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Brief Definit ive Report

The thymus plays a critical role in adaptive im­
munity as the site of mature T cell production 
(Miller, 2011). The thymus grows rapidly dur­
ing early life, generating a large T cell repertoire. 
It then enters an involution process, leading to 
decreased production of naive T cells, resulting 
in impaired immune function in the elderly and 
preventing complete reconstitution of the im­
mune system in various pathologies (Boehm, 
2008; Rodewald, 2008; Carpenter and Bosselut, 
2010). The mechanisms controlling thymic in­
volution are poorly understood, hampering the 
development of therapeutic strategies to enhance 
immune function in a wide variety of patients 
(Napolitano et al., 2008; Sauce and Appay, 2011).

Although the thymus is composed mostly of 
T lymphocytes, T cell development requires a 

complex microenvironment including endothe­
lial, dendritic, and thymic epithelial cells (TECs; 
Manley et al., 2011). TECs are highly prolifer­
ative during thymic expansion, and then their 
cell cycle slows considerably (Gray et al., 2007; 
Aw and Palmer, 2011; Manley et al., 2011). Re­
cent data show that keratinocyte growth factor 
(KGF; or FGF-7) and growth hormone treat­
ment in aged rodents and humans leads to tran­
sient thymic expansion and increased production 
of naive T cells (Min et al., 2007; Napolitano 
et al., 2008). In particular, increased TEC num­
bers were observed upon KGF treatment (Min 
et al., 2007; Rossi et al., 2007). IL-22 also can 
support thymic regeneration in mice after ra­
diation treatment (Dudakov et al., 2012). These 
data suggest that increased numbers of TECs 
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Thymic involution during aging is a major cause of decreased production of T cells and 
reduced immunity. Here we show that inactivation of Rb family genes in young mice pre-
vents thymic involution and results in an enlarged thymus competent for increased produc-
tion of naive T cells. This phenotype originates from the expansion of functional thymic 
epithelial cells (TECs). In RB family mutant TECs, increased activity of E2F transcription 
factors drives increased expression of Foxn1, a central regulator of the thymic epithelium. 
Increased Foxn1 expression is required for the thymic expansion observed in Rb family 
mutant mice. Thus, the RB family promotes thymic involution and controls T cell produc-
tion via a bone marrow–independent mechanism, identifying a novel pathway to target to 
increase thymic function in patients.
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(CCND1), p18Ink4c, and p27Kip1 (Robles et al., 1996; Franklin 
et al., 1998; Pierce et al., 1998; Klug et al., 2000; Rodriguez-
Puebla et al., 2000; Iglesias et al., 2004; Scheijen et al., 2004; 
Chien et al., 2006). However, the mechanisms underlying how 
the cell cycle machinery affects thymus development and in­
volution are still unknown.

Here we report that deletion of Rb family genes in the 
thymus of mice leads to increased proliferation in TEC popu­
lations and prevents thymic involution. Furthermore, we found 
that the RB family regulates the transcription of Foxn1, an im­
portant regulator of TEC differentiation and function. Finally, 
we demonstrate that the increased expression of Foxn1 is re­
quired for the thymus expansion observed in Rb family mu­
tant mice. These data identify a new RB-E2F-Foxn1 module 
as a critical regulator of thymic involution and function.

RESULTS AND DISCUSSION
We previously reported that inactivation of the entire Rb gene 
family in young adult mice (3–6-wk-old Mx1-Cre Rblox/lox; 
p130lox/lox; p107/ mice) results in rapid death as the result of 

can enhance, at least temporarily, thymic function. Neverthe­
less, the molecular mechanisms regulating cell cycle activity 
in TECs are still poorly characterized, and no strategies have 
been devised yet for long-term thymic growth.

Through its ability to bind the E2F transcription fac­
tors, the RB family of proteins (RB, p107, and p130) plays a 
major role in the control of cell cycle progression. Growth fac­
tors and external signals activate Cyclin and Cyclin-dependent  
kinase (CDK) protein complexes. Upon activation, Cyclin–
CDK complexes phosphorylate RB family proteins, resulting 
in their inactivation. Inactivation of RB family proteins by 
phosphorylation activates E2F, thereby promoting transcrip­
tion of genes involved in the G1/S transition of the cell cycle 
(Iaquinta and Lees, 2007; Chinnam and Goodrich, 2011)

There is no reported thymic phenotype in mice in which 
any one of the Rb family gene is inactivated, possibly because 
of the strong functional overlap between the three proteins 
(Dannenberg and te Riele, 2006). Nevertheless, emerging  
evidence suggests that some members of the RB pathway 
may play a role in thymic biology, including E2F2, Cyclin D1 

Figure 1.  Thymic growth and increased 
T cells in Mx1-Cre p107-Single mice 
(Mx1-Cre Rblox/lox; p130lox/lox; p107+/). 
(A, left) Representative control (Ctrl; top) and 
mutant (Mut; bottom) thymi (dashed lines). 
(right) H&E staining of representative control 
(top) and mutant (bottom) thymi. (B) Thymic 
cellularity (×107, log2 scale) of control and 
Mx1-Cre p107-Single mice after inactivation of 
the Rb family in young mice (n = 3 for each 
time point; asterisks indicate P < 0.05; ns 
indicates no significant difference; p-values:  
3 wk = 0.35, 3 mo = 0.018, 5 mo = 0.04, and  
7 mo = 0.03). Horizontal bars indicate the 
mean. (C) Comparison of thymic cellularity 
between control and Mx1-Cre Rb/p130 mutant 
mice at 3 wk (Ctrl: 29 ± 9.5 × 108 cells; Mx1-
Cre Rb/p130: 38 ± 24.6 × 108 cells; P = 0.59;  
n = 3) and 16 wk (Ctrl: 7.6 ± 1.4 × 108 cells; 
Mx1-Cre Rb/p130: 10.8 ± 7.4 × 108 cells; P = 
0.49; n = 3). (D) Oil Red O staining (red) on sec
tions from 2-wk-old control (left), 9-mo-old 
control (middle), and 9-mo-old Mx1-Cre  
p107-Single mutant (right) thymi (performed 
on three mice each). Bars: (A) 200 µm;  
(D) 100 µm. (E) Quantification of intrathymic  
T cell progenitor populations between control 
and mutant mice (n = 3). Lineage-negative 
populations include CD25 cKit (Ctrl: 48.65 ± 
8.27%; Mut: 42.07 ± 12.95%; P = 0.54), CD25+ 
cKit (Ctrl: 44.75 ± 2.90%; Mut: 53.37 ± 11.49%; 
P = 0.42), CD25 cKit+ (Ctrl: 3.08 ± 3.7%; Mut: 
1.65 ± 1.64%; P = 0.45), and CD25+ cKit+ (Ctrl: 
3.28 ± 1.28%; Mut: 2.65 ± 0.69%; P = 0.60).  
(F) Quantification of DN (Ctrl: 22.60 ± 0.82%; 

Mut: 17.33 ± 4.43%; P = 0.08), DP (Ctrl: 59.73 ± 3.98%; Mut: 73.61 ± 5.43%; P = 0.004), CD4+ T cell (Ctrl: 8.67 ± 0.83%; Mut: 5.00 ± 2.51%; P = 0.04), and CD8+  
T cell populations (Ctrl: 8.93 ± 2.96%; Mut: 4.98 ± 1.91%; P = 0.03). (G) T cell BrdU incorporation 1 h after injection was quantified by FACS analysis (n = 3; 
p-values: Total = 0.002, DN = 0.14, DP = 0.05, CD4+ = 0.24, and CD8+ = 0.22). (H) Quantification of splenic naive T cells in mutants and control mice (n = 3 
each; CD4+: Ctrl, 42.76 ± 5.81%; Mut, 55.06 ± 5.42% [P = 0.05]; CD8+: Ctrl, 50.14 ± 5.32%; Mut, 66.24 ± 3.64% [P = 0.03]). All error bars indicate standard error.
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To investigate the origin of thymic expansion in Mx1-Cre 
p107-Single mice, we generated chimeric mice by transplant­
ing Ly5.1+/ Ly5.2+ wild-type BM cells into 3-mo-old Ly5.1+ 
lethally irradiated mutant or control mice (Fig. 2 A). Upon 
reconstitution of hematopoiesis, chimeric mice were injected 
with polyinosine:polycytosine (pI:pC). 3 mo later, the thymi 
of Mx1-Cre p107-Single mice reconstituted with wild-type 
hematopoietic cells were enlarged significantly compared 

hyperproliferation in multiple organs (Viatour et al., 2008; 
Chen et al., 2011). In contrast, reintroduction of one copy of 
p107 (Mx1-Cre Rblox/lox; p130lox/lox; p107+/ or Mx1-Cre p107-
Single mice) rescues the lethality of the triple knockout mice 
and significantly extends their lifespan up to 9–12 mo of age 
(Viatour et al., 2008, 2011). At that age, although p107-Single 
mice that lack Cre-recombinase are still healthy, Mx1-Cre 
p107-Single mice exhibit weight loss and respiratory distress. 
Upon autopsy, we found that the thymus of Mx1-Cre p107-
Single mice was significantly increased in size (Fig. 1 A, left), 
compressing the lungs. This thymic growth correlated with 
increased cellularity (Fig. 1 B). The plateau observed after sev­
eral months of continuous growth in mutant mice may be the 
result of mechanical or vascular constraints, limits of the BM 
to generate T cell precursors, or a thymus-intrinsic effect.

Histopathological analysis showed no gross alteration of 
the thymic architecture in mutant mice compared with con­
trols (Fig. 1 A, right). As expected (Yang et al., 2009; Aw and 
Palmer, 2011), the thymus from 6–9-mo-old mice accumu­
lated lipids, as indicated by Oil Red O staining. In contrast, 
the thymus of young control (2–3 mo of age) and old mutant 
mice (6–9 mo of age) showed little lipid accumulation (Fig. 1 D). 
The only defect we detected in mutant mice outside of the 
thymus was epidermal hyperplasia (not depicted; previously 
described in Ruiz et al., 2004). Thymic size in Mx1-Cre Rb/
p130 double mutant mice was indistinguishable from that of 
control mice (Fig. 1 D). Overall, these data show that loss  
of RB family function in Mx1-Cre p107-Single mice results 
in the expansion of the thymus, while preserving overall thy­
mic architecture.

Flow cytometry analysis of progenitor thymocyte popula­
tions (Fig. 1 E and Fig. S1 A) revealed no significant differ­
ences in the frequency of these cell populations in the thymus 
of control and mutant mice. There were no significant changes 
in the number of double-negative (DN) cells between con­
trol and mutant mice. Double-positive (DP) mature intrathy­
mic T cells were slightly more numerous in the mutant mice, 
whereas CD4+ and CD8+ populations were smaller (Fig. 1 F 
and Fig. S1 B). These changes may reflect a higher percentage 
of DP thymocytes failing positive selection in the mutant ani­
mals (Morris and Allen, 2012). As expected (Pénit and Vasseur, 
1997), BrdU/propidium iodide (PI) cell cycle analysis showed 
some BrdU incorporation in CD4+ and CD8+ populations 
in control mice, but proliferation rates were higher in mutant 
CD4+ and CD8+ cells (Fig. 1 G). These observations show 
that loss of RB family function results in a general expansion 
of thymocytes rather than expansion of a specific subpopula­
tion as would be seen in a T cell lymphoma. Notably, this in­
crease in the number of intrathymic T cells was accompanied 
by an increase in the number of peripheral CD62L+ CD44 
naive T cells in Rb family mutant mice (Fig. 1 H and Fig. S1 C). 
This last finding is consistent with a recent observation that 
forced expression of thymic Foxn1 leads to a decrease in pe­
ripheral memory T cells (Zook et al., 2011). Thus, inactiva­
tion of the Rb gene family results in a thymic expansion that 
correlates with increased production of naive T cells in mice.

Figure 2.  The thymic expansion in Rb family mutant mice does not 
originate from the hematopoietic compartment. (A) Control (Ctrl) and 
Mx1-Cre p107-Single (Mut) mice expressing the Ly5.1 surface marker were 
lethally irradiated and transplanted with BM from Ly5.1/Ly5.2 wild-type 
mice. (B) Thymic cellularity (×108) of control and Mx1-Cre p107-Single  
chimeric mice (n = 5; P = 0.02). (C) Quantified (Ctrl: 95.23 ± 2.2% donor-
derived; Mut: 97 ± 1.01% donor-derived; P = 0.19; n = 3). (D) Quantifica-
tion of T cells in control and mutant chimeric mice (DN: Ctrl, 8.54 ± 2.44%; 
Mut, 11.88 ± 7.33% [P = 0.42]; DP: Ctrl, 80.68 ± 3.75%; Mut, 71.98 ± 5.87% 
[P = 0.046]; CD4+: Ctrl, 7.2 ± 1.26%; Mut, 10.74 ± 3.5% [P = 0.11]; CD8+: 
Ctrl, 3.59 ± 0.76%; Mut, 5.35 ± 1.87% [P = 0.13%]; n = 3). (E) PI analysis  
of cell cycle activity in control and mutant chimeric mice (G1: Ctrl, 80.65 ± 
2.02%; Mut, 70.53 ± 1.13% [P = 0.0001]; S: Ctrl, 3.93 ± 0.16%; Mut, 5.00 ± 
0.66% [P = 0.02]; G2: Ctrl, 15.30 ± 1.85%; Mut, 24.5 ± 5.40% [P = 0.0001]; 
n = 4). (F) Cytokine and receptor expression in thymic extracts from control 
and mutant mice after lethal irradiation and rescue with wild-type BM as 
assayed by RT-qPCR (p-values: Il7 = 0.41, Scf = 0.37, Fgfr2b = 0.58, Wnt4 = 
0.97, and Dll4 = 0.64; n = 3). Asterisks indicate P < 0.05; ns indicates no 
significant difference. All error bars indicate standard error.
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Figure 3.  Expansion of functional TECs in the thymus of Rb family mutant mice. (A) Immunoblot analysis (one of two replicates shown) of protein 
lysates from pooled CD45 EPCAM+ MHCII+ TECs from young (2 wk; n = 10), control (Ctrl; 15 wk injected; n = 10), and Mx1-Cre p107-single (15 wk; n = 3 
injected, 2 noninjected) thymi against RB, phospho-RB, CCND1, CDK4, and -Tubulin (loading control). (D) PCR analysis of genomic DNA isolated from CD45 
EPCAM+ MHCII+ TECs for the lox-flanked or Cre-deleted exons of Rb and p130 in 15-wk-old control, non–pI:pC-injected Mx1-Cre p107-Single, and pI:pC-
injected Mx1-Cre p107-Single mice (one of four shown). (C) RT-qPCR evaluation of expression of E2F target and S-phase genes in flow-purified TECs from  
2-wk-old (n = 2), 3-wk-old (n = 5), and 15-wk-old control mice (n = 3), including E2f1 (p-values for all genes presented as 2–3 wk and 3–15 wk, P = 0.044 
and 0.031, respectively), p107 (P = 0.001 and 0.04), PCNA (P = 0.026 and 0.018), bMyb (P = 0.026 and 0.041), Ezh2 (P = 0.0001 and 0.40), and Mcm3 (P = 
0.018 and 0.073). (D) RT-qPCR evaluation of expression of E2F target and S-phase genes in flow-purified TECs from control and mutant TECs (15 wk; n = 3 
each). Genes analyzed included E2f1 (P = 0.017), p107 (P = 0.004), PCNA (P = 0.033), bMyb (P = 0.026), Ezh2 (P = 0.059), and Mcm3 (P = 0.022). (E) PI analysis 
of cell cycle activity in TECs from 15-wk-old control and Mx1-Cre p107-Single mice (G1: Ctrl, 98.08 ± 1.18%; Mut, 69.17 ± 9.49% [P = 0.0003]; S: Ctrl, 1.21 ± 
0.78%; Mut, 18.86 ± 6.32% [P = 0.0002]; G2: Ctrl, 1.24 ± 0.85%; Mut, 12.13 ± 3.68% [P = 0.0004]; n = 10 control and 4 mutant). (F) BrdU incorporation 
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pC injections confirms that the Mx1 promoter can be in­
duced by endogenous signals (Kühn et al., 1995); this deletion 
in noninduced mice also led to a significant increase in thy­
mus size (thymic cellularity in control, 9.8 ± 0.2 × 107, versus 
noninjected Mx1-Cre p107-Single, 1.2 ± 0.7 × 109; P = 
0.0001). The extent of deletion of the Rb family seen in the 
thymus of these noninduced mice suggests that the mutant 
cells may outcompete wild-type or partially deleted cells as 
the thymus becomes enlarged. Notably, inactivation of the Rb 
gene family in Mx1-Cre p107-Single mice prevented the down-
regulation of E2F targets normally observed during aging 
(Fig. 3 D). Because CCND1 production is induced by mi­
togenic signals (Klein and Assoian, 2008), the lack of de­
tectable CCND1 in 15-wk-old control and mutant mice 
argues that, at this age, TECs do not receive extracellular 
mitogenic signals, further suggesting that the thymic growth 
observed in Mx1-Cre p107-Single mice is caused by a TEC-
intrinsic effect.

Next, we sought to quantify the extent to which loss of 
RB family activity in TECs increased TEC numbers in the 
mutant thymus. CD45, MHCII+ TECs increased 18-fold 
compared with CD45+ hematopoietic cells in the thymus of 
the mutant mice (control, 0.9 ± 0.49% TECs; mutant, 16.42 ± 
6.9% TECs; n = 3 each; P = 0.018). Mutant TECs also dis­
played a higher proliferative index compared with their wild-
type counterparts (Fig. 3 E). Additional separation of CD45 
MHCII+ TECs from mutant thymus based on the Ly51 surface 
marker (Williams et al., 2009) showed that mutant cortical 
TECs (cTECs; Ly51+) and medullary TECs (mTECs; Ly51–) 
displayed a high proliferative activity (Fig. 3, F and G). Com­
pared with Ly51 TECs, we noted an increase in the num­
ber of Ly51+ TECs in G2, which is sometimes seen in cells 
with loss of RB function (Stark and Taylor, 2006; Conklin 
et al., 2012).

To determine whether there was a change in proportional 
representation of particular TEC subsets, we quantified levels 
of the mature mTEC marker Aire (Gray et al., 2007; Dooley 
et al., 2008) in control and mutant thymi. We found no sig­
nificant difference in Aire expression in Mx1-Cre p107-Single 
mice (Fig. 3 H), suggesting that there is no preferential ex­
pansion of either cTECs or mTECs in Rb family mutant 
mice. We also measured by flow cytometry the proportions  
of cTEC precursors as identified by CD40 and CD205 ex­
pression (Shakib et al., 2009; Nowell et al., 2011). There was 

with the thymi from chimeric wild-type/control mice (Fig. 2 B). 
In both cases, as expected, BM cells and thymocytes from chi­
meric mutant and control mice expressed both Ly5.1 and 
Ly5.2 isoforms, confirming their wild-type origin (Fig. 2 C). 
Although all T cell populations were expanded in chimeric 
mutant mice (Fig. 2 D), there was, overall, no significant dif­
ference in the proportional representation of DN, DP, CD4+, 
and CD8+ populations between wild-type and mutant chi­
meric mice (Fig. 2 E). Nevertheless, the proliferative index of 
T cell populations in mutant mice was increased compared 
with controls (Fig. 2 E). Mutant T cells failed to exhibit in­
creased proliferation upon transplantation of mutant BM cells 
in recipient mice (not depicted). Thus, although there may be 
a contribution of increased T cell proliferation to the thymic 
expansion observed in mutant mice, the thymus expansion 
observed in Rb family mutant mice does not depend on the 
deletion of Rb family genes in BM-derived cells.

Because thymic stroma-derived cytokines and growth fac­
tors are important for thymus growth and T cell proliferation 
and differentiation, we assessed mRNA expression levels for 
several cytokines and receptors produced in the thymus (Il7, 
Scf/kitl, Fgfr2b, Wnt4, and Dll4). After normalization to Eva1 
levels (Guttinger et al., 1998; DeMonte et al., 2007; Min et al., 
2007), we found no significant difference in per-cell levels of 
these mRNAs between chimeric mutant and chimeric con­
trol groups (Fig. 2 F). These data provide more evidence that 
the thymic milieu is essentially normal in the enlarged thy­
mus of Mx1-Cre p107-Single mice, further suggesting that the 
thymic microenvironment is expanded and maintained in Rb 
family mutant mice.

TECs are a critical component of the thymic microenvi­
ronment, providing many of the functions needed to control 
T cell differentiation and selection. Thus, we asked whether 
TECs may be responsible for the thymus phenotype observed 
in Mx1-Cre p107-Single mutant mice. We found that the 
pool of phosphorylated RB decreased with age, correlating 
with higher levels of CCND1 in TECs from younger mice; 
Cdk4 levels did not change with age (Fig. 3 A). Accord­
ingly, transcription of canonical E2F targets in TECs signifi­
cantly decreased with age (Fig. 3 C), further correlating thymic 
involution with increased RB activity. We also confirmed loss 
of RB by immunoblot analysis (Fig. 3 A) and deletion of Rb 
and p130 by PCR in injected and noninjected Mx1-Cre p107-
Single TECs (Fig. 3 B). Deletion of Rb and p130 without pI:

into mTECs and cTECs in mutant mice (mTEC: 8.95 ± 5.11%; cTEC: 11.7 ± 3.11%; P = 0.54; n = 2). (G) PI analysis of cell cycle activity in mTECs and cTECs from 
mutant mice (G1: mTEC, 84.17 ± 1.82%; cTEC, 82.4 ± 7.49% [P = 0.70]; S: mTEC, 10.63 ± 0.67%; cTEC, 9.30 ± 3.52% [P = 0.55]; G2: mTEC, 4.84 ± 1.25%; cTEC, 
8.11 ± 3.88% [P = 0.02]; n = 2). (H) Expression levels of the mTEC-expressed gene, Aire, assessed by RT-qPCR in control and mutant thymic extracts, normal-
ized for cell number by Eva1 levels (n = 4; P = 0.58). (I) Quantification of maturing cTEC subpopulations as identified by CD40 and CD205 expression (CD40 
CD205: Ctrl, 2.01 ± 0.44%; Mut, 1.89 ± 0.08% [P = 0.91]; CD40+ CD205: Ctrl, 6.59 ± 4.00%; Mut, 7.23 ± 5.23% [P = 0.62]; CD40 CD205+: Ctrl, 9.61 ± 
1.54%; Mut, 10.06 ± 0.96% [P = 0.79]; CD40+ CD205+: Ctrl, 81.77 ± 5.17%; Mut, 81.14 ± 2.11% [P = 0.65]; n = 3). (J) Quantification of maturing mTEC sub-
populations as identified by CD80 and UEA1 staining (CD80 UEA1+: Ctrl, 27.34 ± 2.67%; Mut, 27.35 ± 6.82% [P = 0.87]; CD80+ UEA1+: Ctrl, 51.18 ± 2.84%; 
Mut, 48.24 ± 8.39% [P = 0.86]; n = 3). (K) Expression levels of Il7 and Scf assessed by RT-qPCR in control and mutant thymic extracts, normalized by Eva1  
(n = 4; p-values: Il7 = 0.29 and Scf = 0.34). (L) Immunofluorescence staining of control (left) and mutant (right) thymi with antibodies for K5 and K8 (top 
row); 5t, CD31, and PDGFR- (second row; white arrows indicate blood vessels); K14, UEA1, and DAPI (third row); or K5 and CD205 (bottom row; one of  
two shown). Bars, 100 µm. Asterisks indicate P < 0.05; ns indicates no significant difference. All error bars indicate standard error.
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To examine further the differentiation state of RB family–
deficient TECs, we performed immunofluorescence analysis 
of markers for various cell populations in the thymic micro­
environment, including Keratin 5 (K5), Keratin 8 (K8), Keratin 
14 (K14), the proteasomal -5t subunit (5t), and CD205 
(Rodewald, 2008; Shrimpton et al., 2009; Takahama et al., 
2012). We found no evidence for alteration of thymus struc­
ture in mutant mice (Fig. 3 L). We occasionally observed sub­
capsular cysts in very large mutant thymi (not depicted), perhaps 
reflecting the physical limitations placed by the thoracic cav­
ity upon the enlarged thymus. This observation highlights the 
fact that we performed our analyses of TEC subpopulations  
at a late time point, when the cells analyzed may represent 

no difference in CD40/CD205 subpopulations between 
control and mutant mice (Fig. 3 I and Fig. S1 D). Similarly, 
there were no differences in mTEC precursor populations as 
measured by CD80 and UEA1 expression (Fig. 3 J and Fig. S1 E; 
Akiyama et al., 2012). When we measured mRNA expression 
levels for two thymocyte growth cytokines that are expressed 
by differentiated TECs (Il7 and Scf), we found that the ex­
pression levels of these genes on a per-cell basis were not 
significantly different between control and mutant thymi 
(Fig. 3 K). These data support the idea that the major dif­
ference between control and Mx1-Cre p107-Single mice lies 
in the number of TECs and not in the differentiation state 
of these cells.

Figure 4.  The RB family controls the  
expression of Foxn1. (A) Expression of Foxn1  
in CD45– MHCII+ TECS from control (Ctrl) and 
mutant (Mut) mice relative to Eva1 expression 
(n = 4; P = 0.03). (B) Immunoblot analysis of Foxn1 
levels in control and mutant TECs from 12 pooled 
control and 5 pooled mutant thymi. -Tubulin is 
included as a loading control (n = 2). (C) Immuno-
fluorescence staining of Foxn1 and CD205 indi-
vidually and merged (right) in control (top) and 
mutant (bottom) thymi (one of two shown). 
Bars, 100 µm. (D) Schematic representation of 
the Foxn1 promoter. Region 1a is active in the 
skin and thymus, whereas region 1b is only ac
tive in the skin. (E) Sequence alignment on the  
UCSC genome browser (Fujita et al., 2011) of the 
promoter region 1a encompassing two E2F sites 
shows conservation across multiple mammalian 
species (Kent, 2002). Gray highlighting indicates 
conserved sequences, and black highlighting 
indicates putative E2F binding sites. (F) Transfec-
tion into 210R TECs of an expression plasmid 
coding for E2F3 together with a luciferase re-
porter plasmid for either the wild-type region 1a 
of the Foxn1 promoter or a region 1a where site 3 
has been mutated (n = 3; P = 0.03). (G) Trans-
fection into 210R cells of E2F3 and RB expres-
sion and the Foxn1 luciferase reporter plasmid 
(n = 3; P = 0.02). (H) ChIP analysis of E2F3 and 
E2F4 to sites 1 and 2–3 in TEC100 cells. To adjust 
for inter-experiment variability of scale of per-
cent input, experiments were normalized to 
nonspecific antibodies (IgG and anti-p16INK4a). 
This ratio is represented here. In addition, bind-
ing to a nonspecific region of the fifth chromo-
some was included as a negative control (n = 3; 
for site 1 P = 0.02, for site 2–3 P = 0.04). (I) Fold 
change in percent input as assessed by ChIP 
analysis of E2F3 and E2F4 binding to the Foxn1 
promoter in TEC100 cells after transient over
expression of RB (n = 3 compared with untrans-
fected controls; p-values: E2F3 Foxn1 site 1 = 0.06 
and site 2–3 = 0.04; E2F4 Foxn1 site 1 = 0.01 
and site 2–3 = 0.02). Asterisks indicate P < 0.05; 
ns indicates no significant difference. All error 
bars indicate standard error.
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in mutant TECs, and this increased proliferation is likely to be 
greater than that with increased Foxn1 levels alone.

These observations suggested that, in addition to its canon­
ical role in regulating progression through the cell cycle, the RB 
family also controls TEC expression of Foxn1. Little is known 
about the transcriptional control of Foxn1 (Balciunaite et al., 
2002). There are two alternate promoters and first exons in 
the Foxn1 gene (Schorpp et al., 1997; Cunliffe et al., 2002): 
the more distal promoter region (1a) is transcriptionally active 
in both the skin and the thymus; the second promoter region 
(1b) is active only in keratinocytes of the skin (Fig. 4 D). We 
found by computational analysis that region 1a harbors sev­
eral conserved putative E2F binding sites. We labeled some of 
these putative sites “site 1” and “site 2–3”, with site 2–3 contain­
ing two independent but adjacent putative sites (Fig. 4 E).

To test the possibility that E2Fs might act at the Foxn1 
promoter, we cotransfected an expression vector coding for 
E2F3, an activating member of the E2F family, with a reporter 
plasmid that contains the region 1a of the mouse Foxn1 pro­
moter upstream of a cDNA coding for the luciferase reporter 
into the 210R TEC cell line (Friend et al., 1994). We found 
that E2F3 activated region 1a of the Foxn1 promoter in this 
context. A mutation abolishing E2F binding in one of the 

only the descendants of those cells that initially underwent 
complete recombination and may have been selected for be­
cause of their increased proliferation. Nevertheless, these data 
indicate that inactivation of the RB family in mice leads to 
increased TEC proliferation without significantly altering 
their differentiation.

Thymus organogenesis is coordinated by the successive 
action of a network of transcription factors (Rodewald, 2008; 
Manley and Condie, 2010). We surmised that one mechanism 
by which loss of RB family function prevents thymic involu­
tion might be by maintaining the expression of such factors. 
However, we found that the expression of Eya1, Pax1, Pax9, 
Six1, Hoxa3, and Tbx1 was similar in control and mutant TECs 
at 3 mo of age (not depicted). In contrast, Foxn1 RNA and 
protein levels were significantly increased in mutant TECs 
compared with controls (Fig. 4, A and B). This increase in Foxn1 
levels in the mutant thymi may come from increased levels 
per cell but may also be caused by increased numbers of Foxn1-
expressing cells, as suggested by immunofluorescence analysis 
(Fig. 4 C). Forced overexpression of Foxn1 was shown to be 
insufficient to lead to an increase in thymic size (Zook et al., 
2011). Thus, the thymic outgrowth in Rb family mutant mice is 
probably also dependent on the increased proliferation seen 

Figure 5.  Reduction of Foxn1 levels  
reverses the enlarged thymus phenotype 
in Mx1-Cre p107-Single mice. (A) Thymic 
cellularity in control (Ctrl) and Rb family mu-
tant (Mut) mice in the presence and in the 
absence of the Foxn1LacZ allele (n = 3; P = 0.02). 
(B) Representative images of whole thymus 
explants (top) and of H&E-stained sections 
(bottom; n = 5) from mice in A. (C) Represen-
tative immunofluorescence analysis of Foxn1 
and K5 expression in sections prepared from 
control and Rb family mutant mice in the 
presence and absence of the Foxn1LacZ allele 
(n = 2). Bars: (B, top) 500 µm; (B, bottom)  
200 µm; (C) 100 µm. (D) Analysis by RT-qPCR 
of Foxn1 message level in TECs from p107-
single Foxn1 +/+, P107-single Foxn1Lacz/Lacz, 
Mx1-Cre p107-single Foxn1+/+, and Mx1-Cre 
p107-single Foxn1LacZ/LacZ (n = 3, none pI:pC 
injected; P = 0.023). (E) Evaluation of E2F target 
and S-phase genes in control, Mx1-Cre p107-
single, and Mx1-Cre p107-single Foxn1LacZ/LacZ 
TECs (n = 3; 15 wk). Genes analyzed included 
E2f1 (P = 0.031), p107 (P = 0.008), PCNA (P = 
0.02), bMyb (P = 0.01), Ezh2 (P = 0.12), and 
Mcm3 (P = 0.043). Asterisks indicate P < 0.05; 
ns indicates no significant difference. All error 
bars indicate standard error.
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Our data demonstrate that the RB pathway plays a key 
cell-autonomous role in TECs to control maximal thymic 
size and aging. This result is striking when one considers that 
thymic size likely is controlled by complex feedback inter­
actions between stromal cells and maturing T cells. Perhaps sur­
prising, given the well-characterized tumor suppressor role of 
RB family members, loss of RB family function in the thy­
mus does not perturb the differentiation of TECs or T cells 
and simply increases the proliferation of some of these cells. 
These observations raise the possibility that loss of RB family 
function could be used to restore or promote thymic expan­
sion and T cell production in patients (van den Brink et al., 
2004; Wils and Cornelissen, 2005). Clearly, however, constant 
inactivation of RB family function in the thymus, although 
initially beneficial for the immune system of mice, eventually 
becomes detrimental to the animals when the mutant thymus 
has reached a large size in the chest. Thus, an important future 
step will be to identify novel means to transiently inactivate 
the RB family in a controlled fashion to minimize the poten­
tial negative effects of this inactivation while optimizing the 
benefits to the immune system of patients.

MATERIALS AND METHODS
Animals. All mice where housed in the Stanford University School of 
Medicine Research Animal Facility in accordance with institutional and 
National Institutes of Health guidelines. All animal care and experiments were 
approved by the Stanford University Administrative Panel on Laboratory 
Animal Care and followed the guidelines of this animal use committee. Mice 
were of a mixed C57/129 background. Mx1-Cre Rblox/lox p130lox/lox p107/ 
mice were previously described (Viatour et al., 2008). Mx1-Cre p107-Single 
mice were generated by breeding Mx1-Cre Rblox/lox p130lox/lox p107/ mice 
with Mx1-Cre Rblox/lox p130lox/lox mice. The Foxn1-IRES-LacZ transgene was 
described previously (Chen et al., 2009). These mice were bred through succ­
essive generations with Mx1-Cre Rblox/lox p130lox/lox p107/ to generate Rblox/lox 
p130lox/lox p107/+ Foxn1LacZ/+ and Rblox/lox p130lox/lox p107/+ Foxn1LacZ/+ 
with and without Mx1-Cre. As appropriate, mice were injected intraperito­
neally with pI:pC at 3–8 wk of age. Thymi were removed from euthanized 
mice and processed as appropriate for the particular experiment.

BM transplantation. Chimeric mice were generated by lethal irradiation 
(9 Gr) of 3-mo-old Mx1-Cre p107-Single and control mice expressing only 
the Ly5.1 antigen. Irradiated mice were rescued by retroorbital transplanta­
tion of 2 × 106 wild-type BM cells expressing both the Ly5.1 and Ly5.2 anti­
gens. pI:pC was injected 12 wk after transplantation. Tissues were harvested 
12–16 wk later.

Immunofluorescence. Immunofluorescence was performed on frozen 
sections or sections from paraffin-embedded tissues as described previously 
(Chen et al., 2009; Gordon et al., 2010; Bryson et al., 2011; Park et al., 
2011). Images were obtained by confocal microscopy using a confocal LSM 
510 Meta (Carl Zeiss) with a Plan-Apochromat 20×/0.8 objective and an­
alyzed with AxioVision 4.8 software (Carl Zeiss). Primary antibodies were 
directed against Foxn1 (goat anti–mouse, G-20; Santa Cruz Biotechnology, 
Inc.), K5 (rabbit anti–mouse; Covance), K8 (Troma-1; Developmental 
Studies Hybridoma Bank), K14 (rabbit anti–mouse; Covance), 5t (rabbit 
anti–mouse; MBL International Corporation), CD205 (rat biotinylated; 
Abcam), UEA-1–biotin (Vector Laboratories), CD31 (goat anti–mouse; 
BD), and PDGFR- (goat anti–mouse; R&D Systems). Secondary anti­
bodies included donkey anti–goat Cy5, donkey anti–rabbit 594, donkey 
anti–rat FITC, donkey anti–rabbit Texas Red, and streptavidin-FITC (Jackson 
ImmunoResearch Laboratories, Inc.) and donkey anti–goat Alexa Fluor 
594 (Invitrogen).

two sites in site 2–3 partially inhibited the ability of E2F3 to 
activate the Foxn1 promoter (Fig. 4 F). Coexpression of RB 
markedly inhibited E2F3-mediated activation of the Foxn1 
promoter (Fig. 4 G). We further tested direct binding of E2Fs 
to the Foxn1 promoter by performing chromatin immuno­
precipitation (ChIP) experiments in several TEC lines (TEC100, 
TEC71, and 201R; Friend et al., 1994; Wang et al., 1998). We 
found that E2F3 and E2F4, a repressor E2F, can bind to both 
site 1 and site 2–3 but do not bind significantly to regions of 
nonspecific DNA on the fifth chromosome of the mouse 
(Fig. 4 H for TEC100; TEC71 and 210R not depicted). We 
repeated similar experiments after the transient ectopic expres­
sion of RB in TEC100 cells and found a decrease in endog­
enous Foxn1 expression (fold change: Rb mRNA, 3.1 ± 0.11; 
Foxn1 mRNA, 1.8 ± 0.11; n = 3 each), as well as a switch 
between the E2F3 activator and the E2F4 repressor at the 
Foxn1 promoter (Fig. 4 I). Collectively, these data show that 
Foxn1 is a direct target of E2F regulation; E2F binds to and 
controls transcription at the Foxn1 promoter, and RB inhibits 
this activation.

To assess the in vivo functional role of increased Foxn1 
levels in the thymus expansion observed in Mx1-Cre p107-
Single mice, we studied thymic growth in Mx1-Cre p107-Single; 
Foxn1LacZ mutant mice. Foxn1LacZ is a hypomorphic allele of 
Foxn1, which causes down-regulation of Foxn1 protein ex­
pression from soon after birth; of interest, Foxn1LacZ heterozy­
gous mice have no appreciable thymic defects (Chen et al., 
2009). Similar to Mx1-Cre p107-Single mice, Mx1-Cre p107-
Single Foxn1LacZ/+ mice displayed significant thymic expansion. 
In contrast, Mx1-Cre p107-Single Foxn1LacZ/LacZ mice had a thy­
mus equivalent in size to thymi from control (Rblox/lox; p130lox/lox; 
p107+/; Foxn1+/+ without Cre) mice (Fig. 5, A and B). As 
expected, Foxn1 levels were reduced in the thymus of Mx1-Cre 
p107-Single Foxn1LacZ/LacZ mice compared with Mx1-Cre 
p107-Single Foxn1LacZ/+ or Mx1-Cre p107-Single mice (Fig. 5, 
C and D). We also observed decreased expression of E2F tar­
gets in the thymus of Mx1-Cre p107-Single Foxn1LacZ/LacZ mice 
(Fig. 5 E). This result suggests, as has been observed in zebra­
fish (Ma et al., 2012), that Foxn1 plays a role not only in dif­
ferentiation of TECs but also in promoting proliferation 
through regulation of S phase genes. These observations also 
indicate that decreased expression of Foxn1 is sufficient to 
rescue the thymic phenotype observed in Rb family mutant 
mice, indicating that increased Foxn1 levels induced by un­
restricted E2F activity upon inactivation of Rb family genes are 
a major cause of the expanding thymus in these mice.

The transcriptional activation of Foxn1 in RB family mu­
tant cells is reminiscent of the interactions between RB, E2F, 
and PPAR (peroxisome proliferator-activated receptor gamma 
subunit): increased levels of PPAR upon loss of RB function 
in mesenchymal cells change the fate of these cells toward the 
adipocytic lineage and may affect the spectrum of tumors in 
mice (Calo et al., 2010). However, a unique aspect of the RB-
E2F-Foxn1 module is that it keeps in check the protumori­
genic consequences of losing RB family function, at least in 
part by activating prodifferentiation functions of Foxn1.
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H-270, anti-Foxn1 G-20, anti-RB C-15, and anti-CCND1 H-295 (Santa 
Cruz Biotechnology, Inc.); pooled anti–phospho-RB S807/811 and S608 
(Cell Signaling Technology); and anti-CDK4 (DCS-31; Invitrogen). HRP-
conjugated secondary antibodies were purchased from Jackson Immuno­
Research Laboratories, Inc. Signal was detected using either ECL Western 
blotting reagent (Thermo Fisher Scientific) or ECL-Prime Western blot 
detection reagent (GE Healthcare).

Cell culture, transfections, and luciferase analysis. TEC lines (TEC100, 
TEC71, and 210R) were grown in RPMI 1640 or DMEM supplemented 
with 10% serum, glutamine, penicillin, and streptomycin. Transfections were 
performed using either Lipofectamine 2000 (Invitrogen) or Fugene (Promega) 
and included experimental plasmids with TK-Renilla (Promega) and pcDNA 
plasmid to ensure transfection of equivalent amounts of DNA. Luciferase 
assays were performed at least three times in triplicates using the Dual Luciferase 
Assay System (Promega) and analyzed using the Hybrid Synergy Reader and 
Gen5 V2.00 software (BioTek).

Statistical analysis. For analysis of two populations, statistical analyses were 
performed using a two-tailed paired Student’s t test. A p-value of <0.05 was 
required for significance (actual p-values are listed in figure legends). For 
analyses for three or more populations, significance was determined using 
ANOVA analysis.

Online supplemental material. Fig. S1 describes complex gating strate­
gies used in this study. Online supplemental material is available at http://
www.jem.org/cgi/content/full/jem.20121716/DC1.
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