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Microbial infection of the amniotic fluid is a significant cause of fetal injury, preterm birth,
and newborn infections. Group B Streptococcus (GBS) is an important human bacterial
pathogen associated with preterm birth, fetal injury, and neonatal mortality. Although GBS
has been isolated from amniotic fluid of women in preterm labor, mechanisms of in utero
infection remain unknown. Previous studies indicated that GBS are unable to invade human
amniotic epithelial cells (hAECs), which represent the last barrier to the amniotic cavity
and fetus. We show that GBS invades hAECs and strains lacking the hemolysin repressor
CovR/S accelerate amniotic barrier failure and penetrate chorioamniotic membranes in a
hemolysin-dependent manner. Clinical GBS isolates obtained from women in preterm labor
are hyperhemolytic and some are associated with covR/S mutations. We demonstrate for
the first time that hemolytic and cytolytic activity of GBS is due to the ornithine rhamno-
lipid pigment and not due to a pore-forming protein toxin. Our studies emphasize the
importance of the hemolytic GBS pigment in ascending infection and fetal injury.

Preterm birth is a major factor contributing to
neonatal disease and accounts for 75% of peri-
natal mortality worldwide (Goldenberg et al.,
2000). Currently, there is no effective therapy
for prevention of human preterm births or still-
births. Intra-amniotic infection and inflam-
mation are important causes of preterm birth,
stillbirth, fetal injury, and early onset neonatal
sepsis (Watts et al., 1992; Goldenberg et al.,
2000; Yoon et al., 2000; Lukacs et al., 2004;
Behrman and Butler, 2007). Early onset sepsis
in human newborns manifests within the first
few hours of life, is fulminant, and is due to
organisms acquired in utero with the amniotic
fluid and neonatal blood infected with organisms
commonly colonizing the lower genital tract
such as Group B Streptococcus (GBS; Hillier
et al., 1988; Romero et al., 1989c¢; Hillier et al.,
1991; Puopolo, 2008; Gravett et al., 2010;Verani
et al., 2010).
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GBS are B-hemolytic, gram-positive bacte-
ria that are a frequent cause of human newborn
infections. Morbidities due to GBS infections
include delayed development, vision and hear-
ing loss, chronic lung disease, mental retarda-
tion, and cerebral palsy (Ledger, 2008). Despite
the success of intrapartum antibiotic prophylaxis
to prevent GBS transmission to the neonate dur-
ing labor and delivery, in utero infections that
occur earlier in pregnancy leading to stillbirth and
preterm birth are not targeted by this approach
and the burden of early onset sepsis in newborn
infants remains substantial (Verani et al., 2010;
‘Weston et al., 2011). Additional preventive ther-
apies are urgently needed before the widespread
use of antibiotics in pregnant women creates
sufficient resistance such that our current anti-
biotics become ineffective.
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Noncommercial-Share Alike-No Mirror Sites license for the first six months after
the publication date (see http://www.rupress.org/terms). After six months it is
available under a Creative Commons License (Attribution-Noncommercial-Share
Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/
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A key factor limiting preventive strategies is insufficient
knowledge of virulence mechanisms that promote infec-
tion of the amniotic cavity. The human placenta is a critical
multicellular organ that protects the growing fetus from
organisms colonizing the lower genital tract. As the placenta
is the most species-specific mammalian organ (Ala-Kokko
et al., 2000; Hutson et al., 2011), no animal placenta reca-
pitulates the exact mechanistic and physical barriers of the
human placenta. The widely accepted route of pathogen
entry into the human amniotic fluid requires bacterial as-
cension through the cervix and breach of several placental
layers including the decidua, chorion, amnion, and amniotic
epithelium (Bourne, 1960; Goldenberg et al., 2000). Although
invasion of the amniotic epithelium is critical for pathogen
entry into the amniotic cavity, previous studies have indi-
cated that GBS do not invade human amniotic epithelial
cells (hAECs) which constitute the amniotic epithelium
(Winram et al., 1998). Consequently, mechanisms and viru-
lence factors that mediate ascending GBS infection from the
lower genital tract into the amniotic cavity and fetus are
not understood.

RESULTS

Hemolysin promotes GBS invasion of hAECs

As GBS has been isolated from amniotic fluid of women with
intact chorioamniotic membranes (Bobitt and Ledger, 1977;
Naeye and Peters, 1978; Winram et al., 1998; Goldenberg et al.,
2000), we investigated mechanisms that promote GBS inva-
sion and breach of amniotic epithelium and chorioamnion. We
hypothesized that intra-amniotic GBS infections in patients
with intact placental or chorioamniotic membranes (Bobitt
and Ledger, 1977; Naeye and Peters, 1978; Winram et al., 1998;
Goldenberg et al., 2000) may be due to elevated virulence fac-
tor expression. The two component regulatory system CovR /S
was described to repress the expression of many GBS viru-
lence genes including genes of the ¢yl operon containing cylE
important for the pluripotent toxin known as B-hemolysin/
cytolysin (hereafter referred to as hemolysin; Lamy et al., 2004;
Jiang et al., 2005; Rajagopal et al., 2000). To test if increased
expression of virulence factors promotes GBS invasion of am-
niotic epithelium, we compared the ability of WT GBS and
the hyper-hemolytic AcovR to adhere to and invade hAEC.
To evaluate the role of hemolysin, nonhemolytic GBS lacking
the cylE gene associated with hemolysin production (Pritzlaff
et al., 2001) were included (AcylE and AcovRAcylE). The he-
molytic activity of WT, hyper-hemolytic AcovR, and nonhe-
molytic AcylE strains is shown in Fig. 1 A. Primary hAECs
were isolated and cultured from normal, term placentas ob-
tained immediately after cesarean delivery from women with-
out labor and adherence and invasion of GBS to hAEC was
determined as previously described (Winram et al., 1998; Lembo
et al., 2010). Consistent with previous reports (Winram et al.,
1998), we observed that WT GBS adhered to hAEC (Fig. 1 B).
The presence or absence of CovR or CylE had no significant
effect on GBS adherence to hAEC (Fig. 1 B, P > 0.2). How-
ever, in contrast to previous observations (Winram et al., 1998),
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Figure 1. Hemolysin promotes GBS invasion of hAECs. (A) Hemolytic
activity shown by the zone of clearing around the colonies on sheep
blood agar of GBS WT, AcovR, and isogenic mutants. A representative
image from one of three independent experimental replicates is shown.

(B and C) Primary hAECs were isolated from chorioamniotic membranes
and adherence and invasion of GBS WT, isogenic AcovR, AcovRAcylE, and
AcylE mutants were compared. Percent adherence (B) and invasion (C) is
normalized to that of the initial inoculum. Data shown are the mean and
SD obtained from hAECs that were isolated from four independent pla-
centas, and each experiment was performed in triplicate (NS, P > 0.2;

¥ P < 0.0001; %, P =0.008, Student's t test, error bars + SD).

we observed that WT GBS invaded hAEC (~4% invasion;
Fig. 1 C). The AcylE mutant showed significantly decreased
invasion when compared with WT (~0.3% invasion, P =
0.008; Fig. 1 C). Consistent with our hypothesis, we observed
that the hyper-hemolytic GBSAcovR was significantly more
invasive to hAEC when compared with the WT (~80% inva-
sion, P < 0.0001; Fig.1 C). Notably, the increase in hAEC in-
vasion observed with GBSAcovR was abolished in the absence
of the gene ¢ylE linked to hemolysin expression (Fig. 1 C,
AcovRAcylE). Collectively, these results indicate that hemoly-
sin promotes GBS invasion of hAECs. Of note, the levels of
GBS invasion observed with hAEC and differences between
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Figure 2. Hemolysin increases expression of inflammatory
mediators and induces barrier disruption in amniotic
epithelial cells. (A) qRT-PCR was performed of indicated cyto-
kines/chemokines on RNA isolated from hAEC infected with
either WT GBS COH1 or isogenic AcovR, AcovRAcylE, and AcylE
mutants at 4 h after infection. Data shown are the mean and SD
obtained from hAECs that were isolated from three independent
placentas, performed in triplicate (n= 3;*, P = 0.007; *, P = 0.03,
Student's t test, error bars + SD). (B) Luminex bead assays were
performed on supernatants of hAEC infected with WT GBS or
isogenic AcovR, AcovRAcylE, and AcylE mutants at 4 h after
infection. The experiment was performed using hAECs that were
isolated from three independent placentas, performed in tripli-
cate (n=3;*, P < 0.005, Student's t test, error bars + SD).

(C) Western blots were performed on nuclear (N) and cytoplas-
mic (C) proteins from GBS-infected hAEC using antibody to
NF-kB. Uninfected (Ul) hAECs were included as controls. MW =
molecular weight marker. A representative image from one of
three independent experimental replicates is shown. (D) Barrier
resistance of hAEC was monitored in real time using ECIS.

A representative image from one of three independent experi-
mental replicates is shown.
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hypoinvasive and hyperinvasive strains is consistent with levels
of GBS invasion reported in other cell types including human
brain microvascular endothelial cells and lung epithelial cells
(Doran et al., 2002, 2005; van Sorge et al., 2009).

Hemolysin induces activation of proinflammatory

mediators in human amniotic epithelium

We examined if increased hemolysin in AcovR activates an
inflammatory response in human amniotic epithelium. To
evaluate changes in expression of inflammatory genes in

JEM Vol. 210, No. 6

GBS-infected hAEC, qRT-PCR was performed on RNA
isolated at 4 h after infection using previously described
methods (Lembo et al., 2010). These results indicate that in-
fection with AcovR caused a significant increase in transcrip-
tion of cytokines such as IL-6,1L-8,IL-13, CXCL1,and CCL20
in hAEC compared with cells infected with the isogenic
WT (COHT1) or uninfected controls (Fig. 2 A). Interestingly,
the increase in inflammatory gene expression observed with
GBSAcovR was abolished in hAEC infected with AcovRAcylE
(Fig. 2 A). Luminex bead assays confirmed that secretion
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of 1L-6, IL-8, and IL-1B was higher in AcovR-infected
hAEC compared with the WT GBS or AcovRAcylE (Fig. 2 B,
P < 0.005).

Hyper-hemolytic GBSAcovR infection increases

NF-kB recruitment into the nucleus of hAEC

Microbial toxins have been implicated in activating inflam-
matory signaling pathways via the nuclear transcription factor
NEF-kB, which is recruited from the cytoplasm to the nucleus
during activation (Gonzalez et al., 2008). Therefore, we exam-
ined whether the increase in proinflammatory gene expression
observed in hAEC infected with the hyper-hemolytic GBSAcovR
was associated with nuclear localization/recruitment of the
transcription factor NF-kB. To test this hypothesis, total nu-
clear and cytoplasmic proteins isolated from infected and un-
infected hAEC were resolved on 10% SDS-PAGE and Western
blots were performed using antibody to NF-kB p65. The re-
sults shown in Fig. 2 C indicate that infection with AcovR re-
sults in an ~~2.5-fold increase in recruitment of NF-kB into the
nucleus of infected hAEC when compared with WT GBS or
uninfected controls. These data confirm that the increase in in-
flammatory gene expression observed in AcovR-infected hAEC
is associated with increased nuclear recruitment of NF-kB.

Hemolysin promotes GBS breach of the human

amniotic epithelial barrier

We next examined if hemolysin accelerates failure of the human
amniotic epithelial barrier. Changes in transepithelial electrical
resistance were monitored across hAEC monolayers in real time
using electric cell-substrate impedance sensing (ECIS; Giaever
and Keese, 1993). In brief, hAEC monolayers established on
gold-plated electrodes in 8-well array slides were infected with
GBS WT, isogenic AcovR, AcovRAcylE, or AcylE at 10> CFU/
well as previously described (Lembo et al., 2010). Uninfected
wells were included as controls. Fig. 2 D shows that the decrease
in barrier resistance observed in hAEC infected with WT
GBS was not observed in hAEC infected with the hemolysin-
deficient strain AcylE. Furthermore, we observed that infection
with AcovR accelerated the decrease in barrier resistance com-
pared with WT (Fig. 2 D). Notably, the rapid decrease in barrier
resistance due to AcovR was abolished in AcovRA¢ylE (Fig. 2 D).
These results suggest that increased hemolysin expression en-
ables GBS to breach barrier function of the amniotic epithelium.
We further observed that prolonged exposure of AcovR to hAEC
(>4 h) induced cytotoxic effects in contrast to hAEC exposed to
GBS WT and Ac¢ylE strains. Collectively, these observations
indicated that hemolysin is an important virulence factor that
promotes bacterial invasion and immune activation of the am-
niotic epithelium leading to secretion of cytokines, such as
IL-6,1L-8,and IL-1f3, that have associated with preterm labor
and neonatal morbidity (Romero et al., 1989a,b, 1990, 1991;
Gotsch et al., 2007).

Hyper-hemolytic GBS penetrate human placenta/chorioamnion
and can be associated with women in preterm labor

Ascending in utero infection of GBS from the lower genital
tract into the amniotic cavity requires the pathogen to penetrate
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the chorioamniotic membranes. Thus, we tested the ability of
GBS to penetrate intact membranes that were mounted and
maintained on a modified transwell system as previously de-
scribed (Zaga-Clavellina et al., 2007). 48 h after stabilization,
intact chorioamniotic membranes (1 = 6) were infected with
107 CFU of GBS (WT, AcovR, and AcovRAcylE) on the cho-
riodecidual side of the placenta. Uninfected chorioamnion
was included as controls. In parallel, we also examined the abil-
ity of GBS to penetrate either chorion alone or amnion alone,
using the transwell model system (for details, see Materials and
methods). At 24 h after infection, aliquots of media from the
lower chamber were analyzed for bacterial CFU. As shown in
Fig. 3 A, we observed that all GBS strains efficiently pene-
trated either the amnion or the chorion, as 2108 CFU was
recovered from the lower chamber of membranes infected
with WT, AcovR, and AcovRAcylE. In contrast, no bacterial
CFU was recovered from chorioamnion infected with WT or
AcovRAcylE (Fig. 3 A). Notably, 210? bacterial CFU were re-
covered from four of six chorioamniotic membranes infected
with GBSAcuvR (Fig.3 A, P = 0.02). Transverse histological sec-
tions of the infected chorioamnion were prepared and stained
for bacteria as previously described (Stevens and Bancroft, 1977).
Interestingly, bacterial invasion of the chorioamnion, includ-
ing penetration of the amniotic epithelium, was observed in
chorioamniotic membranes infected with the hyper-hemolytic
GBSAcvR even when bacteria were not recovered in the lower
chamber (Fig. 3 B). In contrast, bacteria were primarily seen
in the choriodecidual region in chorioamniotic membranes in-
fected with WT and very few bacteria are observed in mem-
branes infected with AcovRAcylE (Fig.3 B).Increased secretion
of IL-6 was also observed in media obtained from the lower
chamber of chorioamniotic membranes infected with AcovR
(Fig. 3 C, P = 0.02). We were unable to extend the experi-
ments longer than 24 h after GBS infection as the placental
membranes begin to destabilize at >75 h after cesarean sec-
tion. Collectively, these data show that although chorioamni-
otic membranes serve as an effective barrier to prevent GBS
trafficking, increased production of hemolysin can facilitate
bacterial penetration of chorioamniotic membranes and the
amniotic cavity.

We examined if increased hemolytic activity could be ob-
served in GBS isolated from women in preterm labor. To this
end, clinical isolates obtained from human amniotic fluid and
chorioamnion were examined for their hemolytic properties
and potential mutations in the covR/S locus. We obtained eight
GBS strains that were isolated from six women enrolled in a
cohort of women in preterm labor with intact membranes
and where information on outcomes and microbiological cul-
tures of the amniotic fluid, chorioamnion, and cord blood were
available (Hitti et al., 1997; see Table 1). Most of these GBS
isolates exhibited increased hemolytic activity and increased
transcription of genes in the ¢yl operon such as ¢ylE (Figs. 4,
A and B). DNA sequencing indicated the presence of muta-
tions in the covR/S loci in six isolates obtained from four
women (Table 1). GBS isolated from both the amniotic
fluid and chorioamnion of one patient in preterm labor
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had a stop codon mutation in the kinase domain of CovS
(CovS220Stop; Table 1). GBS isolated from amniotic fluid
and cord blood of another patient in preterm labor had a
valine to methionine substitution in CovS at position 343;
the same mutation was also observed in a GBS isolate ob-
tained from the amniotic fluid of a third patient (Table 1).
GBS from amniotic fluid of another woman in preterm
labor had a deletion in the promoter of covR/S (Table 1).

JEM Vol. 210, No. 6

Of note, two GBS isolates recovered from women in pre-
term labor had no mutations in the covR/S loci, and thus
increased hemolytic activity and transcription of ¢yl genes
(Fig. 4, A and B) may be mediated by other regulators of
GBS hemolysin.

To determine if the identified CovR /S mutations affect
hemolytic activity of GBS, we generated site-directed mu-
tants. As shown in Fig. 4 C, GBSAcovR and AcovS strains
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Table 1. GBS clinical isolates associated with preterm labor and mutations in covR/S locus

Isolate number? Source Mutation in covR/S loci® Gestational age at birthe

1 Amniotic fluid Deletion of adenine residue at position 658 in covS resulting in 30 wk

truncation of CovS at amino acid 220 (CovS 220Stop)

1 Chorioamnion Same as above i.e. CovS 220Stop 30 wk

2 Amniotic fluid Deletion of 4 nucleotides ‘ATTT' spanning -110 to -107 upstream to the 34 wk
ATG start codon in the promoter region of covR/S

3 Amniotic fluid Substitution of adenine instead of guanine resulting in amino acid 26 wk

substitution from valine to methionine in CovS (CovS V343M)

3 Blood CovS V343M 26 wk

4 Chorioamnion CovS V343M 36 wk

5 Chorioamnion None 36 wk

6 Chorioamnion None 28 wk

2ln some patients, GBS were isolated from two different locations, and both these isolates had the same mutation in covR/S.

°0nly nonsynonymous changes are reported.

All women enrolled in the study had preterm labor with intact membranes at <34 wk of gestation.

exhibit increased hemolytic activity when compared with
the WT and complementation with plasmids that constitu-
tively express either CovR or CovS restored repression of
hemolytic activity to WT levels or greater. However, comple-
mentation of AcovS with the plasmid encoding CovS220Stop
failed to restore repression of hemolytic activity and partial
complementation was observed with CovSV343M (compare
AcovS/pCovS to AcovS/CovS220stop and AcovS/CovSV343M
in Fig. 4 C). Further studies are necessary to understand the
role of this substitution in CovS signaling. Similarly, the
presence of the promoter deletion in covR /S on the chromo-
some of WT GBS alleviated CovR repression of hemolysin
(Fig. 4 C) and is consistent with our previous observations
that CovR can positively regulate its own expression (Lembo
et al., 2010). These results suggest that the increased hemo-
lytic activity observed in the clinical isolates with CovR/S
mutations can, at least in part, be attributed to these muta-
tions. However, as GBS has an open pan-genome (Tettelin
et al., 2005), the effect of other strains specific regulators
cannot be ruled out. We further confirmed that, similar to
AcovR, GBSAcovS showed increased invasion and acceler-
ated barrier disruption of hAEC (Figs. 4, D and E). Comple-
mentation of AcovR and AcovS decreased amniotic epithelial
invasion at levels similar to WT (Fig. 4 D) as did the comple-
mented AcylE strain (not depicted). Although we were un-
able to complement the AcovRAcylE double mutant due to
the instability of the complementing plasmid, introduction
of the plasmid encoding CylE to GBSAcovRAcylE restored
hemolytic activity, amniotic epithelial invasion, and barrier
disruption to levels that were intermediate between WT and
AcovR (Figs. 4, C-E).

CylE expression is necessary but not sufficient

for GBS hemolysis

Our results above add to the large body of literature dem-
onstrating the essential nature of hemolysin to various facets
of GBS pathogenesis including pneumonia, sepsis, menin-
gitis (Liu et al., 2004; Hensler et al., 2005; Lembo et al., 2010),
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and now bacterial penetration of human placenta/chorioam-
nion. Despite the importance of hemolysin to GBS virulence,
its biochemical and molecular nature has remained elusive.
Extraction of the GBS hemolysin requires high molecular
weight stabilizers such as starch, tween, or BSA (Marchlewicz
and Duncan, 1980; Tapsall, 1987). Previous studies pro-
posed that the 78-kD protein encoded by the cylE gene
located in the ¢yl operon (Fig. 5 A) is the GBS hemolysin,
as deletion of the cylE gene abolished hemolytic activity and
expression of cylE increased hemolysis in E. coli (Pritzlaff
et al., 2001). However, Pritzlaff et al. (2001) also reported
that in E. coli expressing CylE, they could not detect the
CylE protein in secreted/extracellular fractions and also
could not extract hemolytic activity from the bacterial
cells using starch, BSA, or tween, characteristic of the GBS
hemolysin. These observations suggest that increased he-
molytic activity in E. coli may not be a result of the GBS
hemolysin. Also noteworthy is that CylE has 43 rare co-
dons that are not efficiently translated in E. coli (i.e., 24 Arg
[AGG,AGA, CGA], 5 Leu [CTA], 11 Ile [ATA], and 3 Pro
[CCC]). BLAST searches have revealed no significant homol-
ogy of CylE to known pore-forming toxins and the pro-
tein does not possess any canonical secretion signal (Pritzlaff
et al., 2001; Nizet, 2002). Moreover, SDS-PAGE analysis of’
cell-free extracts of GBS with hemolytic activity did not
reveal the presence of any protein (unpublished data). To
further confirm that ¢y/E alone is necessary and sufficient
for GBS hemolysis, we constructed a GBS strain that lacked
all genes of the cyl operon (AcylX-K, see Fig. 5 A for operon).
This strain is nonhemolytic and, interestingly, complemen-
tation with plasmids that constitutively express either CylE
or CylABE (which includes the ABC transporter system
CylA/B; Gottschalk et al., 2006) failed to restore hemolytic
activity (Fig. 5 B). In contrast, these plasmids restored hemo-
lytic activity to the GBS strain lacking only cylE (Fig. 5 B)
but were unable to induce hemolysis in E. coli (Fig. 5 C).
Consistent with these observations, complementation of
GBSAcovRAcylE with pCylE restored hemolytic activity

GBS invasion of human placenta | Whidbey et al.
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Figure 4. GBS clinical isolates from women in preterm labor exhibit increased hemolysis and some are associated with CovR/S mutations.
(A) gRT-PCR on RNA isolated from log phase GBS (0.Dgynm = 0.3). Data are normalized to relative expression of the house keeping gene rpsL and are the
mean and SD from five independent biological replicates performed in triplicate (n=5; * P = 0.03, Wilcoxon matched-pairs rank test). (B) Hemolytic ac-
tivity of GBS clinical isolates associated with preterm labor. A representative image from one of three independent experimental replicates is shown. (C) Single
colonies were patched and streaked on blood agar. Hemolysis of GBS WT, AcovS, AcovR, and complementing clones including plasmids encoding CovS220stop
and CovSV343M. Hemolysis of GBS with the pCovR promoter deletion compared with WT. Complementation of GBSAcovRAcy/E with pCylE on hemolytic
activity. A representative image from one of three independent experimental replicates is shown. (D) Invasiveness of GBSAcovS to hAEC compared with
WT and AcovR. Complementation of AcovSand AcovR on amniotic invasion and effect of pCylE on amniotic epithelial invasion of AcovRAcy/E. Data shown
are the mean and SD obtained using hAEC from three independent placentas, performed in triplicate (n = 3; ***, P < 0.0001; ***, P = 0.0006, Student's
ttest, error bars + SD). (E) Barrier disruption of amniotic epithelium by GBS WT, AcovS, AcovR, and AcovRAcylE. Complementation of GBSAcovRAcylE
with pCylE on amniotic barrier disruption. A representative image from one of three independent experimental replicates is shown.

to levels greater than WT (Fig. 4 C) due to derepression of the  these observations indicate that although necessary, CylE
other cyl operon genes in the absence of CovR (Lamy et al.,  and its putative transporter CylA/B are not sufficient for

2004; Jiang et al., 2008; Lembo et al., 2010). Collectively, ~ GBS hemolytic activity.
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Figure 5. CylE is necessary but not sufficient for GBS hemolysis. (A) The GBS cy/ operon encoding genes cylX-K is shown. (B and C) Complementa-
tion of the nonhemolytic GBSAcy/E and AcylX-K with plasmids encoding CylE or CylE along with the ABC transporter CylA/B on hemolytic activity. A rep-
resentative image from one of three independent experimental replicates is shown. (D) Hemolytic and nonhemolytic GBS strains on Granada Media.

A representative image from one of three independent experimental replicates is shown.

The functional basis of GBS hemolytic activity Fig. 5 D), this link is not understood. The pigment was re-
is the ornithine rhamnolipid pigment cently described to be an ornithine rhamnolipid known as
Although the hemolytic phenotype of GBS anomalously cor- granadaene (Rosa-Fraile et al., 2006). Like hemolytic activity,
relates with pigmentation, where nonhemolytic strains are non-  pigment biosynthesis in GBS requires the 12-gene ¢yl operon

pigmented and hemolytic strains are pigmented (Nizet et al., (Spellerberg et al., 2000; Pritzlaff et al., 2001; Fig. 5 A) and
1996; Spellerberg et al., 2000; Pritzlaft et al., 2001; also see several genes in this operon (cylD, ¢ylG, cyll, ¢ylK, cylZ, and
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Figure 6. Proposed biosynthetic pathway for the GBS pigment granadaene. (A and B) Predicted functions of the cy/ operon proteins and proposed bio-
synthetic pathway for synthesis of the GBS pigment using acetyl-CoA, malonyl-CoA, ornithine, and rhamnose. CyID conjugates the elongating malonyl CoA
units to the acyl carrier protein (ACP) AcpC. Cyll links the malonyl CoA to an initial fatty acid-ACP complex, beginning the fatty acid biosynthesis-like pathway.
CylIG reduces the 3-keto group to a hydroxyl group, which is further reduced to an alkene by CylZ. The cy/ operon lacks an enoyl-ACP reductase thereby elimi-
nating the final reduction of the alkene to an alkane. The unsaturated fatty acid serves as a substrate for further elongation by Cyll, accounting for the large
degree of unsaturation in the pigment. After 13 total rounds of elongation, the fatty acid is conjugated to ornithine by CylE, and glycosylated by CylJ. CylX, CylF,
and CylK likely function upstream or downstream of this pathway. CylX is homologous to a component of the acetyl-CoA carboxylase, which generates malo-
nyl-CoA. CylF is an aminomethyltransferase, likely involved in production of the methylated derivative seen in the mass spectrum (Fig. S2). CyIK is a putative
phosphopantetheinyl transferase, which is involved in the activation of acyl carrier proteins. Although GBS has a separate fatty acid biosynthesis (fab) operon,
deletion of genes in the cy/ operon (AcylX-K; Fig. 5B) abolishes pigment biosynthesis suggesting that the fab and cy/ operons are not functionally redundant.

acpC) encode enzymes catalyzing different steps in fatty acid
biosynthesis (Fig. 6 A). The ¢yl operon also encodes a glyco-
syltransferase (CylJ), an aminomethyltransterase (CylF), acetyl
CoA carboxylase (CylX), and an ABC transporter (CylA/B).
Sequence profile analysis of CylE revealed an N-terminal
domain of the acyltransferase superfamily known to catalyze
several amidoligase reactions (Fig. S1). Using these predicted
homologies, a pathway for GBS pigment biosynthesis that re-
quires most genes of the cyl operon is proposed (Fig. 6 B).
Based on the tight link between hemolysin and pigment
production, the failure of ¢ylE or ¢ylABE to restore hemolytic

JEM Vol. 210, No. 6

activity to GBSA¢yIX-K, the absence of protein in the hemo-
lytic extracts, and observations that disruption of several other
¢yl genes such as ¢ylD, acpC, cylZ, cylA/B, and cylK abolished
hemolytic activity (Spellerberg et al., 1999; Pritzlaff et al., 2001;
Gottschalk et al., 2006; Forquin et al., 2007), we hypothesized
that hemolytic activity of GBS may be due to the ornithine
rhamnolipid pigment and not due to the CylE protein. To test
this hypothesis, we extracted the pigment from WT GBS
using DMSO containing 0.1% TFA as previously described
(Rosa-Fraile et al., 2006). Subsequently, the pigment was pu-
rified by gel filtration column chromatography designed for
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Figure 7. The functional basis of GBS hemolytic activity is the pigment. (A) Pigment was added to hRBCs in twofold serial dilutions from 25 to
0.024 uM. As controls, equivalent amounts of sample from Acy/E or DTS were added to hRBC. The data shown are the mean and SD from three indepen-
dent pigment preparations, performed in triplicate (n = 3, P < 0.0001 Student's t test, error bars + SD). (B) Varying amounts of purified GBS pigment (0.33,
0.67, and 1.34 ug) was spotted on sheep blood agar plates and incubated overnight at 37°C. Equivalent amounts (2, 1, and 0.5 pl) of purified extract from
GBSAcyl/E and DTS were spotted as controls. A representative image from one of three independent experimental replicates is shown. (C) Scanning elec-
tron micrographs showing hRBC membrane morphology after a brief (8 min) exposure to GBS pigment (12.5 uM) or an equal amount of control (obuffer
or AcylE extract). The experiment was performed twice using independent pigment preparations. (D) For proteinase K (PK) treatment of pigment before
hemolytic assays, pigment, and control Acy/E samples in DTS were lyophilized and digested in the presence and absence of proteinase K. The data shown
are the mean and SD from three independent pigment preparations, performed in triplicate (n = 3, P > 0.9 Student's t test, error bars + SD).

selective purification of small molecules (<5 kD) using a Sepha-
dex LH-20 column and DMSO:0.1% TFA as the mobile phase
(Rosa-Fraile et al., 2006). Although soluble in DMSO:0.1%
TFA, the pigment was nonhemolytic in this solvent as ob-
served previously (Rosa-Fraile et al., 2006). Because traditional
isolation of GBS hemolytic extracts requires a large carrier
molecule such as starch (Marchlewicz and Duncan, 1980;
Tapsall and Phillips, 1991), we reasoned that addition of starch
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to the purified pigment may be required for functional activ-
ity. Thus, we dissolved purified pigment in DMSO containing
0.1% TFA and 20% starch (DTS). As a control, the pigment
extraction procedure was performed on the nonhemolytic
and nonpigmented AcylE strain. We then examined hemo-
lytic activity of purified pigment using two methods that in-
volved lysis of RBCs. First, twotold dilutions of pigment were
used to examine lysis of human RBCs (hRBCs) using the
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Figure 8. The GBS pigment is cytotoxic to hAECs. Various concentrations of GBS pigment or an equal amount of control (Acy/E or DTS) were added
to hAEC for 4 h followed by trypan blue staining. The experiment was performed twice in triplicate using independent pigment samples and hAECs.

(A) Percent cell death represented as the mean and SD of five randomly selected fields (n = 500 cells; **, P < 0.005; ***, P < 0.001, Student's t test, error
bars + SD). (B) Sample field showing GBS pigment cytotoxicity at 2.5 uM compared with an equivalent amount of controls.

hemolytic titer assay described previously (Nizet et al., 1996).
The results shown in Fig. 7 A indicate that the purified pig-
ment possessed hemolytic activity and the effective concen-
tration 50 (ECs; concentration at which 50% of erythrocytes
are lysed) corresponded to a pigment concentration of 0.11 uM.
The control samples that included buffer alone and extracts
from the nonhemolytic AcylE strain were not pigmented and
did not possess hemolytic activity (Fig. 7 A). Second, varying
concentrations of purified pigment were spotted on sheep
blood agar (SBA) plates, and the results shown in Fig. 7 B in-
dicate that lysis of RBCs is observed in the presence of pig-
ment and not in the AcylE or buffer controls. Scanning electron
micrographs of hRBCs revealed that a brief (8 min) exposure
to the GBS pigment induced dramatic alterations in mem-
brane morphology from the usual disc shape of erythrocytes
(see buffer and AcylE control) to that of echinocytes and sphe-
roechinocytes (Fig. 7 C).

The hemolytic activity of the ornithine rhamnolipid

is not sensitive to proteinase K

To determine if the hemolytic activity observed with purified
pigment could be attributed to a protein toxin, we performed
proteinase K digestion of the purified pigment before hemo-
lytic assays. For proteinase K digestion, GBS pigment and con-
trol AcylE extract previously dissolved in DTS was lyophilized,

JEM Vol. 210, No. 6

resuspended in proteinase K buffer, and digested in the pres-
ence and absence of proteinase K (see Materials and methods
for details). Subsequently, hemolytic titer assays were per-
formed on all samples including controls. The results shown in
Fig. 7 D indicate that pigment treated with proteinase K had
similar hemolytic properties compared with pigment not treated
with proteinase K (P 2 0.9). We further performed Fourier
transform ion cyclotron resonance tandem mass spectrometry
and nuclear magnetic resonance (NMR) on the purified pig-
ment and control AcylE extract (Figs. S2—S4). A comparison of
the MS spectra revealed that peaks at 677.38 m/z and a meth-
ylated derivative at 691.46 m/z, characteristic of the GBS pig-
ment, are uniquely present in the purified pigment and not in
control AcylE (Fig. S2). '"H NMR and correlation spectros-
copy (COSY) confirms the structure of the pigment and its
presence in the pigment from WT (Fig. S3, A and B) and not
in the AcylE control (Fig. S4). Also, SDS-PAGE analysis of
purified pigment followed by Ruby staining did not reveal the
presence of any protein and LC-MS/MS analysis of tryptic di-
gests of purified pigment only identified peptides correspond-
ing to trypsin and common contaminants in these analyses, i.e.,
keratin (unpublished data). Collectively, these results indicate
that the hemolytic molecule purified from GBS is not a pro-
tein, but the ornithine rhamnolipid previously described as
granadaene (Rosa-Fraile et al., 2006; Vanberg et al., 2007).
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The GBS pigment is cytotoxic to hAECs

To determine if the purified pigment has cytotoxic properties
attributed to the function of the previously elusive GBS hemo-
lysin, varying concentrations of purified pigment or buffer and
AcylE controls were added to hAEC followed by trypan blue
straining. These results indicate that the purified pigment pos-
sesses cytolytic properties, as indicated by increased trypan blue
staining indicative of dead cells in the presence of pigment in
contrast to buffer or AcylE controls (Fig. 8, A and B, P < 0.005).
ELISA assays for cytokines indicated that the purified pigment
was unable to induce an inflammatory response in hAEC (un-
published data). These results can be expected because GBS
hemolysin/pigment is associated with the bacterial cell surface
and is not secreted. These observations indicate that although
the purified pigment may induce pore formation similar to
other rthamnolipids (Kawai et al., 1982; Sanchez et al., 2010)
and polyenes (Knopik-Skrocka and Bielawski, 2002), exposure
of host cells to bacterial cell surface associated hemolysin is re-
quired for induction of the inflammatory response.

DISCUSSION

This work provides novel evidence that elevated expression of
a virulence factor promotes GBS penetration of the amniotic
cavity, a critical step in the pathway to preterm birth and fetal
injury. Currently, there is no effective vaccine to prevent ma-
ternal to infant transmission of GBS. Knowledge of virulence
factors associated with preterm birth and neonatal infections
will allow for a more informed approach toward strategies for
prevention of GBS infections. We have demonstrated that
hemolysin promotes GBS invasion of placental cells and that
hyper-hemolytic strains are more proficient in disruption of the
amniotic barrier and penetration of placental membranes. We
predict that environmental changes in the lower genital tract
(e.g., neutral pH; Santi et al., 2009) may be sensed by sensor
kinases, such as Covs, to alleviate CovR repression, thus trig-
gering an increase in hemolysin expression that mediates as-
cending GBS infection. Alternatively, mutations in hemolysin
regulators such as covR /S that potentially arise while GBS is in
a commensal niche (e.g., during vaginal colonization) may pro-
mote penetration of chorioamnion and invasion of the amni-
otic cavity. Consistent with this hypothesis, hyper-hemolytic
GBS with covR /S mutations were isolated from the amniotic
fluid, choricamnion, and cord blood of women who delivered
preterm. However, GBS strains that had no mutations in the
covR /S loci were also recovered from women in preterm labor.
Although repression of hemolysin by the CovR/S two com-
ponent system has been demonstrated in several GBS strains
(e.g. A909, COH1, NEM316, 515, 2603v/r, and NCTC10/84;
Lamy et al., 2004; Jiang et al., 2005, 2008; Rajagopal et al.,
2006; Lin et al., 2009; Santi et al., 2009; Firon et al.,2013) and
covR/S and cyl genes are conserved among all sequenced GBS
strains (Glaser et al., 2002; Tettelin et al., 2005), it 1s likely that
additional strain-specific regulators also influence the expres-
sion of this important virulence factor. Regulators such as the
sensor kinase Stk1 (Rajagopal et al., 2006; Lin et al., 2009) and
an Abi-domain protein Abx1 (Firon et al., 2013) influence the
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expression of ¢yl genes through their interaction with CovR
and CovS, respectively. As strains lacking Stk1 or Abx1 exhibit
decreased hemolytic activity (Rajagopal et al., 2006; Lin et al.,
2009; Firon et al., 2013), increased hemolytic activity observed
in the clinical isolates cannot be attributed to the loss of Stk1
or Abx1 and DNA sequence analysis also did not indicate the
presence of any mutations in these genes (unpublished data).
The complexity of hemolysin regulation is emerging and will
be beneficial for a greater understanding of GBS infections
associated with preterm premature rupture of membranes
(PPROM), preterm delivery (PTD), and neonatal sepsis.

For the first time, we describe the biochemical nature of
the GBS hemolysin and elucidate the connection between he-
molysis and pigmentation. We show that CylE is necessary but
not sufficient for GBS hemolysis and that the ornithine rham-
nolipid pigment is hemolytic and cytotoxic. Although a previ-
ous study suggested that the GBS hemolysin is likely to be a
protein as hemolytic activity diminished due to protease treat-
ment (Marchlewicz and Duncan, 1981), three proteins, in-
cluding a glycoprotein, copurified with the hemolysin in these
prior studies. Given the promiscuity of stabilizers used by the
GBS hemolysin (starch, tween, and BSA; Marchlewicz and
Duncan, 1980; Tapsall, 1987), we predict that protease diges-
tion of the proteins which copurified with the GBS pigment/
hemolysin may have destabilized the pigment leading to the
erroneous conclusion that the GBS hemolysin is a protein.

Our finding that an ornithine rhamnolipid is the hemolysin
has important implications for GBS disease pathogenesis. As
the GBS hemolysin/pigment is a surface-associated toxin, we
predict that the cytotoxic effects are primarily extracellular but
that the toxin also mediates host cell lysis when bacteria are in-
ternalized into host cells. These cytotoxic properties contrib-
ute to barrier failure, thus promoting bacterial dissemination
within the host. Hemolytic GBS also induce a strong immune
response (Fig. 2, A and B; Fig. 3 C), which plays an important
role in its disease pathogenesis. However, specific host immune
pathways that respond to this virulence factor remain unde-
fined (Nizet et al., 1996; Doran et al., 2002; Henneke et al.,
2002; Lembo et al., 2010; Bebien et al., 2012). With the iden-
tification, purification, and biochemical characterization of
the GBS hemolysin as the ornithine rhamnolipid pigment, key
mechanisms of host immune activation can now be addressed.
Such studies will provide critical insight necessary for preven-
tive strategies against GBS infections. Although vaccines that
target surface proteins was shown to provide protection against
GBS in mouse models of infection (Maione et al., 2005),
protein-based vaccines cannot neutralize the effect of this lipid
toxin. A previous attempt to raise anti-sera to crude extracts of
the GBS hemolysin was unsuccessful (Dal and Monteil, 1983)
and is consistent with the notion that lipids typically do not
elicit an antibody response. However, therapeutic measures
designed to inhibit biosynthesis of the ornithine rhamnolipid
pigment or its function may prove effective.

Although ornithine-containing lipids are widely known
in bacteria (Geiger et al., 2010) and a few have hemolytic or
hemagglutinating properties (Kawai et al., 1982; Haussler et al.,
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1998; Sanchez et al., 2010), their role in virulence of bacterial
pathogens is not fully appreciated. Orthologs of the ¢yl operon
are present in other bacterial species including opportunistic
human and insect pathogens such Bacillus cereus, Bacillus thurin-
giensis, Paenibacillus larvae, and actinobacteria such as Actinonyces
viscosus, Kitasatospora setae, Arthrobacter species, and Propi-
onibacterium species (Fig. 9). In these organisms, the core ¢yl
operon containing genes for fatty acid and ornithine biosyn-
thesis and their amidoligation are strongly conserved. Also,
P. jensenii was described to produce a pigment similar to the
GBS granadaene (Vanberg et al., 2007). Given their ubiqui-
tous nature, our findings have significant implication in the
classification of bacteria that encode pigments with hemo-
lytic and cytolytic properties. In summary, our work shows
that GBS virulence and its transition from commensal to in-
vasive niches hinges on its ability to regulate the expression of
a key virulence factor which we describe is a hemolytic orni-
thine lipid.

MATERIALS AND METHODS

Human subjects. Written informed patient consent for donation of nor-
mal, term placentas immediately after cesarean delivery from women with-
out labor was obtained with approval from the University of Washington
Institutional Review Board (protocol #34004). GBS clinical isolates from
amniotic fluid, chorioamnion, and/or cord blood were obtained from
women enrolled with preterm labor and intact membranes at <34 wk gesta-
tion at the University of Washington Medical Center, Swedish Medical
Center, and Virginia Mason Medical Center (Seattle, Washington) between
June 25, 1991 and June 30, 1997. This cohort was previously described
(Hitti et al., 1997), the University of Washington Institutional Review
Board approved the study (protocol #25739), and all participants provided
written informed consent. Written informed patient consent for donation
of human blood was obtained with approval from the Seattle Children’s
Research Institute Institutional Review Board (protocol #11117).

Bacterial isolates The WT GBS strains used in this study COH1 and A909
are clinical isolates obtained from infected human newborns. (Lancefield
et al., 1975; Martin et al., 1988). COH1 belongs to the hypervirulent MLST-
ST17 clone of GBS serotype III associated with severe neonatal infections
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(Musser et al., 1989). The AcylE, AcovR, and AcovRAcylE mutants were derived
from COH1 and A909 using methods previously described (Rajagopal et al.,
2006; Lembo et al., 2010). The AcovS mutant was derived using methods pre-
viously described (Jiang et al., 2005). Routine cultures of GBS were grown in
Tryptic Soy Broth (TSB; Difco Laboratories) at 37°C in 5% CO,, and routine
cultures of E. coli were performed in Luria-Bertani Broth (LB; Difco Labora-
tories) at 37°C. Cell growth was monitored at 600 nm. Antibiotics were added
at the following concentrations when necessary: for GBS, 1 pg/ml erythro-
mycin, 300 pg/ml spectinomycin, 1,000 pg/ml kanamycin, and 2.5-5 pg/ml
chloramphenicol; for E. coli, 300 pg/ml erythromycin, 50 pg/ml spectino-
mycin, 50 pg/ml kanamycin, and 10 pg/ml chloramphenicol. Antibiotics and
other chemicals were purchased from Sigma-Aldrich, unless mentioned other-
wise. Cell culture media was purchased from Mediatech Inc. All GBS mutants
used in this study had similar growth rates compared with isogenic WT in the
media used for cell culture and ex vivo experiments (DMEM containing 1%
FCS). Restriction enzymes were purchased from Fermentas, and primers were
purchased from Sigma-Aldrich. RNA isolation and qRT-PCR for analysis of
GBS gene expression was performed as described previously (Lembo et al.,
2010). GBS pictures shown on Red Blood Agar and Granada Media were
captured using a digital SLR camera (EOS Rebel XSi 12.2MP; Cannon) with
an 18-55 mm zoom lens and processed using Photoshop CS2 (version 9; Adobe)
and compiled using Canvas 9 (version 9.0.4; Deneba).

Construction of GBS A¢ylX-K and complementing plasmids. Approxi-
mately 1 kb of DNA located upstream of ¢ylX and 1 kb of DNA located
downstream of ¢ylK were amplified using high fidelity PCR (Invitrogen) and
primer pairs dCylopupF and dCylopupR, and dCylop dnF and dCylopdnR,
respectively. The gene conferring kanamyecin (Q km-2) resistance was also
amplified using high-fidelity PCR from pCIV2 (Okada et al., 1993) for
allelic replacement of ¢ylX-K, using primers dCylkanF and dCylkanR. Sub-
sequently, strand overlap extension PCR (Horton, 1995) was performed to
introduce the antibiotic resistance gene (0 km-2) between the flanking re-
gions of ¢ylX-K described above. The PCR fragment was then ligated into
the temperature-sensitive vector pHY304 (Chaffin et al., 2000) and the re-
sulting plasmid was electroporated into GBS WT as described previously
(Rajagopal et al., 2003). Selection and screening for the double crossover
mutant was performed as previously described (Rajagopal et al., 2003). PCR
was used to verify the presence of () km-2 and the absence of cyIX-K. The genes
encoding cylE, cylABE, covR, and covS were amplified using high-fidelity
PCR using primer pairs CylEF and CylER, CylABEF and CylABER, CovRF
and CovRR, and CovSF and CovSR, respectively. The PCR fragments were
digested with restriction enzymes present on the primer sequences and then
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cloned into the multiple cloning site of the GBS complementation vector
pDC123 downstream to the constitutive promoter as described previously
(Chaffin and Rubens, 1998; Rajagopal et al., 2003). The complementing plas-
mids were then electroporated into GBS AcylE, AcylX-K, AcovS, and AcovR
using methods previously described (Rajagopal et al., 2003). Site-directed
mutants were generated using the QuikChange Site-Directed mutagenesis kit
(QIAGEN) with the complementing pCovS plasmid as the template and prim-
ers CovS200F & CovS200R for pCovS220Stop and primers CovSV343MF
& CovSV343MR for pCovSV343M. GBS with chromosomal mutations
in CovR/S loci was obtained using methods described previously (Lin et al.,
2009). DNA sequencing was performed to confirm the presence of the de-
sired mutations.

Derivation of human amniotic epithelium. Primary hAECs were iso-
lated and cultured from normal, term placentas obtained immediately after
cesarean delivery from women without labor as previously described (Sun
et al., 2003). In brief, the amnion was peeled from the chorion, and the am-
nion tissue was washed with PBS and digested with trypsin (Worthington
Biochemical Corp.) and DNase (Sigma-Aldrich) as previously described
(Sun et al., 2003). Subsequently, the trypsin digestion media was centrifuged
and cell pellets were resuspended in DMEM and loaded onto pre-prepared
discontinuous Percoll (GE Healthcare) gradients (5, 20, 40, and 60%, respec-
tively), and the gradients were centrifuged as previously described (Sun et al.,
2003). A single band of cells at ~20% Percoll concentration was collected,
diluted in media to a density of 10° cells/ml, and cultured as previously de-
scribed (Sun et al., 2003).

Infection assays. Three to four independent placentas were used and all ex-
periments were performed in triplicate. Adherence and invasion of GBS WT
COHI1 or A909 and isogenic AcylE, AcovR, AcovS, and AcovRAcylE mutants
to hAEC were performed as previously described (Nizet et al., 1997; Winram
et al., 1998). In brief, GBS strains grown to mid-log phase (~~10% CFU/ml;
ODy = 0.3) were washed in PBS, resuspended in DMEM with 10% FBS,
and used to infect hAEC monolayers at a multiplicity of infection of 1. For ad-
herence assays, the infection was performed for a period of 2 h after which the
bacteria were enumerated using methods previously described (Nizet et al.,
1997; Winram et al., 1998). For invasion assays, 100 pg/ml gentamicin and
5 pg/ml penicillin was added to each well at 2 h after infection and the plates
were incubated for an additional 2 h to kill extracellular and surface-adherent
bacteria; subsequently, intracellular bacteria were released using trypsin-EDTA
(Gibco) and Triton X-100 and bacteria were serially diluted and enumerated
as previously described (Nizet et al., 1997; Winram et al., 1998).

Expression of inflammatory mediators. Three independent placentas
were used and all experiments were performed in triplicate. hAECs were
cultured, washed, and infected with GBS strains as described above. Subse-
quently, total RNA was isolated from hAEC monolayers using the RNeasy
miniprep kit (QIAGEN) according to the manufacturer’s protocol and di-
gested with DNase I to remove contaminating genomic DNA. Expression
of inflammatory mediators in human amniotic epithelium was determined
using QqRT-PCR as described previously (Lembo et al., 2010). Supernatants
from GBS-infected hAEC were collected, centrifuged to remove bacteria, and
Luminex bead assays (Millipore) were performed using methods described
by the manufacturer to evaluate cytokine levels.

Western blots. hAECs were grown to confluence and infected with GBS at
a multiplicity of infection of 1 for a period of 4 h. Uninfected cells were in-
cluded as controls. Subsequently, hAECs were washed, digested with trypsin,
and centrifuged. The NE-PER kit (Thermo Fisher Scientific) was used for
stepwise separation and preparation of cytoplasmic and nuclear extracts from
infected hAEC as per manufacturer’s instructions. Equal amounts (10 pg) of
cytoplasmic and nuclear extracts were subjected to 7.5% SDS-PAGE followed
by Western blotting. The membrane was blocked in 1:1 Odyssey blocking
buffer (Li-Cor Biosciences) in PBS and then incubated at 4°C overnight with
a 1:200 dilution of primary NF-kB p65 antibody (Santa Cruz Biotechnology).
Secondary antibody Alexa Fluor 680 anti-mouse (Life Technologies) was
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added at a 1:1,000 dilution. After several washes, the membrane was visualized
with the Odyssey Li-Cor infrared imager (Li-Cor Biosciences).

Barrier integrity analysis. Changes in transepithelial electrical resistance
across hAEC monolayers were measured in real time using ECIS (Giaever
and Keese, 1993) with an ECIS ZTheta Instrument and 8W10E+ arrays
(Applied BioPhysics). hAEC monolayers were established on gold-plated
electrodes in 8-well array slides attached to a computer-operated sensing ap-
paratus to allow measurements in real time. Monolayers were then infected
with the GBS strains at 10> CFU/well and the system measured the cell mem-
brane capacitance (Cm), the resistance from the cell-electrode interaction
(av), and the barrier function properties of the cell monolayer (Rb). Decon-
volution of the overall ECIS signal into these parameters is performed by the
ECIS software by fitting the mathematical model derived by Giaever and
Keese (1991) to the experimental data by least-square optimization proce-
dures. Uninfected wells served as controls for background levels of electrical
resistance. Data are represented as a change in resistance as a proportion of
the control over time as described previously (Lembo et al., 2010). A repre-
sentative of three independent experiments is shown.

Ex vivo placental model. Intact chorioamniotic membranes obtained im-
mediately after normal, cesarean delivery were rinsed in sterile saline solution
and placed over an inverted, upper chamber of a Transwell System (Corning
Inc.) from which the original polycarbonate membrane was previously re-
moved as previously described (Zaga-Clavellina et al., 2007). Sterile silicone
rubber rings were used to hold the placental membranes in place. Thus, when
the transwell is inserted, the choriodecidua faces the upper chamber and the
amniotic epithelium faces the lower chamber as previously described (Zaga-
Clavellina et al., 2007). Care was taken to during the entire procedure so that
there were no tears or rips on the placental membranes mounted on the tran-
swell. The explants were stabilized in media for a period of 48 h. Six inde-
pendent placentas/chorioamniotic membranes were used in these assays.
Uninfected placenta was also included as a control in each experiment. For in-
fection of chorioamnion, GBS strains were grown to an O.Dy, of 0.3, washed
twice in PBS, and ~107 CFU in a final volume of 1 ml DMEM was added to
the upper chamber. At 24 h after infection, media (DMEM) from the lower
chamber was removed and processed for bacterial enumeration and expression
of cytokines. For bacterial enumeration, aliquots of the media were serially
diluted and plated on TSA plates. For analysis of inflammatory mediators,
aliquots of media were analyzed using ELISA or the Luminex bead assay as
described by the manufacturer (R&D Systems or Millipore). For microscopy,
infected chorioamniotic membranes were fixed in 10% phosphate buffered
formalin at 4°C overnight and stored in 70% ethanol. The membranes were
subsequently embedded in paraffin, sectioned, and stained using the Gram-
Twort stain as previously described (Stevens and Bancroft, 1977). Images were
captured in bright field using the DM4000B Fluorescent upright microscope
(Leica) under 10, 40, and 100X magnifications. The microscope was attached
to a DFC310FX camera (Leica) and the acquisition software used was the
Leica application suite (version 4.0.0). A representative image from experi-
ments with six independent placentas with similar results is shown. As controls
for bacterial migration, transwells were also mounted with either chorion
alone or amnion alone. In brief, the amnion was peeled from the chorion and
individual membranes were mounted over the transwell such that their orien-
tation was maintained, i.e., the inner chamber represented the choriodecidual
side for chorionic transwells or amniotic mesoderm for amniotic transwells.
Infection with GBS strains was performed as described above.

Purification and characterization of the ornithine rhamnolipid pig-
ment. GBS pigment was purified as previously described (Rosa-Fraile
et al., 2006) with some modifications. In brief, WT GBS were grown at
37°C in New Granada Media (de la Rosa et al., 1992) until the broth
turned red (48—72 h). Bacterial cells were pelleted, washed three times with
distilled water and twice with DMSO.The cell pellet was then resuspended
in DMSO:0.1% TFA overnight to extract the pigment, cell debris was pel-
leted, and the supernatant containing the pigment was saved. The above
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process was repeated until the supernatant obtained from GBS cells was
clear. Pigment was then precipitated by addition of 25% NH,OH to a final
concentration of 0.25% as previously described (Vanberg et al., 2007). Pre-
cipitated pigment was washed three times with HPLC grade water and
twice in DMSO, redissolved in DMSO:0.1%TFA, and purified using a Seph-
adex LH-20 (GE Healthcare) column as previously described (Rosa-Fraile
et al., 2006;Vanberg et al., 2007). Fractions containing purified pigment were
pooled and precipitated with NH,OH (Scientific Products) as described
above, washed three times with HPLC grade water, twice with DMSO, and
lyophilized. As a control, GBSAcylE was also grown in New Granada Media
and pigment extraction protocol was followed as described above. For NMR
analysis, purified pigment or control AcylE samples were resuspended in
DMSO-d;:0.1% d-TFA (Sigma-Aldrich). '"H,"*C, 'TH-COSY NMR exper-
iments were performed at 298K on a Bruker AV-500 NMR Spectrometer.
Residual DMSO-d; was used to calibrate chemical shifts. For MS experi-
ments, lyophilized pigment or control AcylE samples were dissolved in
DMSO:0.1%TFA and analyzed by Fourier Transform Ion Cyclotron Reso-
nance mass spectrometry on a Bruker AutoFlex APEX Qe 47¢ instrument.
For hemolytic and cytotoxic assays, lyophilized pigment or control AcylE
extract was dissolved in DTS to a final concentration of 1mM. The samples
were incubated overnight at room temperature in the dark before use.

Hemolytic titer assays was performed using methods described with some
modifications (Nizet et al., 1996). In brief, twofold serial dilutions of purified
pigment or control AcylE extract in DTS was performed in PBS + 0.2% glu-
cose in a final volume of 100 pl. These samples were then incubated with 100 pl
of heparin-treated hRBCs (1%) in 96-well plates at 37°C for 1 h, after which
the plates were spun for 4 min at 3,000 ¢ to pellet unlysed hRBC. The super-
natants were transferred to a replica 96-well plate and hemoglobin release was
measured by recording the absorbance at 420 nm. Positive and negative con-
trols included wells that contained hRBC with 0.1% SDS or PBS, respec-
tively. Solvent control for each pigment concentration was included in the
analysis. The effective concentration 50 is the concentration of pigment that
produces 50% hemoglobin release compared with the SDS control and was
determined using non linear regression. The experiment was performed in
triplicate using three independent preparations of purified pigment.

For proteinase K treatment of the pigment before hemolytic assays, pig-
ment and control AcylE samples in DTS was lyophilized and dissolved in
proteinase K buffer (20 mM Tris, pH 8.0,and 1 mM CaCl,). Each sample was
divided into two and proteinase K was added at a final concentration of
0.25 mg/ml, as previously described (Vanberg et al., 2007), to one of the ali-
quots and all samples were incubated at 37°C for 1 h. Hemolytic titer assays
were then performed on pigment and control samples that were treated with
and without proteinase K. Buffer controls were also included. The activity of
proteinase K used in these experiments was confirmed by digesting 100 pg
BSA with 0.25 mg/ml proteinase K at 37°C for 1 h followed by 12% SDS-
PAGE and SYPRO Ruby staining.

Scanning electron microscopy. Erythrocytes from 0.5 ml of human
blood was centrifuged, washed twice with PBS, and resuspended in 5 ml
PBS. Erythrocytes were then treated with 12.5 pM of pigment or an equiva-
lent amount of controls (DTS or A¢ylE extract) for 8 min at 37°C. Sub-
sequently, the samples were centrifuged at 4°C and the supernatant was
discarded. The pellet was resuspended in 0.5 ml of 1/2 Karnovsky’s Fixative
and incubated overnight at room temperature. Samples were then prepared
for scanning electron microscopy as previously described (Sinchez et al.,
2010). Images were captured using a JEOL 5800 Scanning Electron Micro-
scope equipped with a JEOL Orion Digital Acquisition System. The experi-
ment was performed twice using independent pigment preparations.

Cytotoxicity assays. hAECs cultured in 96-well plates (10° cells/well) for
24 h were treated with known concentrations of pigment or equivalent
amounts of control AcylE extract or DTS for a period of 4 h. Subsequently, the
media was removed and hAECs were treated with 0.2% trypan blue for 2 min.
Cells were washed with PBS and were immediately observed and imaged
under a DMI6000B inverted microscope (Leica) and images were captured at
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10 and 40X magnifications. The microscope was equipped with a DFC310FX
(Leica) camera and the acquisition software used was the Leica application
suite, version 4.0.0. Data are reported as the mean and SD of five fields per well.

Statistical analysis. The unpaired, two tailed Students ¢ test, Mann-Whitney
test, Wilcoxon’s matched pairs rank test was used to estimate differences as ap-
propriate, and a value of P < 0.05 was considered significant. The nonlinear
regression analysis was used to estimate ECy, concentration. These tests were
performed using Prism for Windows (version 5.0; GraphPad Software).

Online supplemental material. Table S1 lists primers used in this study.
Fig. S1 shows the alignment of CylE to known N-acyltransferases. Fig. S2
shows the overlay of mass spectra of purified pigment and control AcylE
extracts. Fig. S3 indicates 'H chemical shifts and '"H-'H COSY NMR of the
purified GBS pigment. NMR of control AcylE extract is shown in Fig. S4.
Online supplemental material is available at http://wwwjem.org/cgi/content/
full/jem.20122753/DC1.
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