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T cell–specific co-stimulation blockade is an 
attractive alternative to traditional immunosup-
pression to mitigate unwanted immune responses 
during transplantation and autoimmunity. Owing 
to the limited tissue distribution of its targets,  
T cell co-stimulation blockade offers a poten-
tial advantage over calcineurin inhibitors (CNI) 
in that it is associated with lower nephrotoxic-
ity, hyperlipidemia, and development of type 2 
diabetes (Vincenti et al., 2005, 2010a,c, 2012; 
Durrbach et al., 2010; Larsen et al., 2010). For 
example, under current CNI-based immuno-
suppressive regimens, the half-life of a trans-
planted kidney is just over 10 yr (Lamb et al., 
2011; Lodhi et al., 2011), and chronic dysfunc-
tion associated with the use of CNIs has been 
causally linked to graft loss. Freedom from these 
off-target toxicities offers a potential quantity 
and quality of life benefit for transplant recipi-
ents. However, the T cell co-stimulation blocker 
belatacept, recently FDA approved for use in 
renal transplantation, is also associated with a 

higher incidence and severity of acute rejection 
as compared with standard CNI-based immuno-
suppression (Vincenti et al., 2010b). Thus, address-
ing the increased incidence of acute rejection  
is an important goal in optimizing the use of  
T cell co-stimulation blockade to improve out-
comes in transplantation.

Accumulating evidence over the last decade 
in models of both autoimmunity and chronic 
viral infection suggests that the outcome of  
T cell activation during priming and recall is 
critically impacted by the constellation of co-
stimulatory and co-inhibitory receptors expressed 
on the surface of those cells (Blackburn et al., 
2009; Crawford and Wherry, 2009). However, 
how the balance of signals from co-stimulatory 
and co-inhibitory molecules affects primary 
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Mounting evidence in models of both autoimmunity and chronic viral infection suggests 
that the outcome of T cell activation is critically impacted by the constellation of co-
stimulatory and co-inhibitory receptors expressed on the cell surface. Here, we identified a 
critical role for the co-inhibitory SLAM family member 2B4 (CD244) in attenuating pri-
mary antigen-specific CD8+ T cell responses in the presence of immune modulation with 
selective CD28 blockade. Our results reveal a specific up-regulation of 2B4 on antigen-
specific CD8+ T cells in animals in which CD28 signaling was blocked. However, 2B4 up-
regulation was not observed in animals treated with CTLA-4 Ig (abatacept) or CD28 
blockade in the presence of anti–CTLA-4 mAb. 2B4 up-regulation after CD28 blockade was 
functionally significant, as the inhibitory impact of CD28 blockade was diminished when 
antigen-specific CD8+ T cells were deficient in 2B4. In contrast, 2B4 deficiency had no 
effect on CD8+ T cell responses during unmodified rejection or in the presence of CTLA-4 Ig. 
We conclude that blockade of CD28 signals in the presence of preserved CTLA-4  
signals results in the unique up-regulation of 2B4 on primary CD8+ effectors, and that this 
2B4 expression plays a critical functional role in controlling antigen-specific CD8+  
T cell responses.
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model demonstrated that the graft-prolonging effects of 
sc28AT were CTLA-4 dependent (Zhang et al., 2011). 
However, a mechanistic understanding of the effects of selec-
tive CD28 blockade in transplantation and autoimmunity is 
lacking. Here, we used a TCR transgenic model of minor 
antigen disparity to specifically identify and characterize 
donor-reactive T cell responses after transplantation to inter-
rogate the ability of a novel domain antibody (dAb) that selec-
tively blocks CD28 to alter T cell programming by impacting 
the subsequent expression of other co-stimulatory and co- 
inhibitory molecules on antigen-specific T cell responses. Our 
results indicate that the enhanced efficacy of selective CD28 
blockade in prolonging graft survival as compared with 
CTLA-4 Ig is dependent on the specific up-regulation of the 
2B4 co-inhibitor on antigen-specific CD8+ T cell responses 
after transplantation.

RESULTS
Selective CD28 blockade results in superior graft survival  
as compared with CTLA-4 Ig, where both CD28 co-stimulatory 
and CTLA-4 co-inhibitory signals are blocked
To test the hypothesis that selective CD28 blockade with 
preserved CTLA-4 co-inhibitory signals may result in en-
hanced prolongation of graft survival after transplantation, 
we made use of a novel recombinant domain antibody 
specific for CD28, which contains only the antigen-binding 
V variable domain and lacks an Fc domain. To test the 
efficacy of this anti-CD28 dAb in inhibiting donor-reactive 
T cell responses in a fully MHC disparate model of endog-
enous polyclonal alloreactivity, B6 recipients of BALB/c 
skin grafts were treated with CTLA-4 Ig or CD28 dAb in 
the presence of anti-CD154 mAb (Fig. 1 A). As previously 
reported (Ford et al., 2007), the median survival time 
(MST) of animals treated with CTLA-4 Ig and anti-CD154 
was 32 d, significantly longer than that of untreated ani-
mals (MST 14 d). In contrast, 100% of the animals treated 
with the CD28 dAb in the presence of anti-CD154 exhib-
ited graft survival of >50 d. To compare the effects of selec-
tive CD28 blockade in the absence of the additional immune 
modulation provided by the anti-CD154, we assessed skin 
graft rejection in a published model of minor antigen dis-
parity (Fig. 1 B; Ehst et al., 2003). B6 recipients were grafted 
with skin from OVA-expressing transgenic donors, which 
results in rejection in control V dAb-treated animals with 
an MST of 19 d (Fig. 1 C; Ford et al., 2007). Rejection in 
CTLA-4 Ig-treated recipients was prolonged to 34 d. In 
contrast, treatment of graft recipients with the anti-CD28 
dAb resulted in better long-term graft survival (MST > 
100 d; Fig. 1 C). To confirm the specificity of this reagent 
for CD28, B6 splenocytes were incubated with increasing 
doses of an unlabeled control V dAb or an unlabeled 
anti-CD28 dAb, and then stained with a FITC-conjugated 
anti-CD28 mAb (clone E18) that competes with anti-CD28 
dAb for binding to CD28. Results demonstrated a titratable 
reduction in fluorescence with increasing concentrations 

and secondary responses in transplantation is not well under-
stood, and new knowledge in this area is needed to facilitate 
therapeutic manipulation of the anti-donor T cell response. 
One such co-inhibitory molecule recently identified as being 
expressed on exhausted cells after chronic viral infection is 
2B4 (CD244, SLAMf4), a 38-kD type I transmembrane pro-
tein and member of the CD2 subset of the immunoglobulin 
superfamily molecules (Lee et al., 2004; Vaidya et al., 2005). 
2B4 is expressed on NK cells, monocytes, basophils, and eo-
sinophils, and is inducibly expressed on a subset of CD8+  
T cells in both mice and humans (Rey et al., 2006; Wherry et al., 
2007; Blackburn et al., 2009; Bengsch et al., 2010; Raziorrouh 
et al., 2010; Waggoner et al., 2010; Wang et al., 2010). In NK 
cells, 2B4 has been reported to have both activating and in-
hibitory functions (Laouar et al., 2007); however recent evi-
dence in both murine and human models indicates that its 
role in T cells is co-inhibitory. 2B4 expression is reduced in 
patients with systemic lupus erythematosus (SLE; Kim et al., 
2010), and 2B4 deficiency in mice resulted in spontaneous 
development of a SLE-like disease in autoimmune-prone  
genetic backgrounds (Brown et al., 2011). However, the regu-
lation of expression of this co-inhibitor is not well under-
stood, particularly with regard to how the balance of initial 
co-stimulatory and co-inhibitory signals during T cell activa-
tion impacts 2B4 expression to further fine-tune the response.

Understanding how this initial balance of co-stimulatory 
and co-inhibitory signals impacts T cell responsiveness is par-
ticularly clinically relevant because both T cell co-stimulation 
blockers that are currently approved for use in transplantation 
(belatacept) and autoimmunity (abatacept) are CTLA-4-Ig 
fusion proteins that bind both CD80 and CD86, thus inhib
iting both co-stimulatory signaling through CD28 as well  
as co-inhibitory signaling through CTLA-4 (Salomon and 
Bluestone, 2001). In this study, we used a novel domain anti-
body that selectively blocks CD28 while leaving CTLA-4 sig-
nals intact to dissect how the balance of CD28 co-stimulatory 
and CTLA-4 co-inhibitory pathways engaged during T cell 
activation impacts the subsequent expression of additional 
co-stimulatory and co-inhibitory molecules on donor- 
reactive T cell responses after transplantation. Therapeutic 
use of anti-CD28 antibody was previously attempted in the 
TGN1412 study, in which an agonistic anti-CD28 Fc-intact 
monoclonal antibody resulted in massive T cell activation and 
“cytokine storm” in a Phase I clinical trial (Suntharalingam  
et al., 2006). This study highlighted the complexities of  
developing CD28-specific blocking reagents (Waibler et al., 
2008a,b). However, recent advances in the development of 
novel domain antibodies, in which the Fc portion is com-
pletely absent, have allowed the development of novel block-
ing, nonactivating reagents to safely and specifically block 
CD28 co-stimulatory signals, while leaving CTLA-4 co- 
inhibitory signals intact. Recent work has shown that sc28AT, 
a monovalent CD28-specific fusion antibody modestly 
prolonged cardiac and renal allograft survival in nonhuman 
primates (NHP) as monotherapy and was more effective in 
combination with CNIs (Poirier et al., 2010). Work in a murine 
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mAb that induced cross-linking. As shown in Fig. 1 F, 
whereas the LPS-injected positive controls contained serum 
IL-6, TNF, and MCP-1 levels in the range of 103–104 pg/ml, 
serum cytokine levels detected in recipients of anti-CD28 
dAb were similar to those observed in uninjected negative 
control animals.

Donor-reactive CD4+ and CD8+ T cell accumulation  
and differentiation are more profoundly attenuated  
by selective CD28 blockade than by CTLA-4 Ig
To more precisely quantify the effects of selective CD28 
blockade on donor-reactive T cell responses, we used a TCR 
tg system in which OVA-specific CD4+ and CD8+ congeni-
cally labeled Thy1.1+ T cells are adoptively transferred into 
naive B6 animals which are then challenged with OVA- 
expressing skin grafts (Fig. 1 B). Mice were then treated with 

of anti-CD28 dAb (Fig. 1 D). In addition, we assessed the de-
gree of CD28 blockade in vivo in animals treated with the dose 
used in the aforementioned transplant experiments (Fig. 1 E).  
Animals were treated with 100 µg of control or anti-CD28 
dAb and splenocytes were harvested and stained with the 
same competitive anti-CD28 mAb (clone E18). Results indi-
cated that, at the dose used, the anti-CD28 dAb successfully 
blocked CD28. Lastly, we confirmed that this anti-CD28  
dAb is devoid of the cross-linking–induced cytokine storm 
that was associated with TGN1412, the super-agonist anti-
CD28 mAb that resulted in major morbidity in a pilot clinical 
trial (Suntharalingam et al., 2006; Waibler et al., 2008a,b).  
Animals were injected with anti-CD28 dAb (or LPS as a pos-
itive control) and serum cytokine levels were measured 6 h 
after injection, the time point at which cytokine storm  
began in the human recipients of the TGN1412 anti-CD28 

Figure 1.  Selective CD28 blockade results in 
superior graft survival as compared with 
CTLA-4 Ig, where both CD28 co-stimulatory 
and CTLA-4 co-inhibitory signals are blocked. 
(A) B6 recipients of BALB/c skin grafts were 
treated with CTLA-4 Ig or anti-CD28 dAb in the 
presence of anti-CD154 mAb on days 0, 2, 4, and 6, 
and then three times per week continuously 
thereafter until day 50, as described in the Mate-
rials and methods. Anti-CD154 alone–treated 
animals (red line, control) served as negative con-
trols. MST of control-treated animals was 14 d 
and MST of animals treated with CTLA-4 Ig and 
anti-CD154 was 32 d. MST of animals treated 
with anti-CD28 dAbs and anti-CD154 > 50 d  
(P = 0.0013 as compared with CTLA-4 Ig/anti-CD154;  
n = 5/group). (B) Experimental design of TCR 
transgenic model of minor antigen disparity 
wherein 106 Thy1.1+ OT-I and 106 Thy1.1+ OT-II  
T cells were adoptively transferred into naive B6 
recipients, which were then challenged with an 
OVA-expressing skin graft in the presence of  
either control dAb, CTLA-4 Ig, or anti-CD28 dAb, 
which were dosed on days 0, 2, 4, and 6 and then 
three times per week continuously thereafter as 
described in Materials and methods. (C) Graft 
survival data from the experimental design de-
picted in B. Control dAb and CTLA-4 Ig-treated 
animals rejected their grafts with MSTs of 19 and 
34 d, respectively, and anti-CD28 dAb-treated 
animals exhibited an MST of >100 d (P < 0.0001 
compared with CTLA-4 Ig; n = 8–10 animals/
group for all groups). (D) Splenocytes were incu-
bated with increasing doses of the CD28 dAb and 
a control dAb, and then secondarily stained with 
a fluorophore-conjugated anti-CD28 mAb com-
petitive with the anti-CD28 dAb for CD28 to  

assess blockade in vitro. Data shown are representative of three independent experiments. (E) Similarly, mice were injected with 100 µg of anti-CD28 dAb 
or control dAb and their splenocytes were harvested 3 h later to assess in vivo CD28 blockade. Splenocytes from each mouse were stained with the 
same anti-CD28 mAb competitive for CD28. A sample without the secondary anti-CD28 antibody was included as an additional control (shaded blue).  
(F) To evaluate for cytokine release after anti-CD28 dAb administration, mice were injected with anti-CD28 dAb (100 µg) or LPS (20 µg) as a positive control. 
Serum cytokine levels were measured at baseline before injection (no treatment) and 6 h after injection (n = 3 per group, error bars SEM). *, P < 0.05; ***, P < 0.001.
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effect of selective CD28 blockade on the effector function of 
antigen-specific CD4+ T cells, and found that CD28 block-
ade in the presence of preserved CTLA-4 signals did not re-
sult in a further reduction in IL-2 production (as measured by 
intracellular cytokine staining) beyond that observed with 
CTLA-4 Ig (Fig. 2 F).

Analysis of donor-reactive CD8+ T cell responses re-
vealed similar results. However, consistent with previously 
published studies (Trambley et al., 1999; Coley et al., 2009), 
we observed that CTLA-4 Ig less adequately suppressed 
donor-reactive CD8+ T cells when compared with the effect 
on alloreactive CD4+ T cells, suggesting that CD8+ T cells 
may be responsible for co-stimulation blockade-resistant 
breakthrough rejection. In contrast, selective CD28 block-
ade resulted in a much more profound diminution of the 
donor-reactive CD8+ T cell response (Fig. 3, A–C). As ob-
served with donor-reactive CD4+ responses, selective CD28 
blockade resulted in significantly impaired differentiation  
of naive CD44lo CD62Lhi cells into CD44hi CD62Llo  

a control V dummy dAb, anti-CD28 dAb, or CTLA-4 Ig as 
described in Materials and methods and sacrificed at 10 d after 
transplant, which we have previously shown is the peak of the 
donor-reactive T cell response in this system (Ford et al., 2007). 
Draining lymph nodes were assessed for the expansion, dif-
ferentiation, and effector functions of donor-reactive CD4+ 
and CD8+ T cells. Results indicated that although frequencies 
and absolute numbers of donor-reactive CD4+ T cell responses 
were effectively reduced in CTLA-4-Ig–treated animals as ex-
pected (Ford et al., 2008), there was a significant further re-
duction in anti-donor CD4+ T cell responses in the presence 
of selective CD28 blockade (Fig. 2, A–C). Further examina-
tion of the phenotype of these cells revealed that selective 
CD28 blockade resulted in significantly impaired differentia-
tion of naive CD44lo CD62Lhi cells into CD44hi CD62Llo  
effectors as compared with CTLA-4 Ig (Fig. 2, D and E). 
These results suggest that the provision of CTLA-4 signals in 
the absence of CD28 signals further impedes differentiation 
of naive CD4+ T cells into effector cells. We next assessed the 

Figure 2.  Donor-reactive CD4+ T cell 
accumulation and differentiation are more 
profoundly attenuated by selective CD28 
blockade versus CTLA-4 Ig. 106 Thy1.1+ OT-I 
and 106 Thy1.1+ OT-II T cells were adoptively 
transferred into naive B6 recipients, which 
were then challenged with an OVA-expressing 
skin graft in the presence of control V dAb, 
CTLA-4 Ig, or anti-CD28 dAb, and then dosed 
on days 0, 2, 4, and 6 and three times per 
week continuously thereafter, as described in 
the Materials and methods. (A) Assessment of 
frequencies of donor-reactive CD4+ Thy1.1+  
T cells on day 10 after transplant in draining 
lymph nodes. Data shown are representative 
and gated on CD4+ T cells. (B and C) Summary 
data of 3 independent experiments with a 
total of 8–10 mice per group. Frequencies (B) 
and absolute numbers (C) of CD4+ Thy1.1+  
T cells in anti-CD28 dAb-treated animals as 
compared with CTLA-4 Ig-treated animals 
(B, P = 0.0031; C, P = 0.00185). (D) Analysis of 
CD44 and CD62L expression on CD4+ Thy1.1+ 
T cells in DLN on day 10 after transplant. Data 
shown are representative. (E) Summary data 
of 3 independent experiments with a total of 
8–10 mice per group (P = 0.0004). (F) IL-2 
production by CD4+ Thy1.1+ T cells isolated 
from DLN on day 10 after transplant after ex vivo 
restimulation with OVA 323–339 (P < 0.0001). 
**, P < 0.01; ***, P < 0.001.
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CD28 co-stimulatory blockade in the presence  
of CTLA-4 signals results in diminished ICOS  
expression and enhanced 2B4 expression
To determine why donor-reactive CD8+ T cell responses were 
more profoundly inhibited after treatment with anti-CD28 dAb 
as compared with CTLA-4 Ig, we examined the phenotype of 
donor-reactive CD8+ T cells under both treatment conditions. 
We observed two important differences between these groups. 
First, we observed that although CTLA-4 Ig treatment resulted 
in only a modest reduction in the up-regulation of the inducible 
co-stimulatory molecule ICOS relative to untreated animals at 
day 10 after transplant, treatment with anti-CD28 dAb resulted 
in a significantly greater reduction in up-regulation on both 
CD4+ and CD8+ donor-reactive T cells (Fig. 4, A and B). We 
confirmed that this reduction in ICOS detection in anti-CD28 
dAb-treated recipients was not simply the result of antibody 
cross-reactivity (unpublished data). These data suggest that  
the subsequent transmission of inducible co-stimulatory signals 

effectors as compared with CTLA-4 Ig (Fig. 3, C and D). 
These results suggest that, as observed in CD4+ T cell re-
sponses, the provision of CTLA-4 signals in the absence of 
CD28 signals further impede differentiation of CD8+ T cells 
into effector cells. To further investigate the impact of selec-
tive CD28 blockade on effector status, we examined the 
ability of donor-reactive CD8+ T cells to produce IFN- and 
TNF after ex vivo restimulation with cognate antigen. Re-
sults demonstrated a similar reduction in the frequency of 
cytokine-producing effector cells in animals treated with 
CTLA-4 Ig as compared with anti-CD28 dAb (Fig. 3, E and F). 
Overall, these results suggest that selective blockade of CD28 
co-stimulatory signals in the presence of intact CTLA-4 co-
inhibitory signals more profoundly inhibits the expansion 
and differentiation (but not effector function) of the donor-
reactive CD8+ T cell responses known to be a major media-
tor of co-stimulation blockade-resistant rejection (Trambley 
et al., 1999).

Figure 3.  Donor-reactive CD8+ T cell 
accumulation and differentiation are more 
profoundly attenuated by selective CD28 
blockade versus CTLA-4 Ig. 106 Thy1.1+ OT-I 
and 106 Thy1.1+ OT-II T cells were adoptively 
transferred into naive B6 recipients, which 
were then challenged with an OVA-expressing 
skin graft in the presence of control V dAb, 
CTLA-4 Ig, or anti-CD28 dAb, and then dosed 
on days 0, 2, 4, and 6 and three times per 
week continuously thereafter, as described in 
the Materials and methods. (A) Assessment of 
frequencies of donor-reactive CD8+ Thy1.1+  
T cells on day 10 after transplant in draining 
lymph nodes. Data shown are representative 
and gated on CD8+ T cells. (B) Summary data 
of three independent experiments with a total 
of 8–10 mice per group. Frequencies (P = 
0.0185) and absolute numbers (P = 0.0021) 
are shown. (C) Analysis of CD44 and CD62L 
expression on CD8+ Thy1.1+ T cells in DLN on 
day 10 after transplant. Data shown are rep-
resentative. (D) Summary data of 3 indepen-
dent experiments with a total of 8–10 mice 
per group. (P = 0.0004). (E) IFN- and TNF 
production by CD8+ Thy1.1+ T cells isolated 
from DLN on day 10 after transplant after  
ex vivo restimulation with SIINFEKL. (F) IFN- 
production in both CTLA-4 Ig– and anti–CD28 
dAb-treated animals is shown relative to con-
trol V dAb-treated animals (P < 0.0001).  
*, P < 0.05; **, P < 0.01; ***, P < 0.001.

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/211/2/297/1750744/jem
_20130902.pdf by guest on 09 February 2026



302 CD28 blockade requires 2B4 up-regulation | Liu et al.

were available. Thus, based on the altered profile of positive 
and negative regulatory receptors on donor-reactive CD8+  
T cells in which CD28 is selectively blocked, as compared 
with cells in which both CD28 and CTLA-4–mediated sig-
nals were attenuated, we conclude that selective CD28 block-
ade alters CD8+ T cell programming by skewing the balance of 
co-stimulatory and co-inhibitory molecule expression.

2B4 is also up-regulated on endogenous,  
polyclonal alloreactive CD8+ T cells  
after treatment with anti-CD28 dAb
To confirm the aforementioned findings in a more physio-
logically relevant fully allogeneic system, we used an MHC-
mismatched skin graft model where BALB/c skin grafts were 

through ICOS are more greatly diminished under conditions in 
which CD28 co-stimulatory signals are blocked but CTLA-4 
co-inhibitory signals are maintained, as compared with when 
both co-stimulatory and co-inhibitory signals are blocked.

Second, CD8+ T cells from mice treated with anti-
CD28dAb exhibited a significant and selective increase in the 
expression of the co-inhibitory receptor 2B4 (Fig. 4, C and D). 
2B4 up-regulation occurred specifically on antigen-specific 
CD8+ T cells in animals treated with selective CD28 block-
ade and was not observed on antigen-specific CD4+ T cells 
in these recipients (Fig. 4 D). Importantly, expression of 
CTLA-4 was not altered in any of the treatment groups  
(Fig. 4 D), suggesting that co-inhibitory signals through this 
receptor could still be transmitted if CD80/CD86 ligands 

Figure 4.  CD28 co-stimulatory blockade 
in the presence of CTLA-4 signals results 
in reduced up-regulation of ICOS and 
increased expression of the co-inhibitor 
2B4. 106 Thy1.1+ OT-I and 106 Thy1.1+ OT-II  
T cells were adoptively transferred into naive B6 
recipients, which were then challenged with 
an OVA-expressing skin graft in the presence 
of control dAb, CTLA-4 Ig, or anti-CD28 dAb, 
and then dosed on days 0, 2, 4, and 6 and 
three times per week continuously thereafter, 
as described in the Materials and methods. 
Graft-draining LNs were harvested on day 10 
after transplant and analyzed by flow cytom-
etry. (A) ICOS expression on naive donor-
reactive T cells (gray) or donor-reactive CD4+ 
and CD8+ T cells isolated from control V dAb 
dAb-treated animals (red), CTLA-4 Ig-treated 
animals (green), and anti-CD28 dAb-treated 
animals (blue). Data shown are representative 
and gated on CD4+ Thy1.1+ cells (top) and 
CD8+ Thy1.1+ cells (bottom). (B) Summary 
data from 3 independent experiments with  
8–10 animals per group. CD4+ T cells, P = 
0.0079; CD8+ T cells, P = 0.0317. (C) Up- 
regulation of 2B4 on donor-reactive CD8+ T cells 
isolated from untreated animals (red), CTLA-4 
Ig-treated animals (green), or anti-CD28 dAb-
treated animals (blue). Naive CD8+ T cells are 
shown in black. Data shown are representa-
tive and gated on CD8+ Thy1.1+ cells.  
(D) Summary data from 3 independent experi-
ments with 8–10 animals per group. 2B4 ex-
pression on CD8+ T cells isolated from animals 
treated with anti-CD28 dAb as compared with 
control V dAb or CTLA-4 Ig (P < 0.05).  
*, P < 0.05; **, P < 0.01.
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and show that in a more physiological, fully allogeneic set-
ting, selective CD28 blockade functions to up-regulate 2B4 
on alloreactive CD8+ T cells.

Increased efficacy and 2B4 up-regulation  
after selective CD28 blockade is mediated  
by CTLA-4– but not PD-L1–mediated signals
To directly test the hypothesis that preserved CTLA-4 co-
inhibitory signals are required for the observed increased  
efficacy of the anti-CD28 dAb, including the observed up-
regulation of 2B4, we conducted experiments in which anti-
CD28 dAb was given in the presence of anti–CTLA-4 
blocking antibodies. As shown in Fig. 6, blockade of CTLA-4 
signals significantly impaired the efficacy of anti-CD28 
dAb, both in terms of its ability to inhibit donor-reactive 
CD4+ (Fig. 6, A and C) and CD8+ (Fig. 6, B and D) T cell 
responses, and its ability to inhibit cytokine production in 
those cells (Fig. 6, E and F). Blocking CTLA-4 co-inhibitory 
signals also restored ICOS expression on both CD4+ and 
CD8+ graft-specific T cells (Fig. 6 G) treated with anti-CD28 
dAb, and importantly, reduced the expression of 2B4 on 
donor-reactive CD8+ T cells back down to baseline levels 
(Fig. 6, H and I).

The interaction of CD80 with the alternate ligand PD-L1 
has also been shown to be co-inhibitory for T cells (Butte  
et al., 2007). By targeting CD28 instead of CD80/CD86, 
CD80 is theoretically free to bind PD-L1, thus we sought to 
determine whether this interaction might also play a role in 
the observed superiority of the anti-CD28 Ab. To directly  
test the role of the PD-L1 pathway in the efficacy of selec-
tive CD28 blockade, animals were treated with anti-CD28  
dAb in the presence or absence of anti–PD-L1 antibody to  
block PD-L1–CD80 interactions after transplantation. Results 
showed that donor-reactive CD4+ (Fig. 7, A and C) and CD8+ 
T cell accumulation (Fig. 7, B and D) and effector function 
(Fig. 7 E) were similarly reduced by anti-CD28dAb whether 
or not PD-L1–B7-1 interactions were blocked, thus suggest-
ing that this interaction is not critical for the observed effi-
cacy of selective CD28 blockade. Likewise, the reduction in 
ICOS expression observed on both CD4+ and CD8+ donor-
reactive T cells was not restored after PD-L1 blockade (Fig. 7 F). 
Thus, along with the data presented in Fig. 6 demonstrating 
that CTLA-4 interactions are critical for the observed effi-
cacy of the anti-CD28 dAb, these data definitively demon-
strate that the increased efficacy of anti-CD28 dAb relative to 
CTLA-4 Ig is dependent on the preservation of CTLA-4 but 
not PD-L1 co-inhibitory signals.

2B4/ CD8+ T cells are relatively resistant  
to the effects of selective CD28 blockade
To determine the role of 2B4 up-regulation in mediating in-
creased allograft survival after selective CD28 blockade, we 
generated donor-reactive CD8+ T cells that were deficient in 
2B4. 2B4/ mice were bred to OT-I Thy1.1+ animals, and 
2B4/ OT-I T cells (along with WT Thy1.1+ OT-II) were 
adoptively transferred into B6 recipients that were then 

placed onto B6 recipients that were treated with anti-CD28 
dAb or left untreated. Animals were sacrificed at day 7 after 
transplant, and as shown in Fig. 5, treatment with anti-CD28 
dAb markedly inhibited the alloreactive CD8+ T cell response 
as assessed by IFN- secretion after ex vivo restimulation 
with irradiated BALB/c stimulators (Fig. 5 A). Importantly, 
we observed a significant increase in the expression of 2B4 
on CD8+ T cells isolated from BALB/c graft recipients that 
were treated with anti-CD28 dAb as compared with untreated 
controls (Fig. 5, B and C). Similarly, we observed a signifi-
cant reduction in the frequency of ICOS+ CD8+ T cells in 
these recipients relative to untreated controls (Fig. 5, D and E). 
These results confirm our findings in the transgenic model 

Figure 5.  2B4 is up-regulated on endogenous, polyclonal alloreac-
tive CD8+ T cells after treatment with anti-CD28 dAb. BALB/c skin 
grafts were placed onto B6 recipients that were treated with 100 µg anti-
CD28 dAb on days 0, 2, 4, and 6 or left untreated. Animals were sacrificed 
at day 7 after transplant. (A) Splenocytes were restimulated for 4 h ex vivo 
with irradiated BALB/c stimulator cells, and intracellular IFN- was as-
sessed. Results indicated significantly fewer CD8+ H-2Kd— IFN-–secreting 
alloreactive T cells in CD28 dAb-treated recipients. (B) 2B4 expression on 
CD8+ T cells in grafted recipients was assessed. Data shown are represen-
tative and gated on CD8+ H-2Kd— cells. (C) Percent 2B4+ of CD8+ T cells.  
(D) ICOS expression on CD8+ T cells in grafted recipients was assessed. 
Data shown are representative and gated on CD8+ H-2Kd— cells. (E) Percent 
ICOS+ of CD8+ T cells. All graphs are summary data from n = 5 animals 
per group (*, P < 0.05).
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that 2B4 deficiency in CD8+ T cells has no effect on the 
donor-reactive primary CD8+ T cell response during un-
modified rejection. These results are consistent with the fact 
that 2B4 is expressed at very low levels on primary antigen-
specific CD8+ T cells in the absence of immune modulation 
(Fig. 4, C and D). In contrast, in the presence of selective 
CD28 blockade, we observed a significant increase in the ac-
cumulation of donor-reactive 2B4/ antigen-specific CD8+ 
T cells as compared with WT CD8+ T cells, demonstrating 
that the efficacy of anti-CD28 dAb in diminishing the expan-
sion of the donor-reactive T cell response was impaired when 
CD8+ T cells lacked 2B4. Similar results were observed after 

challenged with OVA-expressing skin grafts. 2B4/ OT-I  
T cells analyzed before adoptive transfer were phenotypically 
similar to WT OT-I T cells in terms of their expression of the 
activation markers CD44, CD62L, ICOS, and PD-1 (unpub-
lished data). Animals were left untreated or treated with anti-
CD28 dAb, and mice receiving WT OT-I T cells in the 
presence or absence of the same reagents served as controls. 
Mice were sacrificed at 10 d after transplant, and donor- 
reactive Thy1.1+ CD8+ T cells in draining LNs were analyzed. 
Results indicated that accumulation of donor-reactive CD8+ 
Thy1.1+ T cells in untreated animals was similar in those that 
received WT or 2B4/ T cells (Fig. 8, A and B), indicating 

Figure 6.  Increased efficacy and 2B4 up-
regulation after selective CD28 blockade 
is dependent on CTLA-4–mediated signals. 
106 Thy1.1+ OT-I and 106 Thy1.1+ OT-II T cells 
were adoptively transferred into naive B6 
recipients, which were then challenged with 
an OVA-expressing skin graft in the presence 
of control V dAb, anti-CD28 dAb, or anti-
CD28 dAb + anti–CTLA-4 mAb dosed on days 
0, 2, 4, and 6 as described in the Materials and 
methods. (A and B) Assessment of frequencies 
of donor-reactive CD4+ (A) and CD8+ (B) 
Thy1.1+ T cells on day 10 after transplant in 
draining lymph nodes. Data shown are repre-
sentative and gated on CD4+ (A) or CD8+ (B)  
T cells. (C and D) Frequencies and absolute 
numbers of both CD4+ (C) and CD8+ (D) 
Thy1.1+ T cells in anti-CD28 dAb + anti–CTLA-4–
treated animals as compared with animals 
treated with anti-CD28 dAb alone (P = 0.0079 
for CD28 dAb versus CD28 dAb + anti–CTLA-4 
groups). (E and F) IL-2 production by CD4+ 
Thy1.1+ T cells isolated from DLN on day 10 
after transplant after ex vivo restimulation 
with OVA 323–339 (P = 0.0079 for CD28 dAb 
versus CD28 dAb + anti–CTLA-4 groups).  
(F) IFN- and TNF production by CD8+ Thy1.1+ 
T cells isolated from DLN on day 10 after trans-
plant after ex vivo restimulation with SIINFEKL 
(P = 0.0079 for CD28 dAb vs. CD28 dAb +  
anti–CTLA-4 groups). (G) ICOS expression is 
shown on both CD4+ and CD8+ Thy1.1+ T cells 
isolated on day 10 after transplant from anti-
CD28 dAb + anti–CTLA-4 treated animals 
relative to animals treated with anti-CD28 
dAb alone (P = 0.0079). (H and I) 2B4 expres-
sion is shown on CD8+ Thy1.1+ T cells isolated 
on day 10 after transplant from anti-CD28 
dAb + anti–CTLA-4–treated animals relative 
to animals treated with anti-CD28 dAb alone 
(P = 0.0159). All graphs are summary data of 
2 independent experiments with a total of  
8–10 mice per group. *, P < 0.05; **, P < 0.01.
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untreated recipients containing WT vs. 2B4/ OT-I T cells after 
ex vivo restimulation with cognate antigen (Fig. 8, C and E). 
However, in anti-CD28 dAb-treated recipients, the frequencies 

assessment of antigen-specific CD8+ T cell effector function. 
We observed no difference in the frequency of either IFN- 
producers or TNF producers in splenocytes isolated from 

Figure 7.  Increased efficacy and ICOS down-regulation after selective CD28 blockade is independent of PD-L1–mediated signals. 106 Thy1.1+ 
OT-I and 106 Thy1.1+ OT-II T cells were adoptively transferred into naive B6 recipients, which were then challenged with an OVA-expressing skin graft in 
the presence of control V dAb, anti-CD28 dAb, or anti-CD28 dAb + anti-PD-L1 mAb dosed on days 0, 2, 4, and 6 as described in Materials and methods. 
(A and B) Assessment of frequencies of donor-reactive CD4+ (A) and CD8+ (B) Thy1.1+ T cells on day 10 after transplant in draining lymph nodes. Data 
shown representative and are gated on CD4+ (A) or CD8+ (B) T cells. (C and D) Frequencies and absolute numbers of either CD4+ (C) or CD8+ (D) Thy1.1+  
T cells in anti-CD28 dAb + anti-PD-L1 treated animals as compared with animals treated with anti-CD28 dAb alone are shown. (E) Cytokine production by 
CD4+ (IL-2) or CD8+ (IFN-+ TNF+) Thy1.1+ T cells isolated from DLN on day 10 after transplant after ex vivo restimulation with cognate antigen is shown. 
(F) ICOS expression on both CD4+ and CD8+ Thy1.1+ T cells isolated on day 10 after transplant is shown. All graphs are summary data of a total of 4–5 
mice per group from two independent experiments. ***, P < 0.0001; ns, not significant.
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dAb-treated recipients of WT as compared with 2B4/  
T cells (Fig. 8 H; P = 0.0299). These data indicate that in the 
absence of immunomodulation, WT and 2B4/ T cells are 
similarly capable of mediating graft rejection, but that anti-
CD28dAb treatment is less efficacious at preventing graft re-
jection when 2B4 is lacking on donor-reactive CD8+ T cells. 
Collectively, these results suggest that 2B4/ donor-reactive 
T cells are less susceptible to the inhibitory effects of anti-CD28 

of both IFN- and TNF producers were significantly aug-
mented in antigen-specific 2B4/ CD8+ populations as com-
pared with WT antigen-specific CD8+ T cells (Fig. 8, D and F). 
Finally, we assessed skin graft survival in recipients of WT 
versus 2B4/ donor-reactive CD8+ T cells and observed 
that although skin graft rejection was indistinguishable  
between untreated recipients of WT versus 2B4/ T cells  
(Fig. 8 G), graft survival was significantly longer in anti-CD28 

Figure 8.  2B4/ CD8+ T cells are resis-
tant to the effects of selective CD28 
blockade. 106 Thy1.1+ OT-I or 106 Thy1.1+ 
2B4/ OT-I and 106 Thy1.1+ OT-II T cells were 
adoptively transferred into naive B6 recipi-
ents, which were then challenged with an 
OVA-expressing skin graft in the presence of 
control V dAb or anti-CD28 dAb, and then 
dosed on days 0, 2, 4, and 6 and three times 
per week continuously thereafter as described 
in the Materials and methods. Graft-draining 
LNs were harvested on day 10 after transplant 
and analyzed by flow cytometry. (A) Frequen-
cies of donor-reactive CD8+ Thy1.1+ T cells WT 
and 2B4/ donor-reactive T cells in the pres-
ence or absence of anti-CD28 dAb. Data 
shown are gated on CD8+ T cells. (B) Summary 
data showing expansion of 2B4/ donor-
reactive CD8+ T cells after treatment with 
anti-CD28 dAb as compared with expansion 
of WT OT-I T cells (P = 0.03). (C) IFN- and 
TNF production of donor-reactive CD8+ 
Thy1.1+ T cells in untreated animals that re-
ceived WT or 2B4/ T cells. Data shown are 
gated on CD8+ Thy1.1+ T cells. (D) IFN- and 
TNF production of donor-reactive CD8+ 
Thy1.1+ T cells in anti-CD28 dAb–treated ani-
mals that received WT or 2B4/ T cells. Data 
shown are gated on CD8+ Thy1.1+ T cells.  
(E) Frequencies of IFN-+ and TNF+ donor-
reactive CD8+ T cells in untreated recipients of 
WT versus 2B4/ OT-I T cells. (F) Frequencies of 
IFN-+ (P = 0.0343) and TNF+ (P = 0.0159) 
donor-reactive CD8+ T cells in anti-CD28 
dAb–treated recipients of WT versus 2B4/ 
OT-I T cells. Flow plots are representative and 
graphs are summary data from two indepen-
dent experiments with a total of 10 animals 
per group. (G and H) Recipients of WT or 
2B4/ OT-I were left untreated (G) or treated 
with anti-CD28 dAb (H) and monitored for 
skin graft survival (P = 0.0299). *, P < 0.05.
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tested the hypothesis that CTLA-4 co-inhibitory signals are 
required to induce expression of 2B4 using CTLA-4–block-
ing antibodies and found that 2B4 failed to be up-regulated 
after CD28 dAb administration in the absence of CTLA-4 
mediated signals (Fig. 6, H and I). Thus, we conclude that the 
net sum of blockade of CD28 signals in the presence of pre-
served CTLA-4 signals results in the unique up-regulation of 
2B4 on primary effectors during transplantation, and that this 
up-regulation plays a critical functional role in controlling 
donor-reactive CD8+ T cell responses.

dAb relative to WT T cells, thus implicating engagement of 
the 2B4 co-inhibitory pathway as a mechanism underlying 
the efficacy of selective CD28 blockade in attenuating donor-
reactive CD8+ T cell responses.

Decreased ICOS up-regulation after selective CD28 
blockade is dependent on engagement of the 2B4 pathway
As shown in Fig. 4 (A and B), up-regulation of the inducible 
co-stimulator ICOS on donor-reactive CD8+ T cells was sig-
nificantly reduced in animals treated with anti-CD28 dAb as 
compared with control dAb or CTLA-4 Ig. Thus, we hypoth-
esized that the decreased up-regulation of ICOS on antigen-
specific CD8+ T cells isolated from anti-CD28 dAb-treated 
mice might be dependent on increased 2B4 co-inhibitory 
signals in these cells. To test this hypothesis, we adoptively 
transferred either WT or 2B4/ Thy1.1+ OT-I cells along 
with WT Thy1.1+ OT-II into naive B6 recipients, which were 
then challenged with an OVA-expressing graft and left un-
treated or treated with anti-CD28 dAb. At day 10 after graft 
challenge, mice were sacrificed and the expression of ICOS 
on CD8+ Thy1.1+ donor-reactive T cells was assessed. We ob-
served that CD8+ 2B4/ antigen-specific T cells failed to 
exhibit decreased ICOS up-regulation after treatment with 
anti-CD28 dAb as compared with WT OT-I T cells treated 
with anti-CD28 dAb (Fig. 9, A and B). This effect was specific 
to CD8+ T cells, as we observed no difference in the degree 
of ICOS up-regulation on donor-reactive CD4+ T cells be-
tween these groups (Fig. 9 C). Thus, we conclude that de-
creased ICOS co-stimulatory expression on CD8+ T cells is a 
result of enhanced T cell–intrinsic 2B4 co-inhibitory signal-
ing after selective CD28 blockade.

DISCUSSION
Our results have identified a novel and critical role for the 
2B4 co-inhibitor in controlling donor-reactive CD8+ T cell 
responses in the presence of immune modulation with selec-
tive CD28 blockade. Consistent with our findings that 2B4 
was not expressed on donor-reactive CD8+ T cells in the ab-
sence of immune modulation, we observed no differences  
in the expansion or effector function of WT versus 2B4/  
T cells during unmodified rejection. These results suggest that 
the 2B4 co-inhibitory pathway does not play a major role in 
programming primary T cell responses in transplantation in 
the absence of immunosuppression. In contrast, we observed 
a specific up-regulation of 2B4 on donor-reactive CD8+  
T cells in animals treated with selective CD28 blockade, and 
demonstrated significantly reduced efficacy of selective CD28 
blockade in controlling donor-reactive T cell responses when 
the T cells were deficient in 2B4. However, the reliance on 
2B4 in controlling donor-reactive T cell responses was not a 
property of all types of immunomodulation, as 2B4 was not 
up-regulated in the presence of CTLA-4 Ig, nor was the effi-
cacy of CTLA-4 Ig in inhibiting donor-reactive T cell responses 
diminished in recipients of 2B4/ T cells (unpublished data). 
Because 2B4 was not up-regulated in the presence of CTLA-4 
Ig (where CTLA-4 signals are blocked; Fig. 4, C and D), we 

Figure 9.  Reduced up-regulation of ICOS after selective CD28 
blockade is dependent on engagement of the 2B4 pathway. 106 
Thy1.1+ OT-I or 106 Thy1.1+ 2B4/ OT-I and 106 Thy1.1+ OT-II T cells were 
adoptively transferred into naive B6 recipients, which were then chal-
lenged with an OVA-expressing skin graft in the presence of control dAb 
or anti-CD28 dAb, and then dosed on days 0, 2, 4, and 6 and three times 
per week continuously thereafter as described in the Materials and meth-
ods. Graft-draining LNs were harvested on day 10 after transplant and 
analyzed by flow cytometry. (A) ICOS expression on WT (left) and 2B4/ 
(right) donor-reactive CD8+ Thy1.1+ T cells in the presence and absence of 
anti-CD28 dAb. (B) Summary data from n = 5/group (representative of  
2 independent experiments with a total of 10 mice per group) show the 
percent reduction in ICOS expression after anti-CD28 dAb treatment as 
compared with control dAb treatment in WT versus 2B4/ CD8+ T cells  
(P = 0.0018). Data shown are gated on CD8+ Thy1.1+ T cells. (C) Percent re-
duction in ICOS expression after anti-CD28 dAb treatment on CD4+  
donor-reactive T cells in mice that received WT or 2B4/ OT-I T cells. Data 
shown are gated on CD4+ Thy1.1+ T cells. Summary data shown are from 
n = 5/group (representative of two independent experiments with a total 
of 10 mice per group). **, P < 0.01.
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We also identified a reduction in the up-regulation of the 
inducible co-stimulator ICOS in the presence of CTLA-4 Ig 
but to a greater degree in the presence of selective CD28 
blockade. Our results using 2B4/ antigen-specific T cells 
demonstrate that the up-regulation of 2B4 is functionally re-
sponsible for this further reduction in the level of ICOS up-
regulation. Recent studies have identified an AP-1 responsive 
site within the ICOS promoter and have demonstrated that 
expression of the AP-1 related molecule Fos-related antigen-2 
(Fra2) is highly correlated with ICOS expression in T cells 
after TCR/CD28 stimulation (Watanabe et al., 2012), rais-
ing the possibility that 2B4-mediated signals might alter Fra2 
binding to diminish ICOS up-regulation. In addition, a re-
cent report demonstrated the ability of CTLA-4 Ig and ICOS 
antagonism to synergize in prolonging graft survival in a mu-
rine transplant model (Schenk et al., 2009). Our data showing 
that selective CD28 blockade results in 2B4 up-regulation, 
which drives reduced ICOS up-regulation and leads to pro-
longed graft survival, are consistent with these results. Deter-
mining whether reduced ICOS up-regulation is functionally 
responsible for the improved efficacy of CD28 dAb in inhib-
iting donor-reactive T cell responses and prolonging graft 
survival or rather is an indicator of reduced T cell activation is 
an area of ongoing investigation.

In sum, our study highlights how the dynamic interplay  
of co-stimulatory and co-inhibitory signals received during  
T cell priming orchestrate and further fine tune antigen-specific 
CD8+ T cell responses that ultimately result in either toler-
ance or immunity. Furthermore, our data suggest that selec-
tive CD28 blockade through the use of domain antibodies 
may hold promise as a clinically translatable strategy for the 
mitigation of unwanted immune responses in transplantation 
and autoimmunity.

MATERIALS AND METHODS
Mice. C57BL/6 (H-2b) and BALB/c (H-2d) mice were obtained from the 
National Cancer Institute (Frederick, MD). OT-I (Hogquist et al., 1994) and 
OT-II (Barnden et al., 1998) transgenic mice, purchased from Taconic Farms, 
were bred to Thy1.1+ background at Emory University. mOVA mice 
(C57BL/6 background, H-2b; Ehst et al., 2003) were a gift from M. Jenkins 
(University of Minnesota, Minneapolis, MN). 2B4 (CD244)/ animals on a 
B6 background were a gift from C. Terhorst (Beth Israel Deaconess Medical 
Center, Harvard Medical School, Boston, MA), and were bred onto OT-I x 
Thy1.1 background at Emory University (Atlanta, GA). All animals were 
maintained in accordance with Emory University Institutional Animal Care 
and Use Committee guidelines. All animals were housed in pathogen-free 
animal facilities at Emory University.

Characterization of CD28 dAb. The anti-CD28 dAb (BMS-1m74-
14982) precursor was identified by phage display from a library of human 
heavy and light chain dAbs. The identified V chain then underwent ran-
dom mutagenesis followed by site-directed mutagenesis in the complemen-
tarity-determining regions and was selected for increased affinity for murine 
CD28 using a surface plasmon resonance assay. To determine affinity and 
kinetics, a streptavidin chip (GE Healthcare) surface was preconditioned 
with 1 M NaCl and 50 mM NaOH. Mouse and human CD28-biotinylated 
monomers (1 µg/ml) were immobilized on a flow cell with 15-s contact 
time at 10 µl/min to give 180 RUs. The mouse anti-CD28 dAb was 
injected at different concentrations (800–1.56 nM) for 3 min at 30 µl/min 

As noted above, we demonstrated that the increased ex-
pression of 2B4 on anti-CD28dAb–treated mice as compared 
with CTLA-4 Ig-treated mice is dependent on CTLA-4–
mediated signaling. These findings are consistent with re-
cently published work from  Zhang et al. (2011) demonstrating 
that the efficacy of selective CD28 blockade was dependent 
on an intact CTLA-4 pathway. However, because CD80–
PD-L1 interactions have also been shown to inhibit T cell 
responses (Butte et al., 2007), we tested the alternative  
hypothesis that the increased expression of 2B4 on CD8+  
T cells in anti-CD28 dAb-treated mice is dependent on an 
intact PD-L1–CD80 pathway, and found that PD-L1 block-
ade failed to rescue donor-reactive CD4+ or CD8+ T cell re-
sponses in this system (Fig. 7). These data demonstrate that 
sparing of CD80–PD-L1 interactions is not the mechanism 
of superiority of CD28 dAb relative to CTLA-4 Ig, and also 
suggest that there is no role for PD-1 mediated co-inhibition 
of donor-reactive T cell responses at this early time point 
after transplantation. These findings are consistent with the 
observation that PD-1 is not up-regulated at early time points 
on donor-reactive CD8+ T cells isolated from CD28 dAb-
treated graft recipients (Fig. 4 D). In contrast, our previously 
published work has demonstrated a critical role for the  
PD-1–PD-L1 pathway in the suppression of donor-reactive 
CD8+ T cell responses at late time points after transplantation 
(Koehn et al., 2008). Specifically, at >100 d after transplant, 
donor-reactive CD8+ T cell populations in recipients of sur-
viving allografts express high levels of PD-1, and administra-
tion of either anti–PD-1 or anti–PD-L1 at this time point 
rapidly precipitates graft rejection. Along with the results of 
the studies presented here, these data suggest temporally  
segregated roles for CD28-family co-inhibitory receptors in 
transplantation, with CTLA-4–mediated signals functioning 
early and PD-1–PD-L1-mediated signals functioning late to 
control donor-reactive CD8+ T cell responses and inhibit 
graft rejection.

The role of 2B4 as a co-inhibitor is controversial. Its in-
tracellular domain contains an immunotyrosine switch motif 
(ITSM), thus potentially allowing both co-stimulatory and 
co-inhibitory properties. In NK cells, 2B4 has been reported 
to have both activating and inhibitory functions (Laouar et al., 
2007); however consistent with our results its activity on 
CD8+ T cells has thus far been reported to be co-inhibitory 
(Kim et al., 2010; Brown et al., 2011; West et al., 2011). Fac-
tors that influence the co-stimulatory versus co-inhibitory 
function of 2B4 signaling include the density of surface 2B4 
expression (where increased expression equates to increased  
co-inhibitory function), degree of ligation by its ligand CD48 
(where increased CD48 ligation results in increased co-in-
hibitory function), and the level of intracellular association 
with the adaptor molecule SLAM-associated protein (SAP; 
where decreased association with SAP is associated with in-
creased co-stimulatory function; Laouar et al., 2007). Addi-
tional manipulation of these parameters might be exploited 
to further enhance the co-inhibitory properties of 2B4 in 
transplantation and autoimmunity.
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manufacturer’s instructions (BD). All cells were acquired on an LSR-II flow 
cytometer (BD), and flow data were analyzed using FlowJo software (Tree Star).

Flow cytometry and intracellular cytokine staining. Spleens or graft-
draining axillary and brachial LNs were stained for CD4 and CD8 (both 
from Invitrogen) and Thy1.1 (BD). For phenotypic analysis, cells were also 
surface-stained with anti-ICOS, anti-2B4, anti-PD-1, anti-KLRG-1, and 
anti-BTLA (all BD). CTLA-4 expression was measured intracellularly using 
an intracellular staining kit (BD) after ex vivo restimulation. Absolute num-
bers were calculated using TruCount bead analysis according to the manufac-
turer’s instructions. Samples were analyzed on an LSRII flow cytometer 
(BD). Data were analyzed using FlowJo software (Tree Star). For intracellular 
cytokine staining, splenocytes were stimulated with 10 nM OVA257-264 
(SIINFEKL) or 10 µM OVA323-339 (ISQAVHAAHAEINEAGR; Gen-
Script, Inc.) where indicated, in the presence of 10 µg/ml Brefeldin A for 4 h. 
An intracellular staining kit was used according to manufacturer’s instructions 
to detect TNF and IFN- (all from BD).

Statistical analysis. Survival data were plotted on Kaplan-Meier curves 
and log-rank tests were performed. For analysis of T cell responses, nonpara-
metric Mann-Whitney U tests were performed. Results were considered 
significant if P < 0.05. All analyses were done using GraphPad Prism soft-
ware (GraphPad Software Inc). *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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