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Simply stated, we are what we eat. Our genetics, 
coupled with environmental influences, dictate 
how we metabolize the nutrients that we con-
sume and how this shapes our growth, function, 
and overall health. The same principles hold 
true at the cellular level. Just as a track runner 
quickly engages their muscles to propel them-
selves from rest to sprint in response to a starting 
gun, pathogen-derived or inflammatory signals 
drive T cells out of quiescence, resulting in rapid 
modulation of gene expression and the acquisi-
tion of new functions. These changes range from 
increased production of cytokines and cytolytic 
molecules to the ability to undergo cell division 
and migration. Intimately integrated into this 
program of activation is the regulation of cellu-
lar metabolism.

The engagement of specific metabolic path-
ways profoundly affects cell differentiation and 
function. Metabolic reprogramming is controlled 
by key receptor signaling events and growth fac-
tor cytokines, as well as availability of nutrients. 
In addition, metabolic products provide sub-
strates that can alter the functional fate of a cell 
through posttranslational modifications (PTMs) 
or epigenetic remodeling. Several recent articles 
have covered these and other emerging topics 
in T cell metabolism (Chapman and Chi, 2014; 
Bird, 2015; Lochner et al., 2015; O’Sullivan and 
Pearce, 2015; Palmer et al., 2015; Ramsay and 
Cantrell, 2015; Ron-Harel et al., 2015). In this 

review, we provide a general but comprehensive 
overview of lymphocyte metabolism integrated 
with current research. Our focus will be on data 
and concepts derived primarily from T cell stud-
ies, with tie-ins from other fields when relevant.

T cell development and quiescence
Although the bulk of T cell metabolism research 
centers on mature T cells, even at their incep-
tion and throughout their development, T cells 
cycle through states of metabolic quiescence and 
activation. Hematopoietic stem cell progenitors 
that are double negative (DN) for CD4 and CD8 
co-receptors migrate from the bone marrow and 
seed the thymus where they rearrange their an-
tigen receptor gene loci to produce a functional 
TCR. Signals from the receptor Notch1 maintain 
cell survival and promote T cell lineage com-
mitment (Pui et al., 1999; Radtke et al., 1999; 
Maillard et al., 2006). Induced deletion of Notch1 
during neonatal development results in arrest at 
the most immature DN1 (CD44+CD25) stage 
(Radtke et al., 1999), whereas enforced expression 
of constitutively active Notch1 in bone marrow 
cells blocks B cell differentiation and instead 
causes the ectopic development of CD4+CD8+ 
double-positive (DP) T cells (Pui et al., 1999).

Successful expression of TCR with pT 
and CD3 forms the pre-TCR, which signals with 
Notch1 to drive cells out of quiescence as they 
enter  selection (Saint-Ruf et al., 1994; Ciofani 
et al., 2004; Ciofani and Zúñiga-Pflücker, 2005). 
RAG recombinase expression declines and ex-
pression of the transferrin receptor CD71 and 
other nutrient transporters are induced as the 
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Lymphocytes must adapt to a wide array of environmental stressors as part of their normal 
development, during which they undergo a dramatic metabolic remodeling process. Re-
search in this area has yielded surprising findings on the roles of diverse metabolic path-
ways and metabolites, which have been found to regulate lymphocyte signaling and 
influence differentiation, function and fate. In this review, we integrate the latest findings 
in the field to provide an up-to-date resource on lymphocyte metabolism.
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“Part of the secret of success in life is to  
eat what you like and let the food fight it out 
inside.” 
– Mark Twain

T
h
e 

Jo
u
rn

al
 o

f 
E
xp

er
im

en
ta

l 
M

ed
ic

in
e

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/212/9/1345/1753858/jem
_20151159.pdf by guest on 09 February 2026



1346 T cell metabolism drives immunity | Buck et al.

and Bevan, 1999; Muranski et al., 2000). However, unrestrained 
Akt activation, or deletion of negative regulators of TCR stimu-
lation, leads to loss of quiescence (Yang et al., 2011). T cells 
defective in tuberous sclerosis complex 1 (TSC1), a negative 
regulator of mTOR signaling, prematurely exit from quies-
cence and have increased rates of apoptosis and hyperactive 
responses to TCR stimulation (Yang et al., 2011). In addition, 
TCR-mediated PI3K-Akt activation down-regulates IL-7R 
(Cekic et al., 2013), but, as discussed in the previous para-
graph, IL-7 signaling is essential to prevent apoptosis and  
ensure survival of the naive T cell pool (Rathmell et al., 2001; 
Surh and Sprent, 2008). A recent study showed that the me-
tabolite adenosine, which is a byproduct of metabolic activity, 
suppresses TCR signaling in a dose dependent manner (Cekic 
et al., 2013). The G-protein–coupled adenosine receptor sub-
type A2AR is predominantly expressed in T cells. Binding 
with adenosine activates cAMP-dependent protein kinase A 
(PKA), which suppresses TCR-mediated activation of the 
PI3K pathway and prevents IL-7R down-regulation (Cekic 
et al., 2013).

Activation and effector T cell differentiation
Metabolic reprogramming during T cell activation. Once 
in the periphery, a mature naive T cell is like a bomb, lying 
dormant in the lymphoid organs and circulation until it is 
triggered to activate and explode in a proliferative chain reac-
tion. T cell activation stimulated by TCR ligation and binding 
with costimulatory molecules induces metabolic remodeling 
of the naive T cell to a program of anabolic growth and bio-
mass accumulation; this is marked by the engagement of aerobic 
glycolysis, a process in which glucose is converted into lactate 
even though sufficient oxygen is present to support glucose ca-
tabolism via the tricarboxylic acid (TCA) cycle and OXPHOS 
(Fig. 1; Vander Heiden et al., 2009; MacIver et al., 2013). Al-
though aerobic glycolysis is less efficient than OXPHOS at 
yielding an abundance of ATP per molecule of glucose, aero-
bic glycolysis can generate metabolic intermediates impor-
tant for cell growth and proliferation, and provides a way to 
maintain redox balance (NAD+/NADH) in the cell (Fig. 2; 
Vander Heiden et al., 2009; Anastasiou et al., 2011; Macintyre 
and Rathmell, 2013). For example, glucose-6-phosphate and 
3-phosphoglycerate (3PG) produced during glycolysis can be 
metabolized in the pentose phosphate and serine biosynthesis 
pathways, respectively, donating important precursors for nu-
cleotide and amino acid synthesis (Wang et al., 2011; Pearce 
et al., 2013). Glucose can also enter the mitochondria as py-
ruvate, where it is converted to acetyl-CoA and joins the TCA 
cycle by condensing with oxaloacetate to form citrate. Break-
down of substrates in the TCA cycle not only provides reducing 
equivalents for OXPHOS, but also precursors for biosynthe-
sis. Glucose-derived citrate can be exported into the cytosol 
to generate acetyl-CoA by ATP citrate lyase (ACL) for use in 
lipid synthesis (Bauer et al., 2005; Hatzivassiliou et al., 2005; 
DeBerardinis et al., 2008). Similarly, oxaloacetate can be used 
to produce aspartate, an additional precursor for generating 
nucleotides (Fig. 2; DeBerardinis et al., 2007).

cells proliferate (Ciofani and Zúñiga-Pflücker, 2005; Kelly et al., 
2007). Signaling from the pre-TCR, Notch1, and the chemo-
kine receptor CXCR4 converge to activate phosphatidylino-
sitol 3-kinase (PI3K); this stimulates the switch to anabolic 
metabolism (metabolic pathways that create biomass from 
smaller molecules; Ciofani and Zúñiga-Pflücker, 2005; Janas 
et al., 2010). Increased expression of the glucose transporter 
Glut1 is required during this stage, and its expression is de-
pendent on activation of the kinase Akt by PI3K (Swainson et al., 
2005; Juntilla et al., 2007; Wieman et al., 2007). PI3K–Akt 
signaling also activates the mechanistic target of rapamycin 
(mTOR), and signals from this kinase augment the glycolytic 
metabolism used to support cell growth and proliferation 
(MacIver et al., 2013).

Disruptions in PI3K signaling also affect the transition of 
DP thymocytes to single-positive CD4 and CD8 T cells and the 
development of NKT cells, which require sustained signaling to 
join tcra V to distal J gene segments that define their invariant 
TCR (D’Cruz et al., 2010; Rodríguez-Borlado et al., 2003). 
PTEN (phosphatase and tensin homologue) is the principal 
negative regulator of the PI3K pathway. Thymocytes from mice 
that lack the microRNA cluster miR-181a1b1 have altered cel-
lular metabolism caused by a significant increase in PTEN ex-
pression (Henao-Mejia et al., 2013). Glucose uptake, measured 
by acquisition of the fluorescent glucose analogue 2-NBDG, 
and glycolytic rate are reduced in these cells, and nutrient trans-
porter expression is diminished. As a result of dysregulated PI3K 
signals, these mice have deficiencies in DP cells and completely 
lack NKT cells (Henao-Mejia et al., 2013).

The cytokine IL-7 has a pivotal role in ensuring the sur-
vival of developing and quiescent naive T cells by increasing 
expression of the antiapoptotic factor Bcl-2 (B cell lymphoma 2; 
Akashi et al., 1997; Maraskovsky et al., 1997; Tan et al., 2001; 
Yu et al., 2003). Mice deficient in IL-7 or the IL-7R chain 
have defects in T cell development (Peschon et al., 1994; von 
Freeden-Jeffry et al., 1995). IL-7 signals through the JAK3–
STAT5 pathway but can also activate PI3K (Pallard et al., 1999; 
Wofford et al., 2008). A recent study suggests that in addition 
to maintaining the survival of developing lymphocytes, IL-7 
signaling promotes the growth and proliferation of DN4 cells 
by increasing levels of trophic receptors, such as CD71 and 
the amino acid transporter CD98 (Pearson et al., 2012; Boudil 
et al., 2015), activities that were previously attributed mainly 
to Notch1 signaling. However, Notch1 can induce IL-7R ex-
pression and therefore its effects could be downstream of IL-7 
signals (González-García et al., 2009; Magri et al., 2009).

Mature naive T cells exit from the thymus into the periph-
ery. As quiescent cells, they primarily oxidize glucose-derived 
pyruvate in their mitochondria via oxidative phosphorylation 
(OXPHOS), or they use fatty acid oxidation (FAO) to generate 
ATP (Fig. 1; Fox et al., 2005; Wang et al., 2011; van der Windt 
and Pearce, 2012; Pearce and Pearce, 2013; Pearce et al., 2013). 
A balance between tonic TCR signals and IL-7 is needed to 
sustain naive T cells. Homeostatic proliferation of naive T cells 
is supported by TCR ligation with self-peptides presented on 
MHC molecules in the periphery (Ernst et al., 1999; Goldrath 
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activity (Miyamoto et al., 2008; John et al., 2011). mTORC1 
activation increases protein translation via phosphorylation of 
4E-BP1 and p70S6 kinase (Laplante and Sabatini, 2012) and 
promotes lipid synthesis by activating SREBP2 (sterol regula-
tory element-binding protein 2; Porstmann et al., 2008).

The up-regulation of transcription factors c-Myc, estrogen-
related receptor  (ERR), and hypoxia inducible factor-1 
(HIF-1) coordinately drives the expression of genes involved 
in intermediary metabolism that fuel the rapid proliferation 
of effector T cells during clonal expansion (Michalek et al., 
2011b; Wang et al., 2011; Doedens et al., 2013). First discov-
ered as an oncogene important for cell growth and prolifera-
tion (Sheiness et al., 1978; Cole, 1986), c-Myc has been shown 
to be a critical regulator of metabolic reprogramming after  
T cell activation (Wang et al., 2011). c-Myc drives the expres-
sion of enzymes that promote aerobic glycolysis and glutami-
nolysis and coordinates these metabolic pathways with lipid, 
amino acid, and nucleic acid synthesis. However, c-Myc ex-
pression is not continually sustained after T cell activation (Nie 
et al., 2012; Best et al., 2013). A recent study suggests that c-Myc 
induces the transcription factor AP4, which maintains the 

Several transcription factors and signaling pathways coor-
dinately support and regulate this change in T cell metabolic 
programs after activation. Growth factor cytokines such as IL-2 
and ligation of costimulatory molecules promote the switch 
to glycolysis through the enhancement of nutrient transporter 
expression and activation of the key metabolic regulator mTOR 
(Fig. 1; Frauwirth et al., 2002; Jones and Thompson, 2007; 
Wieman et al., 2007; Kolev et al., 2015). mTOR exists as two 
complexes, mTORC1 and mTORC2, and integrates extrinsic 
and intrinsic signals related to nutrient levels, energy status, 
and stress to induce changes in cellular metabolism, growth, 
and proliferation (Laplante and Sabatini, 2012). CD28 ligation 
enhances PI3K activity, which recruits 3-phosphoinositide–
dependent protein kinase-1 (PDPK1) and Akt. PDPK1, to-
gether with mTORC2, phosphorylates Akt, which in turn 
activates mTORC1. Both Akt and mTOR promote aerobic 
glycolysis and support effector T cell differentiation, growth, 
and function (Delgoffe et al., 2011; Pollizzi et al., 2015). Akt 
regulates nutrient transporter expression and can phosphory-
late the glycolytic enzyme hexokinase II, promoting its local-
ization to the mitochondria and augmenting its enzymatic 

Figure 1.  Metabolism drives the life cycle of T cells. 
T cells engage specific metabolic pathways during  
development that underpin their differentiation and 
function. Naive T cells mature and exit from the thymus 
primarily relying on OXPHOS for their metabolic needs, 
although they augment with glycolytic metabolism dur-
ing times of proliferation that follow TCR gene rear-
rangements. In secondary lymphoid organs, TCR ligation, 
costimulation, and growth factor cytokine signals induce 
clonal expansion and metabolic reprogramming of an 
antigen-specific T cell. This conversion to an activated 
effector T cell is marked by the engagement of aerobic 
glycolysis and increased OXPHOS activity. Glycolytic  
metabolism differentiates CD4 Th1, Th2, and Th17 effec-
tor cells (and possibly Tfh cells) from T reg cells. Promot-
ing FAO and catabolic metabolism enhances T reg and 
memory T cell development (blue arrow). Memory  
T cells are a quiescent population of cells that primarily 
use OXPHOS, but both OXPHOS and glycolysis increase 
rapidly after antigen rechallenge and facilitate their 
recall responses.
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group identified mice with enhanced CD8 T cell responses to 
viral and tumor challenge (Okoye et al., 2015). The source of 
the heightened immunity gained after germline mutagenesis 
was the increased expression of an orphan protein, identified 
as lymphocyte expansion molecule (LEM). Interestingly, aug-
mented OXPHOS and mitochondrial ROS levels were de-
tected in CD8 T cells isolated from LEM-deficient mice after 
infection, whereas heterozygous LEM-deficient CD8 T cells 
had reduced OXPHOS and mitochondrial ROS levels. LEM 
helps stabilize a protein involved in inserting ETC complex 
proteins in the mitochondrial membrane, which may account 
for the increased ROS and enhanced proliferation evident in 
CD8 T cells from these mice (Okoye et al., 2015).

Although ROS is produced as a general byproduct of mi-
tochondrial metabolism, new studies have specifically linked 
the metabolite succinate to both the generation of ROS and 
activation of HIF-1 in settings of inflammation or injury 
(Tannahill et al., 2013; Chouchani et al., 2014). Innate im-
mune receptor activation increases intracellular succinate 
from glutamine via glutamine-dependent anerplerosis and the 
-aminobutyric acid shunt pathway, and this leads to HIF-1 
stabilization and activation (Tannahill et al., 2013). During 

glycolytic transcriptional program initiated by c-Myc to sup-
port T cell population expansion (Chou et al., 2014; Karmaus 
and Chi, 2014). HIF-1, a transcription factor that responds 
to oxygen levels, also increases glucose uptake and catabolism 
through glycolysis (Kim et al., 2006; Finlay et al., 2012). Dele-
tion of its negative regulator, von Hippel-Lindau (VHL), en-
hances HIF-1–mediated CD8 T cell glycolysis and effector 
responses to persistent viral infection (Doedens et al., 2013).

ROS signaling. Although much of the attention on metabolic 
reprogramming in activated T cells has focused on the engage-
ment of aerobic glycolysis, recent research has revealed the 
importance of mitochondrial-driven activities in this process. 
In addition to energy production, the electron transport chain 
(ETC) is a major source of reactive oxygen species (ROS; 
Turrens, 2003), which are important for T cell responses (Fig. 2; 
Chaudhri et al., 1988; Devadas et al., 2002; Jones et al., 2007). 
T cells deficient for Rieske iron sulfur protein (RISP), a sub-
unit of mitochondrial complex III, have impaired activation 
and antigen-specific T cell expansion in vitro and in vivo due 
to defects in mitochondrial-derived ROS signaling (Sena et al., 
2013). More recently, using a forward genetic screen, another 

Figure 2.  Metabolic pathways that support T cells. 
ATP is the molecular currency of energy in the cell. It can 
be derived from glucose through two integrated path-
ways. The first of these, glycolysis (green), involves the 
enzymatic breakdown of glucose to pyruvate in the cyto-
plasm. The TCA cycle (orange) encompasses the second 
pathway, where pyruvate is converted to acetyl-CoA in 
the mitochondria and shuttled through several enzy-
matic reactions to generate reducing equivalents to fuel 
OXPHOS (brown). Other substrates can also be metabo-
lized in the TCA cycle, such as glutamine via glutaminoly-
sis (purple) or fatty acids via -oxidation (FAO; gray). 
These connected biochemical pathways can also provide 
metabolic precursors for biosynthesis. Intermediates 
from glucose catabolism during glycolysis can shuttle 
through the pentose phosphate (dark blue) and serine 
biosynthesis pathways (red) to fuel nucleotide and amino 
acid production. Oxaloacetate from the TCA cycle can 
similarly be used to generate aspartate for use in nucleo-
tide synthesis. Precursors for amino acid and nucleotide 
biosynthesis can be obtained from glutamine. Citrate 
from the TCA cycle can be exported from the mitochon-
dria and converted to acetyl-CoA for FAS (light blue). 
ROS generated from the ETC during OXPHOS can also act 
as secondary signaling molecules.
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markers and increasing cell size (Jacobs et al., 2008). Consis-
tent with these observations, T cell specific deletion of Glut1 
impairs CD4 T cell activation, clonal expansion, and survival 
(Macintyre et al., 2014). When deprived of glucose, CD8 T cells 
display defects in functional capacity with reduced IFN-, 
granzyme, and perforin production (Cham and Gajewski, 
2005; Cham et al., 2008; Jacobs et al., 2008). More recently, it 
was shown that T cells can become activated and proliferate 
when glucose catabolism through aerobic glycolysis is lim-
ited, as they can rely on OXPHOS (Chang et al., 2013; 
Sena et al., 2013). However, in this case, effector function is 
compromised, with impaired cytokine production caused 
by posttranscriptional regulation by the glycolytic enzyme 
GAPDH. When disengaged from glycolysis, GAPDH can func
tion as a RNA-binding protein (RBP) and prevent the trans-
lation of cytokine messenger RNAs containing AU-rich elements 
in their 3-UTRs (Chang et al., 2013). Therefore, in addition 
to providing precursors for biomass, augmenting aerobic gly-
colysis in activated T cells allows for the acquisition of full  
effector function.

Amino acids. Although glucose is a critical substrate for T cells, 
glutamine is also essential during T cell activation (Frauwirth 
et al., 2002; Carr et al., 2010; Wang et al., 2011). T cells increase 
the expression of glutamine transporters, and their deletion im-
pairs the transition to an effector T cell (Carr et al., 2010; Sinclair 
et al., 2013). Clear differences in concentrations of other amino 
acids also exist in quiescent compared with activated T cells, 
corresponding to their distinct metabolic requirements (Pearson 
et al., 2012; Ananieva et al., 2014). New research has begun to 
uncover the vast array of additional amino acid transporters and 
catabolizing enzymes that regulate amino acid levels, reveal-
ing previously unappreciated roles for amino acids in T cell 
metabolism and function.

Deficiency in the neutral amino acid transporter Slc7a5 
(LAT1), which transports leucine, prevents the metabolic repro-
gramming, clonal expansion, and/or effector function of both 
CD4 and CD8 T cells (Hayashi et al., 2013; Sinclair et al., 2013). 
These cells had impaired mTORC1 activation and were unable 
to induce key metabolic processes, such as enhancing gluta-
mine and glucose uptake (Sinclair et al., 2013). This deficiency, 
however, did not impair the ability of CD4 T cells to differenti-
ate into T reg cells. Leucine can activate mTOR via leucyl-
tRNA synthetase, and thus it is not surprising that reduced 
leucine uptake impairs mTOR activation (Han et al., 2012). 
However, the effects of Slc7a5 deficiency were more severe 
than those induced by mTOR inhibition using rapamycin 
(Sinclair et al., 2013), suggesting either that rapamycin may not 
have completely blocked mTOR activation, or that leucine 
deficiency has effects over and above limiting mTOR activation 
(Thoreen et al., 2009; Powell, 2013). Additionally, although no 
overt decrease in global protein expression occurred in Slc7a5-
deficient cells, protein expression of the key metabolic tran-
scription factor, c-Myc, was diminished, despite its increased 
mRNA expression upon activation (Sinclair et al., 2013). This 
raises the intriguing question of whether leucine deficiency 

ischemia reperfusion injury, which happens when blood supply 
to a tissue is disrupted and then restored, succinate accumu-
lates from reverse activity of the enzyme succinate dehydrog
enase (SDH) and is rapidly oxidized upon reperfusion. This 
leads to overreduction of the electron carrier coenzyme Q, 
causing reverse electron transport through mitochondrial com-
plex I and, subsequently, excessive ROS production (Chouchani 
et al., 2014; O’Neill, 2014). Given that mitochondrial ROS 
and HIF-1 activity are important for the metabolic repro-
gramming of naive T cells after activation, it is interesting to 
speculate that the metabolite succinate may also support the 
transition from a naive to an activated effector T cell.

Metabolic programming of T helper cell differentiation. 
Activation of T cells is intimately tied to the engagement of 
specific metabolic pathways, so it is no surprise that distinct 
metabolic programs also support the differentiation of CD4 
T helper (Th) cells into their separate lineages. Initial studies found 
that suppression of mTOR with rapamycin promoted the gen-
eration of FoxP3+ regulatory T (T reg) cells even in the pres-
ence of Th17-polarizing cytokines in vitro (Kopf et al., 2007), 
and genetic deletion of mTOR in T cells augmented produc-
tion of T reg cells upon activation, but not Th1, Th2, or Th17 
cells (Delgoffe et al., 2009). These results are consistent with 
the metabolic profiles of these cells: Th1, Th2, and Th17 cells 
strongly engage glycolysis via mTOR signaling, whereas T reg 
cells depend more on the oxidation of lipids (Fig. 1; Michalek 
et al., 2011a). Th17 cells in particular have been found to 
heavily rely on glycolysis for their development and mainte-
nance, stimulated by HIF-1 activity downstream of mTOR. 
Mice deficient in HIF-1 have increased generation of T reg 
cells, and blocking glycolysis with 2-Deoxy-d-glucose (2-DG) 
inhibits Th17 cell differentiation (Dang et al., 2011; Shi et al., 
2011). T reg cell homeostasis and survival depends on the 
delicate balance between mTORC1 activation from PI3K-
Akt and regulation from PTEN (Zeng et al., 2013; Huynh et al., 
2015; Shrestha et al., 2015). Signaling through mTORC1 versus 
mTORC2 also selectively differentiates CD4 T cells into the 
Th1 and Th2 lineages, respectively (Lee et al., 2010; Delgoffe 
et al., 2011), although activation of mTORC1 and its compo-
nent Raptor is still required for T cell exit from quiescence to 
begin the transition into Th2 cells (Yang et al., 2013). Less is 
known about T follicular helper (Tfh) cell metabolism com-
pared with other T cell subsets, but their lineage-defining 
transcription factor Bcl6 has been shown to suppress glycoly-
sis potentiated by c-Myc and HIF-1 (Johnston et al., 2009; 
Nurieva et al., 2009; Oestreich et al., 2014).

Substrate utilization in activated T cells
Glucose is a key metabolic substrate for T cells. Upon T cell 
activation, Glut1 traffics to the cell surface from intracellular 
vesicles (Rathmell et al., 2000; Frauwirth et al., 2002; Wieman 
et al., 2007). Overexpression of Glut1 in mice results in larger 
naive T cells and an increased number of CD44hi T cells,  
suggesting that glucose acquisition mediates early steps in  
T cell activation, such as promoting the expression of activation 
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Deficiency in cytosolic protease tripeptidyl peptidase II (TPPII), 
which digests proteins for the recycling of amino acids, lead 
to increased sensitivity to perturbations in intracellular amino 
acids concentrations, impaired IFN- production, and a sus-
ceptibility to viral infections (Lu et al., 2014). Lack of TPPII 
activity in both human and murine T cells resulted in impaired 
glycolysis caused by enhanced degradation of the key glyco-
lytic enzyme hexokinase II, an effect that likely contributed to 
their impaired cytokine production (Lu et al., 2014). Another 
study also found that TPPII deficiency caused susceptibility to 
viral infections, although under these particular experimental 
conditions, defects in cytokine production were not observed 
and the T cell dysfunction was attributed to premature im
munosenescence (Stepensky et al., 2015). Although it remains  
to be tested, this premature cell senescence could be linked  
to reduced glycolytic flux. In a model of oncogenic stress- 
induced senescence, inhibition of hexokinase II or glucose 
uptake induces senescence in human epithelial cells (Gitenay 
et al., 2014).

Many products of amino acid catabolism also have important 
nonanaplerotic roles that can alter cell signaling and function. 
The metabolic byproduct of tryptophan catabolism, kynuren-
ine, can ligate the aryl hydrocarbon receptor and enhance po-
larization of CD4 T cells to a T reg phenotype (Mezrich et al., 
2010; Opitz et al., 2011). Another example of this is catabo-
lism of phenylalanine by IL-4–induced gene 1 protein (IL4I1). 
When highly expressed by tumors or APCs, IL4I1 can inhibit 
T cell proliferation (Boulland et al., 2007; Lasoudris et al., 
2011). This effect appears to be caused by the production of 
H2O2, a product of phenylalanine catabolism. IL4I1 is also 
expressed in Th17 and T reg cells (Santarlasci et al., 2012; 
Scarlata et al., 2015). The specific purpose for IL4l1 expression 
in these T cell subsets remains ambiguous, although its expres-
sion in Th17 cells was speculated to have a self-regulatory role, 
where its induction led to diminished proliferation (Santarlasci 
et al., 2012). However given that low concentrations of H2O2 
can act as a signaling molecule (Veal et al., 2007), IL4I1 might 
also play a role in cell signaling pathways independent of mech-
anisms that inhibit proliferation.

Fluctuations in environmental amino acid concentrations, 
as well as metabolic products from amino acid catabolism, 
can dramatically alter T cell activity and polarization. A well-
documented example of this is indoleamine-2,3-dioxygenase 
(IDO)–mediated tryptophan catabolism. IDO, which is often 
expressed at high levels by APCs or tumor cells, can deplete 
tryptophan within a tissue microenvironment, and this in 
turn can lead to inhibition of effector T cell proliferation and 
induction of anergy (Munn et al., 2002; Uyttenhove et al., 2003). 
Depletion of tryptophan causes activation of the integrated 
stress response inducer general control nonderepressible 2 
(GCN2) kinase, which results in the inhibition of translation 
initiation and metabolic remodeling (Munn et al., 2005; Guo 
and Cavener, 2007; Castilho et al., 2014).

Studies into the interactions of APCs with T cells have 
highlighted multiple pathways through which APCs modulate 
extracellular concentrations of amino acids, or their catabolic 

results in posttranslational regulation of c-Myc expression. Al-
ternatively, this effect could simply result from a limitation in 
the supply of amino acids in Slc7a5-deficient cells, which is 
not sufficient to keep up with the demands of synthesizing 
proteins such as c-Myc, which have a short half-life (Sinclair 
et al., 2013).

Results from another study suggest that modulation of 
intracellular leucine concentrations can be used to regulate 
metabolic reprogramming. It was found that the expression of 
the cytosolic branched chain aminotransferase (BCATc), which 
can reduce intracellular leucine concentrations through a trans-
amination reaction, limited mTORC1 activation (Ananieva 
et al., 2014). BCATc expression was up-regulated upon CD4 
T cell activation, and T cells that lacked BCATc had increased 
intracellular leucine, which correlated with enhanced activation 
of mTORC1 and glycolytic phenotype. Increased BCATc 
expression has been observed in anergic T cells, which have 
impaired metabolic function (Zheng et al., 2009; Ananieva 
et al., 2014). These data could suggest that leucine depletion 
by BCATc contributes to T cell anergy through suppression of 
mTOR activity.

The alanine serine and cysteine transporter system (ASCT2/
Slc1a5), which also transports glutamine, is another solute car-
rier whose expression increases after T cell activation (Levring 
et al., 2012). It was recently found that loss of ASCT2 decreased 
glutamine import and impaired OXPHOS and glucose me-
tabolism in activated CD4 T cells (Nakaya et al., 2014). Sur-
prisingly, the loss of ASCT2 did not inhibit proliferation or 
IL-2 production. However, ASCT2-deficient cells cultured in 
vitro had a decreased ability to differentiate into Th1 and Th17 
cells, but not Th2 or T reg cells. Interestingly, glutamine trans-
port into cells can substantially enhance leucine transport via 
Slc7a5, as increased intracellular glutamine levels result in glu-
tamine export and concomitant import of leucine by this 
transporter (Nicklin et al., 2009). Supporting this additional 
role for glutamine in T cell activation, addition of leucine to 
T cells lacking ASCT2 helps rescue their polarization defects 
(Nakaya et al., 2014).

Depletion of extracellular arginine has been found to im-
pair T cell proliferation and aerobic glycolysis, but not mito-
chondrial OXPHOS (Fletcher et al., 2015). However, provided 
that extracellular concentrations of citrulline are sufficient, 
T cells can partially compensate by synthesizing arginine de novo 
via an argininosuccinate 1 (ASS1)–dependent process (Qualls 
et al., 2012; Fletcher et al., 2015; Tarasenko et al., 2015). One 
study suggested that ASS1 activity may contribute to T cell 
function in ways beyond simple synthesis of arginine, as dele-
tion of ASS1 can negatively impact in vitro Th1 and Th17 cell 
polarization, even in the presence of extracellular arginine 
(Tarasenko et al., 2015). Arginine metabolism also has a role 
in macrophage polarization and dictating metabolic pheno-
type (Galván-Pena and O’Neill, 2014; Rath et al., 2014), but 
whether arginine metabolism also has such roles in T cells re-
mains to be determined.

A recent study suggests that intracellular recycling of 
amino acids also contributes to T cell amino acid homeostasis. 
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et al., 2008). Inhibition of 3-hydroxy-3-methylgutaryl- 
coenzymeA (HMG-CoA) reductase, an enzyme in the meva-
lonate pathway, results in a Th2 cell bias in the experimental 
autoimmune encephalomyelitis (EAE) disease model, due to 
impaired biosynthesis of isoprenoids and a subsequent reduction 
in prenylation of Ras and RhoA GTPases (Youssef et al., 2002). 
These data suggest that in addition to cholesterol homeostasis, 
other products of the mevalonate pathway can also influence 
T cell differentiation. The impact of commonly used drugs that 
lower cholesterol by inhibiting HMG-CoA reductase can affect 
both prenylation and cholesterol synthesis, and thus it is plau-
sible these drugs have multiple effects on activated T cells.

The synthesis of fatty acids is also important for effector  
T cell function. Although activated T cells readily acquire and 
use extracellular fatty acids, it appears that there may also be 
cell-intrinsic requirements for de novo–synthesized fatty acids 
(Berod et al., 2014; Lee et al., 2014; O’Sullivan and Pearce, 
2014; O’Sullivan et al., 2014). Inhibition of acetyl-CoA car-
boxylase 1 (ACC1), an enzyme in FAS, was shown to limit 
Th17 cell differentiation and promote the development of  
T reg cells. This effect translated into improved disease out-
comes in EAE (Berod et al., 2014). Inhibition of ACC1 im-
paired phospholipid synthesis in Th17 cells while also impairing 
glycolytic flux, both through aerobic glycolysis and the TCA 
cycle. In contrast, T reg cells were able to sustain their require-
ments for fatty acids through acquisition from extracellular 
sources (Berod et al., 2014). ACC1 deficiency also impairs Th1 
and Th2 development, suggesting that CD4 effector T cells 
have a common requirement for FAS (Berod et al., 2014). In 
contrast, T cell–specific deletion of ACC1 does not impair CD8 
effector T cell development after infection, although effector 
T cell expansion is diminished due to increased cell death, in-
dicating that FAS is required for the persistence of CD8 effec-
tor T cells (Lee et al., 2014). Collectively, these findings suggest 
that there are varying requirements for de novo–synthesized 
fatty acids between different T cell subsets. Interestingly, de-
fects after ACC1 inhibition in either Th17 cells or CD8 effec-
tor T cells can be rescued through the addition of excess free 
fatty acids to the media (Berod et al., 2014; Lee et al., 2014), 
indicating that these cells can compensate for the lack of FAS 
if the extracellular fatty acid supply is plentiful. Addition of 
extracellular fatty acids can also enhance T cell proliferation 
(Gorjão et al., 2007). It is plausible that the demand for fatty 
acids is so substantial in these highly proliferative populations 
that de novo FAS can be supplemented through extracellular 
uptake. This concept would be consistent with a recent study 
suggesting that lipid released from adipose tissue may enhance 
T cell proliferation in vivo (Kim et al., 2015b). Responses  
to TNF-mediated signaling in the hypothalamus induced  
B and T cell proliferation in the spleen, an effect mediated by 
an induction of lipolysis through sympathetic nervous system 
signaling to adipose tissue and a resultant increase in circulat-
ing leptin and free fatty acids (Kim et al., 2015b).

Although in general the balance of FAS to FAO within 
effector T cell populations is weighted heavily toward FAS, 
effector T cells can use FAO (Byersdorfer et al., 2013; O’Sullivan 

products, to regulate T cell responses. In a tumor, TGF-– 
producing DCs can enhance expression of transporters for his-
tidine, leucine, valine, and tryptophan, depleting these amino 
acids from the extracellular microenvironment and directly 
impairing T cell proliferation (Angelini et al., 2002). T reg cells 
can also enhance expression of particular amino acid catabolizing 
enzymes, including arginase 1, histidine decarboxylase, threo-
nine dehydrogenase, and IL4I1, in skin grafts and bone mar-
row–derived DCs (Cobbold et al., 2009). Limitations in these 
amino acids, singularly or in combination, enhanced T reg cell 
polarization when T cells were activated in vitro (Cobbold 
et al., 2009). Although depletion of amino acids from the mi-
croenvironment appears to be a way in which APCs can nega-
tively regulate T cell activity, the opposite also occurs, whereby 
APCs can support T cell activation through supplementing a 
microenvironment. For example, DCs and monocytes can re-
lease cysteine, which is thought to support T cell activation 
and function (Sido et al., 2000; Angelini et al., 2002). Cysteine 
supply is a limiting factor in T cell proliferation and is used 
extensively for protein and glutathione synthesis, as well as pro-
viding beneficial catabolic products, such as taurine, which may 
support T cell function through regulating osmolality (Kaesler 
et al., 2012; Sikalidis, 2015).

Lipid metabolism. Lipids or fatty acids encompass another 
critical substrate group for T cells. They are a vital component 
of cell membranes, provide a high yielding energy source, and 
can also supply substrates for cell signaling and PTMs (Lochner 
et al., 2015; Thurnher and Gruenbacher, 2015). After T cell ac-
tivation, the demand for lipids rapidly increases. Within 24 h, 
in vitro–activated T cells augment fatty acid synthesis (FAS), 
while concomitantly decreasing FAO, thus enhancing the ac-
cumulation of fatty acid metabolites needed for membrane 
synthesis (Wang et al., 2011). c-Myc and mTOR have important 
roles in coordinating these metabolic changes (Wang et al., 2011; 
Yang et al., 2013), and SREBP transcription factors are criti-
cal for reprogramming lipid metabolism (Kidani et al., 2013). 
SREBPs induce expression of genes involved in FAS and 
mevalonate pathways, which supply de novo synthesized fatty 
acids and cholesterol, respectively (Thurnher and Gruenbacher, 
2015). CD4 T cells deficient in Raptor, and thus mTORC1 
signaling, have impaired de novo FAS, most likely caused by 
reduced expression of SREBP1 and SREBP2 protein (Yang 
et al., 2013).

Loss of SREBP function in CD8 T cells results in a failure 
to induce metabolic pathways needed for clonal expansion 
during a viral infection (Kidani et al., 2013). Exogenous cho-
lesterol rescues the defects in SREBP-deficient T cells, sug-
gesting that at least in this context, a lack of cholesterol is the 
main limiting factor. This requirement for cholesterol synthe-
sis is consistent with results showing that perturbing sterol 
homeostasis in activated T cells—by activating the liver X re-
ceptor (LXR), which targets genes that are involved in cho-
lesterol cellular export—impairs T cell proliferation. The 
inhibitory effect of LXR activation can be overcome through 
the addition of mevalonate, a cholesterol precursor (Bensinger 
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2015). Inhibition of mTOR and activation of AMPK also 
strongly stimulate the catabolic process of autophagy. Autoph-
agy has been shown to support T cell viability and bioener-
getics after activation (Pua et al., 2007; Hubbard et al., 2010). 
Consistent with the idea that activation of catabolic pathways 
promotes the development of memory T cells, a recent study 
found that deletion of the autophagy molecules Atg5 or Atg7 
compromised the formation of CD8 memory T cells after viral 
infection (Xu et al., 2014).

FAO and mitochondria. Work from our laboratory has shown 
that CD8 memory T cells are dependent on FAO for their 
development, long-term persistence, and ability to robustly 
respond to antigen stimulation (Fig. 1; Pearce et al., 2009;  
van der Windt et al., 2012, 2013). Enhancing FAO in memory  
T cells through increased expression of carnitine palmitoyl-
transferase 1a (CPT1a)—a critical mitochondrial transporter of 
long-chain fatty acids and rate limiting step to -oxidation— 
increases CD8 memory T cell numbers after infection (van der 
Windt et al., 2012). During an immune response, common  
chain cytokines like IL-15 and IL-7 have an essential role in 
supporting catabolic metabolism by promoting mitochondrial 
biogenesis, CPT1a expression, and FAO (van der Windt et al., 
2012). As a result, memory T cells have increased mitochon-
drial mass and greater spare respiratory capacity (SRC) com-
pared with naive and effector T cells, which endows them with 
a bioenergetic advantage for survival and recall after antigen 
rechallenge (van der Windt et al., 2012, 2013; Gubser et al., 
2013). Interestingly, a study investigating heterologous prime-
boost vaccination found that memory T cell differentiation is 
hastened and enhanced after secondary or tertiary immuniza-
tion, including acquisition of substantially greater mitochon-
drial mass and SRC (Fraser et al., 2013). In a sense, memory 
T cells are metabolically primed and ready to respond to second-
ary infections. This idea has recently been extended to innate 
immune cells under the novel concept of trained immunity, 
whereby metabolic priming confers superior immunity to a 
secondary pathogenic insult (Cheng et al., 2014). Previous en-
gagement of aerobic glycolysis in monocytes driven by mTOR 
and HIF-1 was found to induce epigenetic modifications that 
endowed them with enhanced function against other infec-
tions (Cheng et al., 2014).

The specific role of FAO in promoting memory T cell de-
velopment and survival remains to be elucidated, but it appears 
that metabolic reprogramming associated with FAO enhances 
mitochondria-associated processes. Induction of FAO in mem-
ory T cells enhances SRC, which is the reserve capacity of mi-
tochondria to produce energy over and above normal energy 
outputs (van der Windt et al., 2012). This parameter is probably 
important for the longevity of memory T cells, especially in 
times of stress or nutrient restriction, conditions that may pres-
ent themselves when infection is resolved and growth factor 
signals are scarce. Surprisingly, endothelial cells, unlike most 
other cell types, use carbon derived from FAO for nucleotide 
synthesis and proliferation (Schoors et al., 2015), providing an-
other way in which FAO supports cell function.

et al., 2014). Given that the demand for energy is high in these 
cells, it is likely that they need some metabolic flexibility in 
their fuel sources, an idea that is consistent with recent work 
highlighting the importance of adenosine monophosphate-
activated protein kinase (AMPK) in effector T cell function 
(Blagih et al., 2015). The extent to which FAO occurs in ef-
fector T cells is likely to be highly context dependent, in part 
due to the heterogeneity of this population of cells during an 
immune response. Studies using animal models of graft versus 
host disease (GvHD) have found that alloreactive T cells in-
crease fatty acid uptake and enhance FAO compared with other 
effector T cells (Gatza et al., 2011; Byersdorfer et al., 2013; 
Glick et al., 2014). Suppressing Akt during activation can induce 
a metabolic profile suggestive of FAO utilization (Crompton 
et al., 2015), and culturing CD8 effector T cells in low glu-
cose enhances FAO (O’Sullivan et al., 2014). A recent report 
also found that inhibition of T cell signaling through ligation 
of PD-1 induces changes in the metabolic profile of activated 
T cells, including decreased aerobic glycolysis and enhanced 
FAO (Patsoukis et al., 2015). Collectively, these data suggest 
that the utilization of FAO in effector T cells may be influ-
enced by several factors, such as activation state, exposure to 
antigen, inflammatory signals, and microenvironmental nutri-
ent availability.

Memory T cell metabolism
Effector T cell populations contract after pathogen clearance 
and undergo apoptosis, leaving behind a small population of 
long-lived memory T cells that can respond vigorously upon 
antigen rechallenge (Williams and Bevan, 2007). Although 
both naive and memory T cells acquire effector functions 
upon activation, memory T cells have an accelerated response 
to antigen, proliferate faster, and produce more cytokines than 
their naive counterparts. Work from our laboratory and others 
has shown that changes in metabolism also drive memory  
T cell development (Fig. 1; Araki et al., 2009; Pearce et al., 2009; 
Rao et al., 2010).

AMPK and mTOR. Increases in intracellular AMP-to-ATP 
concentrations activate the energy stress sensor AMPK, a signal 
that also promotes FAO (Jones and Thompson, 2007). AMPK 
is important for the development of memory T cells, and 
administration of the metabolic stressor and AMPK activator 
metformin enhances the generation of memory T cells after 
infection (Pearce et al., 2009; Rolf et al., 2013). In addition, 
AMPK allows for effector T cells to metabolically adapt during 
nutrient stress and modulates T cell effector function through 
suppression of mTOR (Tamás et al., 2006; MacIver et al., 2011; 
Blagih et al., 2015). Inhibiting mTOR with rapamycin boosts 
memory T cell development in vivo (Araki et al., 2009; Pearce 
et al., 2009; Rao et al., 2010). Loss of the mTORC1-negative 
regulator TSC1 compromises formation of memory T cell pre-
cursors that are present during the primary effector response 
(Kaech et al., 2003; Shrestha et al., 2014). Similarly, suppressing 
mTORC2 fosters memory T cell generation (Pollizzi et al., 
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histone acetylation after antigen-driven stimulation (Avni et al., 
2002; Fields et al., 2002). The actions of the transcription fac-
tor FoxP3 in directing T reg cell development are controlled 
through opposing activities of the HATs p300 and TIP60, and 
the HDAC Sirtuin1 (Sirt1; Li et al., 2007; Tao et al., 2007;  
van Loosdregt et al., 2010; Beier et al., 2011). Acetylation also  
affects the activity of circadian clock proteins, and reciprocally, 
the circadian acetylome has been found to regulate the epi
genome and mitochondrial metabolic pathways (Koike et al., 
2012; Lu and Thompson, 2012; Masri et al., 2013). Organisms 
rely on the cell autonomous transcription–translation oscilla-
tor loop managed by solar time to accommodate physiologi-
cal changes brought about by the daily pattern of rest, activity, 
and feeding (Curtis et al., 2014). The circadian clock also in 
part regulates Th17 cell development (Yu et al., 2013). Circa-
dian rhythm controls nutrient acquisition and metabolic flux, 
and it will be interesting to see how the body’s internal clock 
may connect to lymphocyte metabolism, regulation, and func-
tion (Rey and Reddy, 2013).

Intermediates from glucose catabolism can be converted 
into substrates that are needed to support cell growth and pro-
liferation. Recent studies of one-carbon metabolism in cancer 
research involving the serine and glycine biosynthetic path-
ways may have implications for T cell metabolism, given the 
many common features shared between activated T cells and 
proliferating cancer cells. Although the role of one-carbon me-
tabolism in generating units for nucleic acid synthesis from 
folate has long been appreciated, it was more recently recog-
nized that this pathway is an important source of NADPH 
to maintain redox balance and methyl groups for methylation 
(Locasale, 2013; Fan et al., 2014). For example, depletion of 
methylenetetrahydrofolate dehydrogenase (MTHFD) in can-
cer cells results in a decreased cellular NADPH/NADP+ ratio 
and increased oxidized glutathione, enhancing sensitivity to 
oxidative stress (Fan et al., 2014). Serine and glycine metabo-
lism also have a vital role in cell survival under harsh environ-
mental conditions of nutrient scarcity and hypoxia (Kim et al., 
2015a). Tumors foster these conditions, but tumor cells are 
able to survive and function under these stressors. A recent 
study found that increased expression of mitochondrial serine 
hydroxymethyltransferase and glycine decarboxylase confer a 
survival advantage for glioma cells by allowing them to lower 
their oxygen consumption and metabolize toxic molecules in 
the tumor microenvironment (Kim et al., 2015a). T cells also 
migrate and travel to sites of infection or tumors and must 
adapt to these hypoxic or nutrient-depleted environments 
(Pearce et al., 2013). It remains to be explored whether these 
metabolic pathways support lymphocyte survival by similar 
mechanisms or have evolved to serve other purposes.

Another area of interest is how substrate availability affects 
T cell differentiation and their functional fate. Studies investi-
gating the relationship between the gut microbiome and lym-
phocytes have found that metabolites produced by commensal 
bacteria have important implications for maintaining immune 
cell gastrointestinal homeostasis and defense against pathogens. 
Short chain fatty acids such as butyrate, acetate, and propionate 

Another unexpected discovery was that memory T cells 
preferentially use de novo FAS to fuel FAO (O’Sullivan et al., 
2014). Specifically, CD8 memory T cells use glucose to pro-
duce triacylglycerides (TAGs) that are subsequently hydro-
lyzed by lysosomal acid lipase (LAL) to support mitochondrial 
FAO (O’Sullivan et al., 2014). It was also recently shown that 
glucose metabolism is critical for CD4 memory T cell sur-
vival, and this is controlled by Notch signaling (Maekawa et al., 
2015). The requirement for FAS in CD8 memory T cells is 
supported by a recent study showing that glycerol import into 
the cell via IL-7–induced aquaporin-mediated transport is 
required for memory T cell longevity (Cui et al., 2015). Glycerol 
is the molecular backbone for TAGs. Aquaporin 9 (AQP9)-
deficient T cells had reduced glycerol import and TAG syn-
thesis and impaired memory T cell survival after viral infection 
(Cui et al., 2015).

The reasons why CD8 memory T cells synthesize and then 
catabolize fatty acids in an apparently futile cycle rather than 
simply acquire extracellular fatty acids are not understood. 
However, this synthesis/catabolism cycle has also been shown 
to occur in muscle and adipose tissues (Dulloo et al., 2004; Yu 
et al., 2002). If viewed on a purely energetic level, this process 
appears counter-productive, as there would be no net gain in 
ATP. It is possible that building and burning fatty acids allows 
memory T cells to sustain their glycolytic and lipogenic ma-
chinery while maintaining mitochondrial health during times 
of quiescence, allowing for the rapid recall ability that is char-
acteristic of memory T cells after antigen recognition and ac-
tivation (Gubser et al., 2013; van der Windt et al., 2013). It could 
also potentially provide a mechanism for balancing redox state 
or metabolic intermediates. An energetically futile cycle has 
been described in yeast grown in glucose rich media, whereby 
trehalose cycling provides a buffer system to maintain intra-
cellular phosphate levels and balance glycolytic intermediates 
(van Heerden et al., 2014).

Emerging topics and concluding remarks
It is an exciting time for the field of immunometabolism. 
Although the body of literature surrounding this topic is increas-
ing at an exponential rate, much remains to be explored. We are 
just beginning to understand the many connections between 
metabolism and gene regulation in T cells (Lu and Thompson, 
2012; Wang and Green, 2012; Kaelin and McKnight, 2013; 
Öst and Pospisilik, 2015). Acetyl-CoA and NAD+ generated 
from oxidative metabolism are used for histone acetyltransfer-
ase (HAT) and histone deacetylase (HDAC) activity (Imai and 
Guarente, 2010; Cantó and Auwerx, 2011; Wellen and Thompson, 
2012). Protein acetylation is a reversible PTM that influences 
epigenetic changes mediated by HATs and HDACs and also 
controls the actions of transcription factors and molecular 
chaperones (Glozak et al., 2005). T cell metabolic reprogram-
ming during activation increases cytosolic NAD+ and citrate, 
the precursor of acetyl-CoA, which may direct cell-fate deci-
sions through protein acetylation (Berger et al., 1987). In agree-
ment with this idea, lineage-specific cytokine-encoding genes 
that affect T cell differentiation undergo dynamic changes in 
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microenvironmental factors influence T cell function will pro-
vide further insight into immune cell biology and could lead 
to new approaches to treating human diseases.
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produced by bacteria induce differentiation of colonic T reg 
cells (Furusawa et al., 2013; Smith et al., 2013) and also Th17 
cells under certain conditions (Park et al., 2015). The vitamin A  
metabolite retinoic acid can synergize with TGF- to stimu-
late T reg conversion (Coombes et al., 2007; Denning et al., 
2007; Mucida et al., 2007; Sun et al., 2007; Elias et al., 2008). 
However, vitamin A metabolite deficiency also abrogates Th1 
and Th17 cell immunity (Hall et al., 2011) and, more recently, 
was found to diminish type 3 innate lymphoid cells (ILC3s), 
but expand ILC2 cells (Spencer et al., 2014). Lymphocytes 
can also regulate whole body metabolism by affecting the tissues 
in which they reside. ILC2s can promote beiging of white 
adipose tissue and control caloric expenditure through secre-
tion of methionine-enkephaline peptides (Brestoff et al., 2015). 
Loss of insulin sensitivity as a result of inflammation of adi-
pose tissue in obesity and type 2 diabetes results in part from 
deficiencies in adipose tissue-specific T reg cell populations 
controlled by the transcriptional regulator PPAR- (Feuerer 
et al., 2009; Cipolletta et al., 2012). These are just a few exam-
ples of what remains to be explored in the interplay between 
lymphocytes, their environment, and metabolism.

In the development of novel therapeutics for the treat-
ment of human disease, targeting T cell metabolism provides 
a unique opportunity to manipulate T cell function (O’Sullivan 
and Pearce, 2015). For example, it has been demonstrated that 
compared with Th1 and T reg cells, Th17 cells have elevated 
pyruvate dehydrogenase kinase 1 (PDK1) expression, which 
promotes aerobic glycolysis through inhibition of pyruvate 
dehydrogenase (PDH). Inhibition of PDK1 using dichloro
acetate (DCA) selectively impairs Th17 proliferation and sur-
vival and reduces T cell–mediated inflammation in models of 
inflammatory bowel disease and EAE (Gerriets et al., 2015). 
Targeting trophic transporters on T cells may also provide a 
way in which to manipulate T cell function through altering 
their nutrient uptake; for example, JPH203, which inhibits 
amino acid transporter Slc7a5, could be used to inhibit in-
flammatory T cells without impairing T reg cell function 
(Hayashi et al., 2013; Sinclair et al., 2013). In the context of 
cancer, the development of adoptive cellular immunothera-
pies using in vitro–expanded tumor infiltrating lymphocytes 
(TILs) could benefit from tailoring culture conditions to op-
timize TIL metabolism before transfer into the patient (Restifo 
et al., 2012). Exaggerated glycolysis and cell size resulting 
from in vitro expansion conditions, such as high glucose, can 
be detrimental to TIL survival and persistence in vivo, and strate-
gies to limit glycolysis directly or suppress Akt activation in TILs  
have already shown promising results in this context (Sukumar 
et al., 2013; Crompton et al., 2015). Inhibiting glycolysis and 
oxidative metabolism with 2-DG and metformin may also 
hold therapeutic potential in other disease settings as high-
lighted by a recent study using models of system lupus ery-
thematosus (Yin et al., 2015).

It is apparent that many diverse processes integrate with 
lymphocyte signaling, gene regulation, and function to shape 
T cell metabolism. Understanding the metabolic regulation 
that dictates T cell fate and how nutrient availability and 
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