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by modulating Notch signaling
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Paradoxical to its importance for generating a diverse T cell repertoire, thymic function pro-
gressively declines throughout life. This process has been at least partially attributed to the
effects of sex steroids, and their removal promotes enhanced thymopoiesis and recovery from
immune injury. We show that one mechanism by which sex steroids influence thymopoiesis is
through direct inhibition in cortical thymic epithelial cells (cTECs) of Delta-like 4 (DIl4), a
Notch ligand crucial for the commitment and differentiation of T cell progenitors in a dose-
dependent manner. Consistent with this, sex steroid ablation (SSA) led to increased expression
of DII4 and its downstream targets. Importantly, SSA induced by luteinizing hormone-releasing
hormone (LHRH) receptor antagonism bypassed the surge in sex steroids caused by LHRH
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that modulate Notch signaling will not only advance our un-
derstanding of T cell biology but also offer novel therapeutic
targets for immune regenerative treatments.

Despite its importance for generating a diverse pool of
naive T cells, thymic function progressively declines throughout
life (Taub and Longo, 2005), which is particularly detrimental
to the recovery of immune competence after cytoreductive
chemotherapy, infection, and shock, as well as after radiation
injury (Parkman and Weinberg, 1997; Edgar, 2008). Moreover,
prolonged T cell deficiency is especially problematic in recipi-
ents of hematopoietic stem cell transplantation (HSCT), lead-
ing to increased morbidity and mortality from opportunistic
infections and malignant relapses (Small et al., 1999; Storek et al.,
2001). Therefore, development of strategies to improve thymic
regeneration and reconstitution of the T cell pool represents a
significant clinical challenge.

We and others have previously shown that sex steroid
ablation (SSA) by surgical castration can boost BM and thy-
mus lymphopoiesis, and promote recovery from autologous
and allogeneic HSCT (allo-HSCT; Dudakov et al., 2009a,b;
Goldberg et al., 2010). Importantly, reversible SSA can be
achieved using agonists to the luteinizing hormone-releasing
hormone (LHRH) receptor, which represents the gold stan-
dard clinical method for ablation of sex steroids in prostate
cancer patients and is capable of mediating enhanced immune
function (Sutherland et al.,2008; Goldberg et al.,2009). How-
ever, one major drawback of LHRH agonists (LHRH-Ag) is the
initial spike in testosterone, which may actually result in increased
morbidity and mortality (van Poppel and Nilsson, 2008).
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in C9 cells 24 h after treatment with DHT or
MDV3100 (MDV). mRNA expression relative to
untreated control (n = 3). (G) AR binding at
region C of the DI/4 promoter 2 h after DHT
and AR inhibitor MDV3100 treatment (n = 4).
(H) HEK293T cells were transfected with a D/l4
promoter-driven reporter plasmid and lucifer-
ase activity was measured 48 h after transfec-
tion (n = 4). Data represent the mean + SEM
of two independent experiments unless oth-
erwise specified. *, P < 0.05;*, P < 0.01, un-
paired Mann-Whitney U test.

Position

Given the critical role of sex hormones in regulating thy-
mic involution and its regeneration, we sought to investigate
the molecular framework underlying these biological effects,
and reveal Notch signaling as an important mediator in this
pathway. Moreover, we identify LHRH antagonists (LHRH-
Ant) as a rational alternate strategy to achieve SSA that cir-
cumvents the spike in sex steroids seen with LHRH agonists,
thereby representing a safer approach for immune regeneration.
Collectively, these findings will be crucial for developing a clin-
ically appropriate regimen for improving immune function.

RESULTS AND DISCUSSION

Androgens regulate thymopoiesis by direct

transcriptional control of Notch ligands

Previous studies have demonstrated that expression of andro-
gen receptor (AR) in thymic stromal cells (TSCs) is indis-
pensable for thymus rebound after surgical castration (Olsen
et al., 2001; Lai et al., 2013). Given the primary role of the
thymic stroma in thymopoiesis, we investigated the expres-
sion of key stromal-derived thymopoietic factors after testos-
terone treatment to identify candidate genes regulated by
androgen signaling. Consistent with previous studies (Goldberg
et al., 2007; Williams et al., 2008), we found significant down-
regulation of thymic II7 and Ccl25 after androgen treatment;
however, intriguingly we also found significantly lower levels
of the Notch ligand DIl4 (Fig. 1 A). Consistent with previous
reports (Koch et al., 2008), DIl4 was expressed by cortical
TECs (¢TECs) and ECs (Fig. 1 B); however, we observed that
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testosterone treatment specifically down-regulated DIl4 ex-
pression in ¢TECs but not in ECs (Fig. 1 C).

One mechanism that AR uses to regulate its target genes
is through its interaction with specific palindromic DNA bind-
ing consensus sequences containing two asymmetrical elements
separated by a 3-bp spacer, 5'~-GGA/TACANNNTGTTCT-3'
(Roche et al., 1992).To determine if the observed transcrip-
tional changes were the consequence of direct genomic regu-
lation by the AR, we scrutinized the promoters of 17, Ccl25,
and DIl4 for putative AR elements (AREs). Although we
could not detect any AREs in the promoters of II7 or Ccl25
(unpublished data), suggesting an indirect mechanism of reg-
ulation, we identified eight AR Es that were over-represented
in the DIl4 promoter, six of which were equally distributed in
two regions (Fig. 1, D and E).

To better evaluate the direct effect of sex steroids on DIl4
expression in ¢ TECs, we treated the cortical cell line C9 with
dihydrotestosterone (DHT). C9 cells treated with DHT ex-
hibited a decrease in the expression of DIl4 24 h after treat-
ment (Fig. 1 F), indicating the direct regulation of cTEC DIl4
expression by sex steroids. Importantly, the reduction in DIl4
expression after testosterone treatment was abrogated in the
presence of the AR inhibitor MDV3100. To provide defini-
tive evidence that AR directly regulates DIl4 transcription
through physical interaction with its promoter, we performed
chromatin immunoprecipitation (ChIP) using an antibody
specific for AR in C9 cells. The DIl4 promoter was segmented
into four regions according to the putative AREs (Fig. 1,
D and E) and binding analyzed in each region with specific
primers. We found fourfold enrichment immunoprecipitated
by AR antibody 2 h after DHT treatment in region C, in
which three AREs clustered consecutively over a short se-
quence of 90 bp (Fig. 1 G). Once again, pretreatment with the
AR inhibitor MDV 3100 impeded this interaction. To provide
functional evidence that region C was critical for AR-mediated
inhibition of DIl4 expression, we generated mutant forms of
the DIl4 promoter and analyzed their transactivation using a
luciferase reporter assay. In the absence of region C, AR not
only lost its inhibitory effects but also led to an increase in lu-
ciferase activity (Fig. 1 H), further implicating AR signaling in
direct regulation of DIl4 expression. Collectively, these findings
reveal that AR negatively modulates DIl4 expression through
physical interaction with its promoter. Overall these data are
consistent with the observation that DIl4 expression decreases
with age (Itoi et al., 2007) and suggest that androgen regula-
tion of DIl4 may represent one key process contributing to-
ward thymic involution.

Concentration and availability of Notch

ligands affects thymopoiesis

To support our hypothesis that modulation of DIl4 expression
represents a feasible mechanism by which sex steroids control
thymopoiesis, we sought to determine if the dose of DIl4
could impact on the efficiency and progression of T cell dif-
ferentiation. We addressed this by seeding BM lineage™ Sca-17
c-Kit* (LSK) cells in OP9 co-culture with scalar concentrations
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Figure 2. Notch ligand DLL4 regulates thymopoiesis in a dosage-
sensitive manner. (A and B) Lymphoid differentiation of sorted LSK after
12 d of culture with IL-7, FLT3-ligand, SCF, and scalar concentrations of
rDLL4. (A) Absolute numbers of DN2 cells. (B) DN cell proportions, gated
on Lin~CD45*. A and B represent the mean + SEM of one of two repre-
sentative experiments performed in triplicate. (C) DI/4 expression in FACS-
sorted cTEC from 6-wk-old Foxn1-cre::DII4+/ mice and Foxn1-cre::DII4++
mice. (D) Total thymic cellularity of 5-6-wk-old Foxn1-cre::DII4+/1 mice

(n = 7) and Foxn1-cre::DII4** mice (n = 5). (E) Total thymic cellularity of
K14-cre::DII4+/M mice (n = 7) and K14-cre::Dll4*/* mice (n = 2). Data repre-
sents the mean + SEM of one experiment. *, P = 0.0556. Data represent
the mean + SEM of two independent experiments unless otherwise speci-
fied. *, P < 0.05, unpaired Mann-Whitney U test.

of recombinant DLL4 (rDLL4). Consistent with our hypoth-
esis and previous in vitro studies (Wong et al., 2004; Dallas
et al., 2005; Mohtashami et al., 2010), increased availability of
rDLL4 led to enhanced thymocyte progression, suggesting a
dosage-sensitive effect of DLL4 (Fig. 2, A and B). To evaluate
the role of DLL4 concentration in endogenous thymopoiesis,
we generated heterozygous mice with one allele of DIl4
deleted under the control of CRE recombinase driven by the
FoxN1 promoter. We observed an approximate 50% reduc-
tion of cTEC DIl4 expression (Fig. 2 C) and significantly de-
creased thymic cellularity in heterozygous Foxn1-cre::DIl4*/f
mice compared with littermate controls (Fig. 2 D). Similar
results were also obtained when the CRE transgene was
under control of the K14 promoter (Fig. 2 E). These findings
provide evidence of the importance of DLL4 availability for
regulating thymopoiesis.

LHRH receptor antagonists promote thymopoiesis without
the degenerative phase observed with LHRH agonists

Due to its mechanism of initial sensitization of the LHRH
receptor, LHRH-Ag triggers an early surge in sex steroids be-
fore castrate levels are eventually reached (van Poppel and
Nilsson, 2008). Given our findings demonstrating the direct
effect of sex steroids on DLL4 expression, we sought to evaluate
an alternate approach to SSA that would minimize this im-
pact. Direct blockade of the LHRH receptor by LHRH-Ant
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Figure 3. LHRH-Ant triggers thymic regeneration and increases DIl4
signaling within 7 d after treatment. (A) Testosterone levels in serum of
8-12-wk old male mice after treatment with LHRH-Ag (dotted line) or
LHRH-Ant (solid line). (B) Total thymic cellularity 7, 14, and 28 d after treat-
ment. (C) Absolute numbers of DN, DP, and CD4*+ and CD8* single-positive
thymocytes. (A-C, n = 5-8 mice/group). (D) Lymphoid differentiation of
sorted LSK cells after 12 d of culture with IL-7, FLT3-ligand, and concentra-
tions of LHRH-Ant (mean + SEM from one of two representative experi-
ments). (E-H) 7 d after treatment with LHRH-Ant. (E) Molecular analysis of
CD45~ TSCs (n = 8). (F) Dil4 expression in sorted cTECs and ECs (n = 12).

(G) mRNA expression of Hes1and Ptcra in sorted DN3 (CD44~-CD25%)
thymocytes (n = 8). (H) Mean fluorescence intensity (MFI) of CD25 in
CD45+*CD4~CD8~CD3~CD25* thymocytes. mRNA expression relative to
untreated control, A-C and E-H represent the mean + SEM of at least two
independent experiments. *, P < 0.05; **, P <0.01;**/**", P <0.001, compared
with vehicle () or LHRH-Ag-treated (") mice. Statistical analysis between two
groups was performed with the nonparametric, unpaired Mann-Whitney

U test. ANOVA was used for comparisons between more than two groups.

causes immediate cessation of sex steroid production and cas-
trate levels of circulating sex steroids within 24—48 h (Fig. 3 A).
As expected, due to the initial increase in testosterone levels,
LHRH-Ag treatment caused a dramatic degenerative effect
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on thymic cellularity at early time points (days 7 and 14) after
treatment (Fig. 3 B). Conversely, LHRH-Ant mediated a rapid
increase in thymic size compared with untreated control and
LHRH-Ag-treated mice as early as 7 d after treatment. This
rapid increase in thymic size is consistent with the kinetics of
thymic cellularity increases within 7 d in surgically castrated
mice (Heng et al., 2005; Sutherland et al., 2005). This effect
on total thymic cellularity was reflected by an increase in all
developing thymocyte subsets at days 7 and 14 (Fig. 3 C). To-
gether, these data indicate that LHRH-Ant promote immediate
thymic enhancement, without the characteristic LHRH-
Ag-induced depletion of cellularity.

To exclude any direct effect of LHRH-Ant on hemato-
poietic cells and T cell differentiation, we cultured sorted LSK
on OP9-DL1 stromal cells in the presence of the LHRH-
Ant. Treatment with the LHRH-Ant not only provided no
benefit in T cell differentiation compared with control groups
but could actually lead to a reduction in T cell progression at
high concentration (Fig. 3 D), potentially due to the direct ef-
fects of LHRH signaling on thymocyte proliferation (Marchetti
et al., 1989).

Sex steroid inhibition via LHRH antagonism increases

the expression of DIl4 and downstream Notch targets

Given the effect of SSA on the stromal microenvironment
(Fig. 1 A), we examined the expression of key thymopoietic
factors in TSCs 7 d after LHRH-Ant treatment. Although we
did see a decrease in expression after testosterone treatment
(Fig. 1 A), in contrast to previous studies using surgical castra-
tion (Williams et al., 2008), we did not observe any significant
increase in the expression of Cc/25 after LHR H-Ant treatment
(Fig. 3 E), although this could be due to differences in the ex-
perimental approach. In agreement with our data using testos-
terone (Fig. 1 A), we found significant up-regulation in the
expression of II7, which is required for SSA-mediated thymic
regeneration (Goldberg et al., 2007) and DIl4, after LHRH-
Ant treatment (Fig. 3 E). Similar to our findings after testoster-
one treatment, the effects of LHRH-Ant treatment on DIl4
expression were restricted to ¢TECs and not ECs (Fig. 3 F).
Consistent with an association between sex steroids and Notch
signaling, we found increased expression of the downstream
Notch targets Hes1, Ptcra,and CD25 in developing T cells after
treatment with LHRH-Ant (Fig. 3, G and H).

LHRH-Ant administration enhances

thymopoiesis after immune injury

Given its potent effect on steady-state thymopoiesis, we tested
if treatment with LHRH-Ant could accelerate thymic regen-
eration and peripheral immune reconstitution in mice after
immune injury caused by sublethal total body irradiation
(SL-TBI).As expected, thymic cellularity was strongly depleted
7 d after SL-TBI and returned to untreated levels by day 42
(Fig. 4 A). Administration of LHRH-Ant resulted in enhanced
recovery of thymic cellularity starting at day 7 after SL-TBI
and remained significantly enlarged at day 42 compared with
vehicle-treated and untreated control mice (Fig. 4 A).

Sex steroids influence Notch signaling | Velardi et al.
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We next sought to determine if enhanced thymopoiesis
after LHR H-Ant treatment translated into improved periph-
eral immune recovery after SL-TBI. Total splenic cellularity
was increased by day 28 after SL-TBI (Fig. 4 B), comprised
of both CD4" and CD8" T cells (Fig. 4 C), with naive
(CD62L*CD447) T cells the most affected by LHRH-Ant
treatment. Functionally, although there were no significant
differences in the production of IFN-vy and IL-2 (not de-
picted), proliferation of CD4* T cells upon TCR stimulation
was significantly increased in those derived from LHRH-
Ant—treated mice (Fig. 4 D).

One of the major clinical challenges that immunocom-
promised patients encounter is their increased susceptibil-
ity to infection (Wils et al., 2011). To assess the function of
T cells and their ability to clear an infection, mice treated with
vehicle or LHRH-Ant were challenged with lymphocytic

Brief Definitive Report

choriomeningitis virus (LCMV) 14 d after SL-TBI. Demon-
strating functional superiority of the TCR repertoire, mice
treated with LHR H-Ant exhibited a significantly lower viral
burden compared with vehicle-treated mice at day 8 after in-
fection (Fig. 4 E). These studies are in agreement with a recent
report showing that surgical castration can improve T cell func-

tionality and viral clearance in aged mice (Heng et al., 2012).

LHRH-Ant treatment rapidly restores thymopoiesis after allo-
HSCT and boosts peripheral immune reconstitution up to 3 mo
Delayed T cell reconstitution is a major clinical hurdle to allo-
HSCT and we, and others, have previously shown that SSA
using LHRH-Ag promotes recovery after autologous and
allo-HSCT (Goldberg et al., 2007; Sutherland et al., 2008).
We therefore investigated the effects of LHRH-Ant pretreat-
ment on thymic and peripheral reconstitution of allo-HSCT
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@ LHRH-Ant @ LHRH-Ant [J Untreated
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was used for comparisons between more than
two groups.

W TBI + Vehicle
[ TBI + LHRH-Ant

2345

920z Areniged 60 uo 1senb Aq 4pd'68zZ1 €10z Wel/L598Y . L/L¥EZ/Z L/ LZ/Pd-ajone/wal/Bio sseidny//:dpy woly papeojumoq



JEM

recipients. Thymic cellularity was significantly increased in
LHRH-Ant—treated recipients at day 42 and sustained for at
least 3 mo after transplant (Fig. 4 F). The analysis of develop-
ing thymocytes revealed a significant increase in all subsets
for at least 3 mo after transplant, suggesting that the effects of
LHRH-Ant were long-lasting (unpublished data). Character-
ization of peripheral T cell reconstitution 3 mo after trans-
plant revealed a significant increase in the number of CD4*
and CD8* T cell subsets (Fig. 4 G). Of note, the most abun-
dant populations among these peripheral T cell subsets were
naive T cells, indicating a robust thymopoiesis in LHRH-Ant—
treated mice compared with controls. Importantly, we did not
observe significant differences in graft-versus-host disease
(GVHD) mortality between LHRH-Ant—treated and control
mice (Fig. 4 H). LHRH-Ant treatment therefore enhances
thymic output and peripheral T cell function without exacer-
bating post-transplant complications.

LHRH antagonists enhance thymopoiesis

in aged and female mice

We next investigated the capacity of LHRH-Ant to reverse
the physiological decrease in thymic cellularity observed in
aging mice. 9-mo-old male mice, which already have consid-
erable age-related thymic involution (Heng et al., 2005), re-
sponded to the regenerative effects of LHRH-Ant with
increased levels of total thymic cellularity and all thymic sub-
sets compared with control mice (Fig. 4 I and not depicted),
although the durability of this effect is not yet clear given
recent reports (Griffith et al., 2012). In addition to the well-
known effects of androgens on thymopoiesis, estrogen has
also been shown to negatively impact thymic function and
can contribute to its involution (Zoller and Kersh, 2006).
Given the direct influence of LHRH on both androgens and
estrogens, and the profound effect of LHRH-Ant on the
regeneration of thymopoiesis in young and aged male mice,
we tested the efficacy of LHRH-Ant in female mice. Consis-
tent with our findings in male mice, and valuable for its wider
clinical application, we found that LHRH-Ant treatment
caused a significant increase in thymic cellularity 28 d after
treatment in both young and aged female mice (Fig. 4 J). Im-
portantly, the regenerative effect of LHRH-Ant treatment
after SL-TBI in young male mice was also evident in female
mice starting from 7 d after injury (Fig. 4 K).

Although it is well known that castration can reverse age-
related thymic involution, increase thymic function, and boost
T cell output in the periphery in mouse and human, the
mechanisms underlying these effects are still poorly under-
stood. This study offers one important mechanism by which
sex steroids, and by extension SSA, can mediate its effect on
thymic function: the direct regulation of Notch signaling. Im-
portantly, we also demonstrated that this sensitivity to sex
steroids of Notch ligand availability can have profound impli-
cations on thymopoiesis, with in vivo depletion (but not ab-
rogation) of DLL4 expression leading to significantly reduced
thymopoiesis. Given the prevalence in use of LHRH-Ag to
achieve castrate levels of sex steroids, and our findings that the
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surge in testosterone can reduce expression of DLL4 and
consequently lead to significant depletion of thymus cellular-
ity, alternate clinical approaches to achieve reversible SSA are
desirable. Here, we also present data to demonstrate that use
of an LHRH-Ant can forego any surge in sex steroids and
lead to rapid promotion of thymopoiesis. Collectively, these
findings reveal not only a novel mechanism by which sex ste-
roids regulate thymopoiesis but also provide evidence for a
novel therapeutic alternative for regeneration of the thymus
and immune function.

MATERIALS AND METHODS

Mice and BM transplantation. C57BL/6 (H-2b) male mice (The Jackson
Laboratory) between 8 and 12 wk of age were used unless otherwise stated.
Specifically, 3.5-wk-old male mice in Fig. 1, 6-wk-old male mice in Fig. 2
(C and D), and 9-mo-old male and female mice in Fig. 4 (I-]) were used.
DLL4 flox/flox mice were provided by D. Shima (UCL, London, England)
and generated as previously described (Hozumi et al., 2008). B6(Cg)-
Foxn1m3@Nm/] and B6N.Cg-Tg(KRT14-cre)1Amc/] were obtained from
The Jackson Laboratory. To model thymic damage and lymphoid depletion,
C57BL/6 received SL-TBI with no hematopoietic rescue. All SL-TBI ex-
periments were performed with a Cs-137 +y-radiation source. The HSCT
procedure was performed as previously described (Goldberg et al., 2009),
with 1,100 cGy split-dosed lethal irradiation of C57BL/6 hosts receiving
5 X 10°T cell-depleted MHC-mismatched BM cells from B10.BR (H-2k)
donor mice (The Jackson Laboratory). BM cells were T cell depleted by in-
cubation with anti-Thy-1.2 for 40 min at 4°C and incubation with Low-
TOX-M rabbit complement (Cedarlane Laboratories) for 40 min at 37°C.
Cells were transplanted by tail vein infusion (0.2 ml total volume) into le-
thally irradiated recipients (C57BL/6) on day 0. To model GVHD, donor
splenic T cells (5 X 10° B10.BR) were enriched using MACS CDS5 purifica-
tion (routine purity > 90% purity; Miltenyi Biotec). Recipient mice were
monitored weekly for survival and clinical GVHD symptoms as previously
described (Goldberg et al., 2009). All animal protocols were approved by the
Memorial Sloan-Kettering Cancer Center (MSKCC) Institutional Animal
Care and Use Commiittee (IACUC).

Reagents. Degarelix (as acetate), a third generation LHRH-Ant (Firmagon),
was resuspended in sterile water for injection and administered s.c. to mice
at a dose of 40 pg/g. Lupron (11.25-mg 3-mo depot), an LHRH-Ag, was
prepared according to the manufacturer’s instructions and administrated in-
tramuscularly to mice at a dose of 20 pg/g. Degarelix and Lupron were pur-
chased from the MSKCC Pharmacy. Testosterone propionate (Sigma-Aldrich)
was resuspended in peanut oil and injected daily s.c. (1 mg/mouse) in 100 pl.
Surface antibodies against CD44 (IM7), EpCAM (G8.8), PDGFRa (APA5),
PECAM-1 (390), CD45 (30-F11), and H-2Kk (AF3-12.1.3) were purchased
from eBioscience; anti-Ly-51 (BP-1), CD34 (RAM34), CD62L (MEL-14),
H-2Kb (AF6-88.5), IFN-y (XMG1.2), IL-2 (JES6-5H4), c-Kit (2BS),
CD3e (145-2C11), CD25 (PC61), TER-119 (TER-110), and CD8a
(53-6.7) were purchased from BD; anti-CD4 (RM4-5) and B220 (RA3-
6B2) were purchased form Invitrogen; anti-CD44 (IM7), CD90.2 (30-H12),
and IA/IE (M5/114.15.2) were purchased from BioLegend; and Ulex euro-
paeus agglutinin 1 (UEA-1) was purchased from Vector Laboratories. For
in vitro cultures of T cell differentiation (Fig. 2, A and B), cells were stained
with antibodies to lineage (Lin)-specific markers: CD8, CD11c, NK1.1,
CD3, CD4, B220, CD11b, and GR-1.

Flow cytometry and cell isolation. Cells were incubated for 15 min at
4°C with antibodies and washed twice with FACS bufter. Flow cytometric
analysis was performed on an LSR II (BD) using FACSDiva (BD) or Flow]Jo
(Tree Star). To isolate LSK cells, murine BM cells were first lineage depleted
using a MACS-based cell depletion kit (Miltenyi Biotec), stained with a
lineage panel (CD3, NK1.1, Gr-1, CD11b, CD19, CD4, CD8), Sca-1, and
c-kit antibodies, and then Lineage~Sca-1"c-Kit" cells were selected using a
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FACS Aria II cell sorter (BD). Individual or pooled single cell suspensions
of freshly dissected thymi were obtained by either mechanical dissociation or
enzymatic digestion, as previously described (Gray et al., 2008). CD45~ cells
for quantitative PCR experiments were enriched by magnetic bead separa-
tion using an Auto MACS (Miltenyi Biotec) or MACS separation LD col-
umns (Miltenyi Biotec). Thymic cells were sorted on a FACS Aria II (BD)
as follows: cTECs, CD45"MHCII"EpCAMTUEA-1Ly-51"; and ECs,
CD45 EpCAM MHCII"CD31".

Cell culture. cTEC cell line C9 cells were maintained in culture in DME
supplemented with 10% FCS, 100 U/ml penicillin, and 100 pg/ml streptomy-
cin. For experiments with DHT (Sigma-Aldrich) and MDV3100 (Selleckbio),
cells were maintained in DME supplemented with 10% charcoal/dextran-
stripped FCS (Gemini Bioproducts). MDV3100 was reconstituted in DMSO
and used in culture at the final concentration of 10 pM. For experiments with
DHT and MDV3100, cells were pretreated with MDV3100 30 min before
DHT treatment. Splenocytes for in vitro studies were cultured in RPMI sup-
plemented with 10% FCS, 2 mM 1-glutamine, 1 mM sodium pyruvate, 50 M
2-mercaptoethanol, 100 U/ml penicillin, and 100 pg/ml streptomycin.

OP9-DLI1 cultures. OP9-DL1, a mouse BM stromal cell line of (C57BL/6 x
C3H)F,-op/op origin transduced to express the Notch 1 ligand DLL1, was
obtained under an MTA from J.-C. Zaniga-Pfliicker (University of Toronto,
Toronto, Canada). Cell culture medium consisted of a MEM (Invitrogen)
supplemented with 20% heat-inactivated FBS, 100 U/ml penicillin (Invitro-
gen), and 100 pg/ml streptomycin (Invitrogen). T cell precursors were gener-
ated in vitro as described previously with modifications (Min et al., 2002). In
brief, LSK cells were sorted as described above and added to tissue culture—
treated polystyrene 24-well tissue culture plates that were seeded with 4,000
OP9-DL1 cells per cm? the day before. The tissue culture media was supple-
mented with 10 ng/ml IL-7 (Miltenyi Biotec) and 10 ng/ml FLT3-ligand
(Miltenyi Biotec) and different concentrations of Degarelix or vehicle (man-
nitol). Cultures were passaged every 4 d.

DLL4 cultures. LSK cells were cultured in non—tissue culture-treated poly-
styrene 24-well plates that were precoated with 5 pg/ml CH-296 fibronectin
(Retronectin; Takara Bio. Inc.) and different concentrations of murine DLL4
(R&D Systems). Cell culture medium consisted of « MEM (Invitrogen) sup-
plemented with 20% heat-inactivated FBS, 100 U/ml penicillin (Invitrogen),
and 100 pg/ml streptomycin (Invitrogen). The media was supplemented with
5 ng/ml IL-7 (Miltenyi Biotec), 100 ng/ml FLT3-ligand (Miltenyi Biotec), and
100 ng/ml stem cell factor (SCF; Miltenyi Biotec) and changed every 4 d.

T cell in vitro assay. To evaluate T cell proliferation and cytokine produc-
tion, spleens were harvested 42 d after SL-TBI and T cells were purified by
CD5* MACS selection. Half of the cells were stimulated for 5 h with 50 ng/ml
PMA, 1 pg/ml Tonomycin, and 1 pl/ml Golgi Plug (BD) and cytokines evalu-
ated by intracellular flow cytometric analysis. The remaining cells were CFSE
(Invitrogen)-labeled and plated on aCD3/aCD28 (5 and 1 ng, respectively)-
precoated plates. Proliferation was assessed by measuring the number of cell
divisions 2 d after stimulation by flow cytometric analysis.

Real-time PCR. Reverse transcription PCR was performed with Quanti-
Tect reverse transcription kit (QIAGEN). For real-time PCR, the following
specific primer and probe sets were obtained (Applied Biosystems): B-actin
(Mm01205647_g1), Cc25 (Mm00436443_m1), Cxcl12 (Mm00445553_m1),
DIl (Mm01279269_m1), Dll4 (Mm00444619_m1), Foxn1 (Mm00433946_m1),
Hes1 (Mm01342805_m1), Il15 (Mm00434210_m1), 1118 (Mm00434225_
ml), 118 (Mm00434228_m1), 117 (Mm01295803_m1), Kgf (Mm00433291_
m1), Prera (Mm01281478_m1), and S¢f (Mm00442972_m1). PCR was done
on an ABI 7500 (Applied Biosystems) or Step-One Plus (Applied Biosys-
tems) with TagMan Universal PCR Master Mix (Applied Biosystems).
Relative amounts of mRNA transcripts were calculated by the comparative
ACt method.
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ChIP. ChIP was performed using a ChIP assay kit (Millipore) according
to the manufacturer’s instructions. In brief, cTEC C9 was stimulated for 2 h
with DHT, with or without pretreatment for 30 min with MDV3100. Cells
were then cross-linked with formaldehyde for 10 min and then incubated for
5 min with glycine to block cross-linking. Cells were then scraped and re-
suspended in SDS lysis buffer for 10 min and then sonicated using 30% am-
plitude (Branson Digital Sonifier) for 20 s on/60 s off for a total of 10 cycles.
The immunoprecipitation was performed using 2 pg anti-AR or nonimmune
rabbit IgG as a negative control. After elution, the samples were deprotein-
ated, and quantitative PCR was used to evaluate the results. The sequences
of the primers against the mouse DIl4 promoter regions used for CHIP were:
region A forward, 5'-ACCCCTTAGAGTTTCCACCC-3’, and reverse,
5'-TCTTCCAACTTCTGGGCTTCC-3’; region B forward, 5'-CCCA-
CCTCTCTTTCGAACCT-3', and reverse 5'-GTAGGCGTGTCACCT-
CAAGC-3'; region C forward, 5'-GGCACTCCAGGCAGGTCTAC-3',
and reverse, 5'-GTGGGGAACCGAGGTGAG-3'; and region D forward,
5'-CGATTTATTGACCGGCAGG-3', and reverse 5'-CCGCATTTAG-
GAGTGAACCG-3'. The relative amounts of immunoprecipitated DNA
fragments were expressed as fold increase over the IgG control using the
ACt method.

Identification of transcription factor-binding sites. Whole genome
rVISTA (Zambon et al., 2005) at a stringency of P < 0.005 was used to pre-
dict potential AR binding sites 5000 bp upstream of the transcription starting
site. Putative transcription factor—binding sites were then further character-
ized using JASPAR database (Bryne et al., 2008).

LCMV challenge. Mice were challenged i.p. with 2 X 10> LCMV-Armstrong
PFUs 14 d after SL-TBI. PFU assays were performed as previously described
(Ahmed et al., 1984). In brief, 7.5 X 10° Vero cells were plated in a 6-well
plate on day —1 of assay. On day 8 after infection, mice were sacrificed;
spleens were harvested and sonicated in 1 ml RPMI using 30% amplitude
(Branson Digital Sonifier) for 15-20 s in ice. 0.2 ml sonicate was plated in
serial dilution (107! through 107%) and covered with a 1:1 complete medium
199/1% agarose mixture after 60 min of adsorption. Plates were incubated at
37°C, and after 4 d, additional 1:1 complete 199 medium (1% agarose con-
taining neutral red dye) was added to wells. The next day, the number of
plaques was assessed.

Luciferase assay. DIl4 promoter containing the putative ARE A, B, and
C regions was amplified from the BAC clone RPCI-23 46P4 using the follow-
ing primers: forward, 5'-CAGGTCTACGGTGCAAAGAGG-3'; and re-
verse, 5'-TACGTGTCCTGGAGCAAATCC-3". PCR product was cloned
using the pCR2.1 TOPO TA cloning kit (Invitrogen) and then subcloned
into pGL4.23 vector (Promega) using the restriction sites Kpn1 and Xhol.
The truncated form of DIl4 promoter containing only putative ARE A and
B regions, —1644 bp, was cloned using the following primers: forward,
5'-GGTACCTCACCTCGGTTCCCCACG-3'; and reverse, 5'-TACGT-
GTCCTGGAGCAAATCC-3'.The PCR products were similarly subcloned
into pGL4.23 vector. The DIl4 promoter-pGL4.23 vectors were then co-
transfected into HEK293T cells using lipid-based 293T TransIT Reagent
(Mirus Bio) with either pUC19 empty vector or pWZL-AR vector (Berger
et al., 2004), as well as phRL-TK vector as an internal control. After 48 h, cells
were collected and the luciferase activity was evaluated using Dual-Luciferase
Reporter Assay System (Promega) as per the manufacturer’s instructions.

Statistics. All experiments were performed at least twice. All statistics were
calculated and graphs generated using Prism 6 (GraphPad Software).
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