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Integrative genetic analysis of mouse and human AML
identifies cooperating disease alleles
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t(8;21) is one of the most frequent chromosomal abnormalities observed in acute myeloid leukemia (AML). However, expres-
sion of AML1-ETO is not sufficient to induce transformation in vivo. Consistent with this observation, patients with this
translocation harbor additional genetic abnormalities, suggesting a requirement for cooperating mutations. To better define
the genetic landscape in AML and distinguish driver from passenger mutations, we compared the mutational profiles of AML1-
ETO-driven mouse models of leukemia with the mutational profiles of human AML patients. We identified TET2 and PTPN11
mutations in both mouse and human AML and then demonstrated the ability of Tet2 loss and PTPN11 D61Y to initiate leuke-
mogenesis in concert with expression of AML1-ETO in vivo. This integrative genetic profiling approach allowed us to accurately
predict cooperating events in t(8;21)* AML in a robust and unbiased manner, while also revealing functional convergence in
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mouse and human AML.

4-12% of acute myeloid leukemia (AML) patients pres-
ent with a translocation between chromosomes 8 and 21
(Miiller et al., 2008). However, transgenic mice expressing
AMLI1-ETO only develop AML after treatment with muta-
genic agents, suggesting a requirement for cooperating events
(Higuchi et al., 2002). Twwo mouse models of AML1-ETO-
driven AML have been generated that may depend on the
acquisition of such events for leukemogenesis. Expression of
AMLI-ETO in Cdknla-null cells or expression of AML1-
ETO9a, a splice variant of AML1-ETO, in WT cells can in-
duce fully penetrant AML after a prolonged latency (Yan et
al., 2006; Peterson et al., 2007b). CDKNT1A has never been
found to be disrupted in t(8;21)" AML (Shiohara et al., 1997),
suggesting that its loss does not functionally cooperate with
AMLI1-ETO. Instead, it is thought that loss of CDKN1A in
vivo prevents the repair of damaged DNA and allows for the
accumulation of mutations and cooperating alleles in AML1-
ETO" hematopoietic progenitors (McDonald et al., 1996).
Studies of AML1-ETOY9a—driven leukemia have found
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dysregulated expression of DNA repair genes (Alcalay et al.,
2003), which might facilitate a similar acquisition of cooper-
ating secondary events. We hypothesized that we could iden-
tify and credential disease alleles in t(8;21)" AML through
integrative genomic studies of human AML and the mouse
AMLs that arise from these models.

RESULTS AND DISCUSSION

Identification of phenotypically similar

mouse models of t(8;21)* AML

We first expressed AMLI-ETO or AMLI-ETO9a in fetal
liver cells isolated from WT or Cdknla™"" mice. All transplant
recipients of AML1-ETO—expressing Cdknla™"" cells devel-
oped lethal AML with a median latency of 201 d. Expression
of AML1-ETO9a inWT or Cdknla™" cells resulted in a fully
penetrant, lethal leukemia after a median latency of 175 and
196 d, respectively (Fig. 1 A). At euthanasia, leukemic mice
had anemia, thrombocytopenia, and elevated white blood
cell counts (Fig. 1 B). We observed blast cell accumulation in
the bone marrow, liver, and spleen, resulting in splenomegaly
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(Fig. 1, C and D). The GFP" blast cells display an immature
immunophenotype; they are negative for lineage markers and
SCA-1 but are ¢-KIT and MPO positive (Fig. 1 E and not
depicted). Leukemia with an identical immunophenotype de-
velops within secondary recipients (Fig. 1 F and not depicted).
The observations that these mouse models are phenotypically
similar and develop AML with similar penetrance and latency
suggest that they have acquired similar secondary events.

Mouse models of AML reproduce the

genomic landscape of human AML

We next investigated the mutational landscape of the mouse
AMLs and compared it with somatic mutational analyses
of other mouse AML models and AML patients (Stubbs et
al., 2008; Cancer Genome Atlas Research Network, 2013).
We did not observe a significant difference in the number
of variants detected or genes targeted in the mouse models
compared with AML patient samples (Fig. 2, A—C).When we
restricted our analysis to genes for which human—-mouse or-
thology 1s known, we observed a significant enrichment in
mouse AML for specific genes (hypergeometric P < 4.26 X
107; Fig. 2 D) and protein domains (hypergeometric P <
4.23 x 107%) mutated in human AML. The domains mutated
in both human and mouse AML were similarly affected by re-
current mutations (Spearman correlation of domain p-values
r=0.53,P <2.73 x 107% Fig. 2 E). We next investigated the
frequency of mutations in different protein classes and found
no differences in the protein classes targeted in AML1-ETO/
AML1-ETO% mouse AML versus human t(8;21)" AML
(P = 0.327; Fig. 2 F).

Integrated genomic approach identifies potential
cooperating events in t(8;21)* AML

We next sought to mine the mutational data to identify muta-
tions capable of cooperating with AML1-ETO, focusing our
efforts on the 424 genes mutated in both human and mouse
AML and then further narrowing our focus to those genes that
were also significantly mutated (defined as Genome MuSiC
significantly mutated gene [SMG] false discovery rate [FDR]
< 30%). This reduced the number of potential candidates
from 424 to 38 human genes, representing 45 mouse ortho-
logues (Fig. 3 A). We focused on the mouse orthologues that
were significantly mutated (FDR < 10%) in AML1-ETO-
driven leukemias, and not in MLL-AF9—driven leukemia, and
identified 38 mouse genes that met these criteria (Fig. 3 B).
These 38 genes correspond to 32 human orthologues, which
include three alleles annotated in COSMIC as cancer genes
(Futreal et al.,2004): TET2, PTPN11,and THRAP3.

Expression of AML1-ETO in Tet2-null cells generates

a novel model of t(8;21)* AML

The variants detected in TET2 in AML patients include non-
sense, frameshift, and missense mutations within conserved
domains, consistent with loss of TET2 enzymatic function
(Table S1). Notably, 3 of the 29 £(8;21)" AML patients enrolled
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in the ECOG E1900 trial (Patel et al., 2012) harbored TET2
mutations (Fig. 3 C and Table S2). In vivo, monoallelic or bi-
allelic loss of Tet2 in the hematopoietic compartment of mice
results in myeloproliferation and extramedullary hematopoi-
esis but not AML (Li et al., 2011; Moran-Crusio et al., 2011).

To determine whether loss of Tet2 can cooperate with
AML1-ETO in vivo, we transduced bone marrow cells from
Vav-Cre” Tet2”" (Tet2 KO) mice with AML1-ETO or AML1-
ETO9 and transplanted the cells into lethally irradiated recip-
ients. Mice transplanted with AML1-ETO—expressing Tet2
KO cells developed fully penetrant leukemia, whereas mice
transplanted with AML1-ETO%a—expressing Tet2 KO cells
developed a significantly accelerated leukemia with a median
latency of 118 d (P < 0.0001; Fig. 4 A). At euthanasia, leuke-
mic recipients had anemia, thrombocytopenia, elevated white
blood cell counts (Fig. 4 B), and blast cell infiltration into the
liver and spleen, with consequent splenomegaly (Fig. 4, C and
D). The GFP™ blast cells are lineage negative, SCA-1 positive
or negative, and c-Kit positive (Fig. 4 E).

The observed cooperativity between Tet2 loss and
AMLI1-ETO in vivo implicates TET?2 loss-of-function mu-
tations in t(8;21)" AML patients as functional cooperating
events and challenges the traditional “two-hit hypothesis” of
AML, which posits that AML1-ETO commonly cooperates
with events that activate oncogenic signaling (Kelly and Gil-
liland, 2002). Our data support an expanded version of this
hypothesis, in which a third class of events capable of enhanc-
ing self-renewal are capable of cooperating with AML1-ETO.
Given that neomorphic mutations in IDH1/2 and loss-of-
function mutations in WT1 also attenuate TET2 function
and reduce DNA hydroxymethylation in vivo (Figueroa et
al., 2010; Rampal et al., 2014), it will be important to deter-
mine whether altered DNA hydroxymethylation is a com-
mon pathogenetic event in AML1-ETO* AML and whether
AMLI1-ETO" leukemias with concurrent mutations in epi-
genetic regulators have a distinct epigenetic profile and/or a
distinct response to epigenetic therapies.

Expression of AML1-ETO with PTPN11 D61Y generates

a novel model of t(8;21)* AML

The PTPN11 mutations that we observe in human and mouse
AML occur within highly conserved regions of PTPN11 crit-
ical to phosphatase activity and the stimulation of RAS signal-
ing (Fig. 3 D and Table S3;Yu et al., 2014). Previous studies
have shown that mice expressing the constitutively active
D61Y mutation (Ptpni17°"Y) develop a fatal myeloprolifera-
tive neoplasm. However, bone marrow cells from these mice
fail to engraft beyond 20 wk in transplant recipients and do
not induce AML (Chan et al., 2009). We therefore transduced
bone marrow cells from Ptpn11”°"" mice with AML1-ETO
and transplanted the cells into lethally irradiated recipients.
Mice expressing both alleles developed fatal AML (Fig. 5 A).
At euthanasia, leukemic mice had elevated white blood cell
counts, anemia, thrombocytopenia (Fig. 5 B), and blast cell
accumulation in the bone marrow, liver, and spleen (Fig. 5,
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Figure 1. Mouse models of AML1-ETO-driven leukemogenesis are phenotypically similar. (A) Kaplan-Meier plot of mouse survival after transplan-
tation with cells transduced with the given vector. WT pBEX (n = 12); WT AE9a (AML1-ETO9a; n = 17); WT AE (AML1-ETO; n = 17); Cdkn1a™" pBEX (n =
11); Cdkn1a™" AE9a (n = 10); Cdkn1a™~ AE (n = 12). (B) Peripheral blood counts of leukemic mice (from left to right, n=8, n=9, and n = 10) and controls
(n = 5). Horizontal bars represent mean. (C) Representative hematoxylin and eosin staining (n = 3). Bars, 50 um. (D) At euthanasia, leukemic mice exhibit
significant splenomegaly compared with controls. WT pBEX (n = 2); WT AE9a (n = 8); Cdkn1a™~ AE9a (n = 5); Cdkn1a™~ AE (n = 7). Error bars represent
the standard deviation from the mean. (B and D) P-values were generated using the Student's t test: *, P < 0.05; **, P < 0.01; ***, P < 0.0001; n.s., not
significant. (E) Representative flow cytometry analysis of the bone marrow of transplant recipients (n = 10). (F) Kaplan-Meier plot of mouse survival after
transplantation with 2 x 10° leukemic spleen cells. WT AE9a (n = 15); Cdkn1a™~ AE9a (n = 13); Cdkn1a™~ AE (n = 15).

C and D). These GFP" blasts were Sca-1 negative and c-Kit The observation that AML1-ETO can cooperate with
positive (Fig. 5 E) and capable of transmitting the disease into PTPN11 D61Y is more consistent with the two-hit hypoth-
secondary recipients (not depicted). esis and implicates a novel member of the RAS signaling
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Figure 2. Mouse AML reflects the mutational landscape of human AML. (A-C) The number of nonsynonymous mutations (A), insertion and deletion
events (B), and the number of genes harboring nonsynonymous, insertion, or deletion events in leukemic mice and human AML patients (C). Horizontal
bars represent mean. (D) A stacked plot of the genes that are mutated in >2% of human AML samples and >8% of mouse AML samples. 67.90% of genes
mutated in leukemic mice are also mutated in human AML patients, whereas only 5.07% of genes with a protein-coding mutation in AML patients are also
mutated in leukemic mice. This enrichment is significant (hypergeometric P < 4.26 x 107%). (E) Of the genes that harbor protein-coding mutations in both
leukemic mice and human AML patients, the fraction of protein domains that are mutated in both species (red) or in only one species (blue) is depicted. The
color intensity increases with the number of mutations in a given protein domain. 65.07% of these protein domains are mutated in both species, demon-
strating enrichment (hypergeometric P < 4.23 x 107°). Domains similarly affected are recurrently mutated (Spearman correlation of domain p-values r =
0.53, binomial P < 2.73 x 107%). (F) The frequencies with which various protein classes are mutated in t(8;21)* mouse and human AML are not significantly
different (P = 0.327, a transformed value of the Pillai-Bartlett statistic from a MANOVA model).

cascade in leukemogenesis. Although RAS mutations occur
in 8-10% of AML1-ETO" AML patients (Peterson et al.,
2007a), PTPN11 mutations may be a rare event (Loh et al.,
2004). Previous studies pairing AML1-ETO with activating
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RAS mutations in vivo have had mixed results (Flotho, C.
et al. 2004. 46th Annual Meeting of the American Society
of Hematology. Poster #770-1I; Chou et al., 2011; Zhao et
al., 2014). Our data showing that PTPN11 D61Y is capable
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of cooperating with AML1-ETO suggests that MAPK-di-
rected therapies should be investigated in these genetically
defined t(8;21)" AML subsets.

In each of these newly developed mouse models of
AML1-ETO—driven AML, the possibility remains that a
third hit has been acquired that is necessary for disease ini-
tiation. Fortunately, our integrated approach can be applied
to these leukemias such that those events are identified and
credentialed in an iterative manner. Like previous studies
in mouse solid tumors (Maser et al., 2007) and acute pro-
myelocytic leukemia (Wartman et al., 2011), our data sug-
gest that systematic comparisons of mutational patterns in
mouse and human malignancies represent a powerful means
of identifying cooperating disease alleles with mechanistic
and therapeutic relevance.

MATERIALS AND METHODS

Construction of expression vectors and virus production.
The cDNAs encoding AMLI-ETO or AMLI1-ETOY9a
were digested with Notl and cloned into the Notl multi-
ple cloning site of the MSCV-IRES-BEX plasmid (pBEX),
upstream of the IRES and blue-excited GFP motifs. pPBEX
differs from the previously described MigR1 plasmid by
featuring cDNA for enhanced GFP that has been altered
such that it can be distinguished from violet-excited GFP
(Anderson et al., 1996). To produce retrovirus capable of
expressing AML1-ETO or AML1-ETO9a, 293T cells were
cotransfected with a pBEX plasmid and MCV-Ecopac via
calcium phosphate precipitation.

Fetal liver and bone marrow transduction and transplanta-
tion. Fetal liver cells were harvested from embryonic day (E)
14.5 WT (The Jackson Laboratory) or Cdknla™" (provided
by T. Jacks, The David H. Koch Institute for Integrative Can-
cer Research at MIT, Cambridge, MA) C57BL/6 embryos,
whereas bone marrow cells from adult Vav-Cre” or
Vav-Cre’ Tet2”f C57BL/6 mice (Moran-Crusio et al., 2011)
were harvested 6 d after intraperitoneal administration of 200
mg/kg 5-fluorouracil (Sigma-Aldrich). Bone marrow cells
were harvested from 9-wk-old Mx1-Cre® or Ptpni11”*"
mice that had been treated at 3 wk with poly(I:C) as previ-
ously published (Chan et al., 2009). Harvested cells were cul-
tured in RPMI media supplemented with 10% fetal bovine
serum, 10 ng/ml IL-3, 10 ng/ml IL-6, and 100 ng/ml stem
cell factor (PeproTech) before transplantation, with 8 pg/ml
polybrene (Sigma-Aldrich) added during spinoculation.
Transduced cells were transplanted into 8—10-wk-old female
C57BL/6 recipient mice by tail vein injection after the recip-
ient mice had been lethally irradiated with 950 cGy, given in

a split dose separated by 3 h. Procedures performed on these
mice were approved by the Institutional Animal Care and Use
Committee of Memorial Sloan Kettering Cancer Center.

Exome sequencing. Genomic DNA from GFP" mouse spleen
cells or mouse tail tissue was isolated using phenol-chloroform
extraction. Exome capture was performed using the SureSe-
lect Mouse All Exon kit (Agilent Technologies), and sequenc-
ing was performed using an [llumina platform. Approximately
80 million reads per sample were acquired after a paired-end
run with 75 or 100 bp. Paired-end reads were aligned to the
NCBIM37.67/mm9 mouse reference genome using the Bur-
rows-Wheeler Aligner (BWA) aln v0.6.2 and processed using
the best practices pipeline that included marking of duplicate
reads by the use of Picard tools and realignment around indels
and base recalibration via Genome Analysis Toolkit (GATK)
v3.1.1. Somatic single nucleotide variants (SNVs) were called
using muTect v1.1.4,Virmid v1.1.0, and Strelka v1.0.12 and
somatic indels via SomaticIndelDetector v2.3.9 and Strelka.
SNVs and indels were filtered using the default filtering cri-
teria as implemented in each of the callers and annotated via
snpEff and snpSift. In addition, all germline SNVs and indels
identified in the 17 key mouse strains as part of the Mouse
Genome Project (Keane et al., 2011) were filtered out of the
call set. To compare our results with what has been previously
discovered in human patients, we downloaded the BAM files
for the 150 human AML exomes from The Cancer Genome
Atlas project (Cancer Genome Atlas Research Network,
2013). For consistency, we extracted the reads from human
exomes, reprocessed them, and called somatic variants using
the same pipeline as for mouse exomes.

SMGs and domain analysis. SMGs were identified in mouse
and human samples using the SMG module from Genome
MusSiC v0.4. Homology between mouse and human genes
was based on the mouse—human homologue list downloaded
from The Jackson Laboratory website. FDRs were deter-
mined using the likelihood ratio test from the Genome
MuSiC SMG module. We annotated proteins with protein
domains from Pfam-A, a database of high-quality, manually
curated protein families. We used the hmmscan algorithm
from HMMER3.0 package to match protein sequences
against the Pfam-A database.

Statistical analysis. Statistical significance between two
groups was assessed using the Student’s ¢ test with Welch’s
correction: ¥, P < 0.05; ** P < 0.01; *** P < (0.001; ****,
P < 0.0001; n.s., not significant. The hypergeometric test
was used to determine whether there was significant overlap

Figure 3. SMGs in mouse AML identify SMGs in human AML that are potential AML1-ETO cooperating partners. (A) The patients that harbor
nonsynonymous mutations in genes that are significantly mutated in human AML (FDR < 30%). (B) For the genes significantly mutated in human AML, the
types of mutations present in mouse AML samples are depicted. Those genes that are significantly mutated in a given mouse AML group (FDR < 10%) are
highlighted in blue under the given group. (C) TET2 mutations identified in t(8;21)* AML patients. (D) PTPN 11 mutations identified in AML patients.
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Figure 4. Tet2 loss cooperates with AML1-ETO to induce leukemia in vivo. (A) Kaplan-Meier plot of mouse survival after transplantation with cells
transduced with the given vector. WT pBEX (n = 5); WT AE (n = 10); WT AE9a (n = 7); Tet2 KO pBEX (n = 12); Tet2 KO AE (n = 23); Tet2 KO AE9a (n = 13).
Tet2 loss significantly accelerates AE9a leukemias (P < 0.0001 using the Log-rank test). (B) Peripheral blood counts of mice transplanted with Tet2 KO cells
expressing AE9a (n = 10), AE (n = 10), or pBEX (n = 5). Horizontal bars represent mean. (C) Representative hematoxylin and eosin staining (n = 3). Bars, 50
um. (D) At euthanasia, leukemic mice exhibit significant splenomegaly compared with controls. Tet2 KO pBEX (n = 2); Tet2 KO AE (n = 9); Tet2 KO AE9a (n =
9). Error bars represent the standard deviation from the mean. (B and D) P-values were generated using the Student's t test: *, P < 0.05; **, P < 0.01;** P <
0.001; ***, P < 0.0001. (E) Representative flow cytometry analysis of the bone marrow of transplant recipients (n = 10).

in the genes that were mutated in mouse and human AML,
as well as whether there was significant overlap in the pro-
tein domains that were affected in genes mutated in both
mouse and human AML. The significance of recurrently
mutated protein domains was determined using the bino-
mial test, where p = length of domain (in AA)/length of
protein (in AA). To determine whether mouse leukemias
were significantly different from human leukemias with re-
spect to the frequency with which all protein classes were
affected by gene mutations, protein classes annotated using

JEM Vol. 213, No. 1

PANTHER (Mi et al., 2013) were compared across the two
groups using the Pillai-Bartlett statistic from a multivariate
ANOVA (MANOVA) model. The corresponding p-values
were computed from a transformed value of the test statistic
which has an approximate F distribution. All calculations
were performed using R version 3.0.

Flow cytometry. To determine the immunophenotype of

normal and leukemic populations, cells were stained with a
panel of antibodies against lineage markers, each of which was
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Figure 5. PTPN11 D61Y cooperates with AML1-ETO to induce leukemia in vivo. (A) Kaplan-Meier plot of mouse survival after transplantation with
cells transduced with the given vector. WT pBEX (n = 10); WT AE (n = 15); PTPN11 D61Y pBEX (n = 10); PTPN11 D61Y AE (n = 15). (B) Peripheral blood counts
at euthanasia of leukemic PTPN11 D61Y AE mice (n = 5), as well as controls (from left to right, n = 10, n = 15, and n = 10). Horizontal bars represent mean.
P-values were generated using the Student's ¢ test: *, P < 0.05; ***, P < 0.0001; n.s., not significant. (C) Representative hematoxylin and eosin staining (n
= 3). Bars, 50 pum. (D) At euthanasia, leukemic mice exhibit splenomegaly. From top to bottom: liver, kidney, and spleen. (E) Representative flow cytometry
analysis of the bone marrow of transplant recipients (n = 3).

conjugated to APC-Cy7:CD3,CD4,CD11b,CD19,CD45R,  PE-Cy7, respectively (BioLegend). Stained cells were ana-
Gr-1, NK1.1, and TER119. Cells were also stained with lyzed using an LSR Fortessa or LSR II flow cytometer (BD),
anti-CD117 (¢-KIT) and anti-SCA-1, conjugated to PE and  and data were analyzed using FlowJo software.
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Online supplemental material. Table S1 lists the TET2
mutations identified in AML patients from studies by the
Cancer Genome Atlas Research Network (2013) and Patel et
al. (2012).Table S2 provides statistics on the TET2 mutations
identified in AML patients from the Patel et al. (2012) study.
Table S3 lists the PTPN11 mutations identified in AML
patients from the Cancer Genome Atlas Research Network
(2013) study. Online supplemental material is available at http
://www.jem.org/cgi/content/full/jem.20150524/DC1.
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