et al., 2012; Mackenzie et al., 2016;
Starokadomskyy et al., 2016); (2) loss-of-function mutations leading to a defect in RNA editing and abnormal sensing of self-nucleic acid RNA species
in the cytosol (ADAR1 [Liddicoat et al., 2015; Pestal et al., 2015]); (3) gain-of-function mutations leading to constitutive activation of cytosolic interferon
signaling pathways/increased sensitivity to cytosolic nucleic acid ligands (MDAS [Rice et al., 2014], RIG-I [Jang et al., 2015], and STING [Liu et al., 2014]);
(4) loss-of-function mutations leading to aberrant RNA signaling via MAVS caused by a disturbance of the unfolded protein response (SKIV2L [Eckard et
al., 2014]); (5) loss-of-function mutations in molecules responsible for limiting interferon receptor (IFNAR1/2) signaling leading to uncontrolled ISG pro-
duction (USP18 [Meuwissen et al., 2016] and ISG15 [Zhang et al., 2015]); (6) proteasomal dysfunction leading to increased interferon signaling through an
unknown mechanism (PSMA3, PSMB4, and PSMB8 [Brehm et al., 2015]; we do not include the so-far single-published mutations in PSMB9 and POMP); and
(7) loss-of-function mutations in TRAPJACP5 (Briggs et al., 2011; Lausch et al., 2011) and C1q (Lood et al., 2009; Santer et al., 2010) where we consider the
mechanisms leading to type | interferon signaling are yet to be fully clarified (we do not include mutations in other molecules of the complement pathway

as a clear demonstration of enhanced interferon signaling has not been established).

of a loss of cytosolic RINA exosome function in RINA turnover,
rather than an aberrant interferon response that is apparently
specific to SKIV2L deficiency.

It is interesting to view the aforementioned observations
in regards to the potential efficacy of future anti-interferon
therapy. Thus, the involvement/dysfunction of noninterfer-
on-related disease pathways in a phenotype would variably
limit the efficacy of such treatment. On this basis then, one
can conceptualize the existence of more “pure” interferono-
pathies, where anti-interferon therapy would be expected
to have the greatest benefit, and “mixed” phenotypes, where
such therapies would be of more limited or, indeed, no utility.

JEM Vol. 213, No. 12

Is it appropriate to use the term type |

interferonopathies (1)?

In 1957 Isaacs and Lindenmann described a soluble factor
that protects cells from viral infection, which agent, in con-
sideration of its antiviral interfering properties, they termed
interferon (Isaacs and Lindenmann, 1957; Isaacs et al., 1957).
We now know that multiple species of type I interferon exist,
with this heterogeneity arising from the presence of 13 func-
tional « genes and single genes for interferon f, €, k, and ®.
Despite almost 60 years of active research, an understanding
of the role of these different interferon species has been ham-
pered by the inability to directly measure type I interferon
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protein in biological samples using available ELISAs. Corre-
spondingly, type I interferon mRNA is usually unrecordable
in peripheral blood from healthy individuals, even after vacci-
nation (Sobolev et al., 2016), or in patients with putative type
I interferonopathies. Such low levels of circulating interferons
likely reflect the very high biological potency of these cyto-
kines, with most cell types expressing a type I interferon re-
ceptor.As a practical work-around of this problem, researchers
have made extensive use of the measurement of the mRINA
of genes that are induced by interferon (ISGs), thus effectively
capturing an amplified signal consequent upon the interferon
stimulus (Baechler et al., 2003; Bennett et al., 2003). Indeed,
we have shown that the measurement of six ISGs represents a
powerful screening tool for the identification of several of the
putative type I interferonopathies (Rice et al., 2013).

The repertoire of ISGs produced in response to type
I, II, or III interferons show considerable overlap, begging
the legitimate question as to whether or not it is type I
interferons that are relevant—solely, partially, or not at all—
to the up-regulation of ISGs seen in the diseases discussed
here. At least in the context of AGS, data have been pub-
lished to indicate that interferon activity in patient material,
as measured using an antiviral cytopathic protection assay, can
be neutralized by antiserum against interferon o but not
(Lebon et al., 2002; Rice et al., 2013). Furthermore, levels of
interferon ¥ were below the detectable range of a sensitive
ELISA, and thus possibly inconsistent with the degree of inter-
feron activity recorded in certain of these samples. Although
these data are important, the field awaits the availability of
high-sensitivity protein assays allowing the quantification of
discrete interferons, at least in circulation. Such a tool could
be usefully combined with measures of ISG production and/
or interferon activity, thus capturing the relationship between
the inducing (protein) signal and the response (ISGs/antiviral
activity) to that signal and thereby enabling an exploration of
interferon signaling dynamics. As we have previously noted,
the absence of a reliable, high-throughput measure of type I
interferon in routine medical practice goes some way to ex-
plaining why the concept of the type I interferonopathies as a
discrete pathological grouping has only recently been mooted.

Is it appropriate to use the term type |

interferonopathies (I1)?

Returning to an earlier point, the question arises as to whether
the enhanced interferon signaling identified in the proposed
type I interferonopathies represents a true pathological factor
or simply a disease biomarker. The answer to this question
is of fundamental importance because the former possibility
implies the potential utility of therapeutic approaches target-
ing interferon up- and downstream signaling.

Considering clinically derived observations, the fact
that, in its classical form (Aicardi and Goutieres, 1984), AGS
is such a remarkable Mendelian mimic of certain congen-
ital infections provides circumstantial support to the up-
regulation of interferon signaling, recorded in both situa-
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tions, representing a common pathogenic link. Second, nu-
merous reports describe the occurrence, after treatment with
interferon, of features such as digital vasculitis (Al-Zahrani
et al., 2003), SLE (Ronnblom et al., 1990), and glaucoma
(Kwon et al.,2001), which are also seen in the putative type I
interferonopathies. As a final point, and as discussed in more
detail below, the recognition of a shared set of clinical signs,
most particularly intracranial calcification and skin inflamma-
tion, across several of these genotypes is further evidence in
favor of pathogenic overlap.

Experimental evidence also supports a primary role for
interferon in the diseases discussed here. Likely indicative of
intrathecal synthesis, levels of interferon activity in the cere-
brospinal fluid of AGS patients are consistently higher than
in matched serum samples (Crow et al., 2015). Undoubtedly,
interferon is a neurotoxin, and experiments undertaken in
mice demonstrate that overexpression of interferon in the
central nervous system (CNS) results in neuropathology
reminiscent of that seen in certain type I interferonopathies
(Akwa et al., 1998; Campbell et al., 1999; Kavanagh et al.,
2016). Relevant crosses in other mouse models, in particu-
lar double knockouts involving the type I interferon recep-
tor, provide unequivocal evidence of the importance of type
I interferon signaling in these settings (Stetson et al., 2008;
Goldmann et al., 2015). Furthermore, given that cytosolic
nucleic acid recognition represents a principal trigger for the
induction of type I interferon, it is of note that 11 of the 18
diseases discussed here involve mutations in genes known to
play a role in nucleic acid metabolism/signaling. We high-
light particularly that gain-of-function mutations in MDAS5
(IFIH1), RIG-1 (DDX58), and STING (TMEM173), essen-
tial components of cytosolic nucleic acid signaling to a type
I interferon response, and biallelic loss-of-function mutations
in USP18 or ISG15, both involved in the negative regulation
of ISG expression, are all associated with currently recognized
type I interferonopathy phenotypes.

Phenotypic overlap and differences, variable

expression, and nonpenetrance

As touched on above, there is a striking overlap of clinical
features, particularly the involvement of the CNS and the
skin, across several of the disorders classified here as type
interferonopathies (Fig. 2). Indeed, we would highlight the
value of searching for the presence of intracranial calcifica-
tion, most easily appreciated on computed tomography, even
in the absence of overt neurological signs, and the presence
of vasculitic/chilblain-like skin lesions as highly useful clini-
cal markers of this disease grouping. At the same time, major
phenotypic differences exist between certain of these geno-
types. Thus, the severe lung disease that frequently accompa-
nies mutations in TMEM173 has not been reported in the
context of other putative type I interferonopathies, whereas
the essentially distinct complex diseases SLE, systemic scle-
rosis, and dermatomyositis all correlate with the presence of
a type I interferon signature. Such observations apparently

Type | interferonopathies | Rodero and Crow
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Figure 2. Specific and overlapping features of monogenic type | interferonopathies. In the broadest sense, CNS and skin disease are the most
common features of the type | interferonopathies. Discrete neurological phenotypes associated with mutations in AGS-associated genes include "nonsyn-
dromic” spastic paraparesis (RNASEH2B, ADAR1, and IFIHT [Crow et al., 2014]) and bilateral striatal necrosis (ADART [Livingston et al., 2014]). Glaucoma is
a common feature of AGS (Crow et al,, 2015) and is also seen in the Singleton-Merton syndrome phenotype associated with gain-of-function mutations
in IFIH1 (Bursztejn et al., 2015; Rutsch et al., 2015) and DDX58 (RIG-I [Jang et al., 2015]). SLE (lupus) is most frequently associated with mutations in ACP5
(An et al,, 2016; Briggs et al,, 2016) and C7q (Lood et al., 2009; Santer et al., 2010). Malignancy has only been reported in the context of SAMHD1 (Clifford
et al,, 2014; Merati et al., 2015). Lung inflammation is so far restricted to patients with mutations in TMEM173 (STING; Liu et al., 2014; Clarke et al., 2016;
Picard et al,, 2016). The phenotypes associated with mutations in POLAT and SKIV2L appear distinct.

challenge the suggestion of the primacy of interferon as a
shared pathogenic molecule. While acknowledging this point,
we have already highlighted that dysfunction of certain pro-
teins can have more than one biological consequence, which
might explain different phenotypic characteristics across gen-
otypes. Furthermore, distinct expression patterns of relevant
disease-associated proteins, their protein partners, interfer-
on-inducing signaling components, and proteins involved in
alternative (“redundant”) signaling pathways according to the
gene/protein mutated might also be relevant. Finally, we draw
attention to the possible importance of the timing of a puta-
tive interferon-related insult. Perhaps instructive here, similar
to AGS, congenital HIV-1 infection is characterized by in-
tracranial calcification, white matter abnormalities, cerebral
atrophy, and high levels of interferon o (Kauffman et al., 1992;
Krivine et al., 1992; DeCarli et al., 1993), whereas these ra-
diological signs are not seen with postnatally acquired HIV-1

JEM Vol. 213, No. 12

infections, suggesting that the developing brain is specifically
susceptible to intrauterine viral exposure/the host interferon
response (Tardieu et al., 2000).

It is also pertinent to acknowledge the variable
expression, and even nonpenetrance, seen in certain type I
interferonopathies, particularly relating to the recurrent dom-
inant-negative mutations in ADAR1 (Gly1007Arg; Rice et
al., 2012; Livingston et al., 2014) and TREX1 (p.Asp18Asn;
Abe et al., 2013) and dominant gain-of-function mutations
in IFIH1 (Rice et al., 2014) and TMEM173 (Jeremiah et al.,
2014). To explain these observations, we need to invoke dif-
ferential exposure to environmental triggers such as infec-
tion or the effect of genetic modifiers. Indeed, considering
a putative role of physical stressors, note should be made of
the cold dependency of the skin lesions seen in the type I
interferonopathies and of a striking temporal relationship be-
tween the onset of ADAR 1-related bilateral striatal necrosis
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and preceding infection (Livingston et al., 2014). Whether
vaccination represents a disease trigger is an important, and
currently unanswered, question. Meanwhile, the possibility of
a “cumulative” genetic burden contributing to cellular pa-
thology is notable in light of recently published data on the
group of type I interferonopathies caused by loss-of-function
mutations in proteasome subunits (Brehm et al., 2015).

As an allied but distinct point, the identification of
dominant gain-of-function mutations in IFIH1 has high-
lighted the possibility of clinical nonpenetrance into old age
in the presence of life-long, marked overexpression of ISGs
(Rice et al., 2014). This situation is reminiscent of a mouse
model where transgenic expression of a picornavirus RINA-
dependent RNA polymerase (RARP) leads to a dramatic up-
regulation of ISG stimulation and profound viral resistance
via an MDA5/MAVS-dependent pathway, but where the
mice are entirely healthy (Painter et al., 2015). The con-
trast with mouse models also showing type I interferon up-
regulation, but demonstrating a clear link between interferon
expression and phenotype, might relate to the involvement
of other inflammatory cytokines in the latter cases. A fur-
ther possibility is that the constitutively augmented RARP-
induced antiviral network is balanced by up-regulation of
type I interferon negative regulators such as Usp18, and which
effect might be tissue specific. Interestingly, polymorphisms
across TMEM173 (Yi et al., 2013) and IFIH1 (Shigemoto et
al., 2009), some of which occur at relatively high population
frequencies, can be associated with marked differential inter-
feron induction in vitro. It may be that such genetic varia-
tion reflects an evolutionary balance between the response
to infection and the risk of inflammatory disease (Sharma et
al., 2015). The observation of heritable high interferon pro-
duction in certain families demonstrating an increased risk of’
SLE possibly represents a further piece of evidence in favor of
this hypothesis (Niewold et al., 2007).

Autoinflammation or autoimmunity?

At least in regard to AGS, different authors variably refer to
the associated pathology as either autoimmune or autoin-
flammatory in basis, with the use of the latter term being
particularly favored where the emphasis is being placed on
the link to SLE. A suggested definition of autoinflammation
relates to disorders characterized by abnormally increased
inflammation, mediated predominantly by cells and mole-
cules of the innate immune system, with a significant host
predisposition (Kastner et al., 2010). Thus, according to the
schema outlined above, we propose that, as a group, the type
I interferonopathies can reasonably be considered as autoin-
flammatory in origin, with “spill-over” into autoimmunity in
some cases. Having made this point, we would add that rather
than being overly concerned by questions of classification,
the cornerstone of the type I interferonopathy concept, as
envisaged here, relates to a primary role of type I interferon in
disease pathogenesis, irrespective of the relative involvement
of innate/adaptive immune components.
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There is a clear association of certain type I interfer-
onopathies with autoimmunity, and SLE in particular, as
indicated by the co-occurrence of such rare phenotypes
(e.g., Dale et al., 2000; De Laet et al., 2005; Hacohen et al.,
2015;Van Eyck et al., 2015). Furthermore, a broad spectrum
of autoantibodies has been observed in patients with AGS
(Cuadrado et al., 2015a; Zhang et al., 2015; Cattalini et al.,
2016), albeit distinct from other autoimmune diseases. At the
same time, it is striking that monogenic interferon-related
inflammation, as so-far defined, is most frequently unaccom-
panied by frank autoimmunity (Crow et al., 2015), so that it
is difficult to know if these autoantibodies are pathologically
relevant or represent an epiphenomenon consequent upon a
more general immune dysregulation. The (inconsistent) link
to overt autoimmunity in certain type I interferonopathies
might reflect variable engagement of the adaptive immune
system secondary to an initial, interferon-associated, innate
immune disturbance. Having said this, in contrast to AGS
and STING-related disease for example, there is a remark-
ably high risk of autoimmune cytopenias and early-onset
SLE in the context of mutations in ACP5 (Briggs et al., 2011,
2016;Lausch et al.,2011) and complement components (Tro-
edson et al., 2013), suggesting that these encoded proteins
have particular roles more closely aligned to the maintenance
of self-tolerance.

The acceptance of the type I interferonopathies as au-
toinflammatory disorders implies that autoinflammation
can be considered as both interferon and noninterferon re-
lated. From a clinical perspective, it is clear that certain type
I interferonopathies can present as “classical” autoinflam-
matory phenotypes, demonstrating recurrent fevers and/or
organ-specific involvement with elevated markers of systemic
inflammation in the absence of autoimmunity and under-
lying infection. At the same time, most patients conforming
to this clinical description that we have tested show no ev-
idence of enhanced type I interferon signaling (unpublished
data), lending support to the specificity of type I interferon—
induced gene transcript measurement as a screening tool. This
distinction is likely also reflected in the observation that non-
interferon-related autoinflammation is not normally associ-
ated with a risk of lupus.

Cellular pathology and therapeutic approaches

The cellular pathology of the type I interferonopathies
is associated with a diversity of mechanisms currently
encompassing nucleic acid signaling in the broadest sense,
proteasomal dysfunction and the unfolded protein response.
Mouse work has been particularly instructive in defining
the signaling pathways involved in several putative type
I interferonopathies, so that we can now think of 11 of
these genotypes as being transduced via cytosolic DNA
(3), RNA (4) or RNA:DNA (4) hybrid sensing. Most
type I interferonopathy genotypes relate to loss of protein
function, whereas mutations in MDA5, RIG-I, and STING
are associated with a gain-of-function resulting in either
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transcription inhibitors: https://clinicaltrials.gov/ct2
/show/NCT02363452), sensing (e.g., cGAS inhibition
by hydroxychloroquine [An et al., 2015]), or signaling
(e.g., TBK1 inhibition [Hasan et al., 2015]) of putative
self-nucleic acids engaging the type | interferon
innate immune machinery and blocking of interferon
itself (e.g., with anti-type | interferon antibodies),
the IFNAR receptor, or the signaling cascades distal
to interferon ligand binding (e.g., by JAK1 inhibition
[Frémond et al., 2016]).
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constitutive activation of the relevant molecule and/or
enhanced sensitivity for endogenous ligands.

‘We make the point here that different treatment strategies
are implied according to pathological mechanism relevant
to the type I interferonopathy being considered (Fig. 3).
Thus, based on the hypothesis that type I interferon might,
in certain AGS-related genotypes, be induced by cytosolic
recognition of DNA derived from endogenous retroelements
(Stetson et al., 2008; Beck-Engeser et al., 2011), we are
currently running the first ever clinical trial in AGS, using
reverse transcription inhibitors (https://clinicaltrials.gov/ct2
/show/NCT02363452). From a practical perspective, even if’
the precise nature of the interferon-inducing signal remains
unclear in all cases, success in defining the signaling pathways
involved in certain genotypes is already informing potential
therapeutic strategies. Thus, as indicated in mice, inhibition
of ¢cGAS or STING would be predicted as relevant for
TREX1- and RNASEH2-related disease (Gall et al., 2012;
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Gao et al., 2015; Gray et al., 2015; Mackenzie et al., 2016;
Pokatayev et al., 2016), but not for disease consequent upon
mutations in ADAR1 (Liddicoat et al., 2015; Pestal et al.,
2015) or IFIH1 (Funabiki et al., 2014). We note recent work
suggesting that antimalarial drugs such as hydroxychloroquine
could be beneficial in this context, by antagonizing dsDNA
stimulation of cGAS (An et al., 2015). In contrast, TBK1
inhibition might be relevant to mutant genotypes induced
by either DNA or RNA (Hasan et al., 2015). Notably,
crossing of the Trex1-null mouse with mice heterozygous
for any of cGAS, Tmem173, or Irf3 significantly ameliorates
the otherwise lethal phenotype. Similarly, crossing the ENU
gain-of-function Mda5 mutant with a Mavs heterozygote
was associated with a marked reduction in the severity of the
associated nephritis. These data are important in suggesting
a degree of “suppleness” in the response to pathological
signaling. That is, they indicate that future therapies blocking
these molecules might demonstrate clinical efficacy at doses
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that may not entail iatrogenic immunodeficiency consequent
upon loss of signaling to viral nucleic acids. Perhaps relevant
to this point also, our experience with JAK1/2 inhibition,
see below, has so far been notable by the absence of an
increased risk of infection.

As postulated here, all type I interferonopathy pathol-
ogy converges on up-regulated type I interferon signaling.
Thus, any compounds that neutralize type I interferons,
block the type I interferon receptor, or inhibit signaling
downstream of the receptor might be of utility. Currently,
no drugs are specifically licensed for any member of the
type I interferonopathy grouping. We have recently de-
scribed the effect of JAK1/2 inhibition using ruxolitinib
in the context of mutations in TMEM173, where we
observed highly promising efficacy in all aspects of the
clinical phenotype (systemic inflammation, destructive
skin lesions, and pulmonary disease; Frémond et al., 2016).
The same may also be true of proteasome-associated
autoinflammatory syndromes (Jabbari et al., 2015). Anti-
interferon therapy is being actively pursued in the treatment
of SLE (Wang et al.,2013; Oon et al.,2016), with antibodies
against the type I interferon receptor showing particular
promise. We have not been able to test these molecules in
any monogenic interferonopathy. Interestingly, inactivated
interferon o 2b coupled to a carrier protein can induce the
production of a polyclonal antibody response against all
13 subtypes of interferon «, and a reduction of the associ-
ated interferon signature in high responders to vaccination
(Ducreux et al., 2016). These data link nicely with those
showing that patients with mutations in AIRE produce
endogenous antibodies against all interferon a subtypes,
but not interferon B, y, or A (Meyer et al., 2016). Despite
the remarkably high affinity of these antibodies, consid-
erably greater than those used in commercial trials, these
patients do not suffer an increased burden of viral infec-
tion, perhaps because they maintain antiviral protection
through interferon P. If it can be shown that any type I
interferonopathy relates predominately/exclusively to in-
terferon «, the therapeutic use of such antibodies might
prove highly effective.

Finally, we highlight uncertainty regarding the cellu-
lar source of type I interferon production in distinct type
I interferonopathies. Early data from the Trex1-null mouse
indicated the importance of tissue-resident cells in disease
pathology (Stetson et al., 2008), whereas more recent papers
have emphasized a role for hematopoietic cells in driving
disease (Ahn et al., 2014; Peschke et al., 2016). The latter
results are important in pointing to a lack of current knowl-
edge relating to the efficacy of bone marrow transplant in
any of the type I interferonopathies. Allied to this issue is
the question of which cell types drive the brain involve-
ment characteristic of the majority of type I interferono-
pathies so far identified (Cuadrado et al., 2015b; Goldmann
et al., 2015) and of blood-brain barrier penetration in
regards to drug therapy.
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Conclusion

There has been a rapid adoption of the type I interferonopa-
thy paradigm, with the definition of 10 associated genotypes
since the introduction of the term into the medical lexicon in
2011. The study of the monogenic type I interferonopathies
provides an unprecedented opportunity to define the role
of type I interferons in human health and disease—through
the identification of patients showing discrete molecular per-
turbation of proteins essential to interferon homeostasis. The
model outlined here predicts that such studies will be of real
clinical value as therapies to reduce type I interferon levels
and/or block interferon signaling become available.
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