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ZBTB1 is a determinant of lymphoid

development

Owen M. Siggs, Xiaohong Li, Yu Xia, and Bruce Beutler

Department of Genetics, The Scripps Research Institute, La Jolla, CA 92037

In this study, we describe a chemically induced mouse mutation that caused a

complete and cell-intrinsic T cell deficiency. Development of other lymphoid lineages
was also partially impaired and was severely compromised under competitive conditions.
Positional cloning, retroviral transduction, and a somatic reversion event revealed that
the causative mutation lay within Zbtb1 (zinc finger and BTB domain containing 1),

a gene conserved throughout vertebrate evolution. Our data establish ZBTB1 as a critical
determinant of T cell development and lymphopoiesis in general, most likely by acting

as a transcriptional requlator.

Lymphocytes arise from multipotent progeni-
tors in the bone marrow (Kondo et al., 1997),
deviating from the myeloid lineage and com-
pleting their differentiation under the influence
of a suite of transcriptional regulators (Busslinger,
2004; Rothenberg and Taghon, 2005), includ-
ing Ikaros (Georgopoulos et al., 1994), Pax5
(Nutt et al., 1999), and Notch1 (Radtke et al.,
1999). The transcriptional regulators that guide
this process are of special interest because many
are also involved in lymphoid tumorigenesis
(Ye et al., 1993; Weng et al., 2004; Mullighan
et al., 2007, 2008), whereas others can be ma-
nipulated for directed reprogramming of cell
fate (Cobaleda et al., 2007).

Among all known transcriptional regulators
of lymphopoiesis, the BTB-ZF (Broad com-
plex, Tramtrack, and Bric a brac—zinc finger)
family of proteins is well represented. These
proteins influence lymphoid development from
the common lymphoid progenitor (CLP) stage
(Kosan et al.,2010), to the T versus B fate deci-
sion (Maeda et al.,2007), to CD4* versus CD8*
T cell selection (He et al., 2005), and even as
late as the differentiation of Tth (Johnston et al.,
2009; Nurieva et al., 2009;Yu et al., 2009) and
NKT (Kovalovsky et al., 2008; Savage et al.,
2008) effector lineages.

In this study, we have used chemical mutagen-
esis in mice to reveal the physiological function of
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the BTB-ZF protein ZBTB1 (zinc finger and
BTB domain containing 1). ZBTB1 was essen-
tial for T cell development and also for the
development of B and NK cells under compet-
itive conditions.

RESULTS AND DISCUSSION
Severe T cell lymphopenia
While surveying the descendants of chemi-
cally mutagenized mice for lymphocyte defi-
ciencies (Siggs et al., 2011), we identified a
single male mouse devoid of T cells. This pheno-
type, nicknamed scanT because of the low (or
scant) frequency of T cells, was transmitted as
a recessive trait (Fig. 1, A and B). scanT mutant
mice were born at the expected Mendelian
ratio, were typically fertile, and were outwardly
normal in behavior.

scanT thymi were severely hypoplastic
(Fig. 1 C), containing around 2% of the num-
ber of wild-type cells, and lacked cortico-
medullary definition (Fig. 1 D). Thymocyte
development was impaired from the early
thymic precursor (ETP) stage and beyond
(Fig. 1, E and F). Of the lymphocytes that
were present in the thymus, almost all were
B cells, representing a 20-fold increase over
wild-type numbers (Fig. 1 F).
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Mutation of a previously uncharacterized zinc finger protein
We mapped the scanT genetic lesion first by genome-wide
linkage to chromosome 12 (Fig. 2 A) and then by fine map-
ping to a 5-Mbp interval between markers D12Mit33 and
D12Mit4 (Fig. 2 B). Because none of the 35 annotated protein-
encoding genes in the interval (Table S1) had previously been
implicated in T cell development, we sequenced the coding
exons and flanking splice junctions of three (Zbtb1, Zbtb25,
and Ppp2r5e¢) based on their predominant expression in

lymphocytes (http://biogps.gnf.org/). 93.4% of all target
nucleotides (6,081/6,511) were covered on both strands of
wild-type and scanT" samples with a Phred quality score of >30,
and a single missense transition was identified in Zbth1 (C74R;
Fig. 2 C). PolyPhen-2 (Adzhubei et al., 2010) assigned a score
of 0.954 to this mutation, predicting a deleterious effect with
93% confidence. 43.2% of the total coding critical region
(59,447/137,702 nt) was also covered at least three times
by SOLID 3 sequencing, with no additional mutations found.
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T cell aplasia in scanT mice. (A) Initial generations of the scanT pedigree. Black symbols, T-deficient phenotype; gray symbols, wild-type

phenotype; open symbols, not tested. (B) Percentages of B (CD19+) and T (CD3e&*) cells in the peripheral blood of 8-wk-old mice as measured by flow
cytometry. (C-F) Relative size (C), histological appearance (H&E; D), and cellular composition (E and F) of the thymus of wild-type and mutant siblings
at 8 wk of age. Lineage markers in E and F were CD11b, CD3g, B220, Ter119, Ly6G, NK1.1, and CD8a. Subsets in F were gated as follows: ETP
(Lin~CD44+*CD25-CD117+), DN2 (Lin~CD44+CD25*), DN3 (Lin~CD44~CD25"), DN4 (Lin—-CD44~CD25"), DP (CD4+*CD8a*), CD4SP (CD4+*CD8a ™), and
CD8SP (CD4~CD8«a*). Data are representative of one (A and D), two to three (E and F), or more than three (B and C) independent experiments. Error
bars represent standard error, and symbols in F represent individual mice. Numbers in parentheses in E represent mean thymic cellularity and stan-

dard error. Bars, 100 pm.
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Zbtb1 encodes a 713-aa member of the POK (POZ
[Poxviruses and zinc finger| and Kriippel) or BTB-ZF family
of transcriptional regulators and had no previously described
function. Mouse ZBTB1 is 94% identical to its counterpart
in man. Two characteristic domains are shared by BTB-ZF
family members: an N-terminal BTB/POZ domain and a
series of C-terminal C,H, Kriippel-type zinc finger motifs.
ZBTB1 itself contains an N-terminal BTB domain, eight
zinc finger motifs, and two nuclear localization sequences
(Matic et al., 2010). The residue mutated in the scanT pedi-
gree (C74) is predicted to lie within the A3 helix of the BTB
domain (Fig. 2 D and Fig. S1; Stogios et al., 2005) and is

highly conserved across the vertebrate lineage (Fig. 2 E).
Two unique transcripts are predicted to arise from the Zbtb1/
ZBTBT1 locus, both of which harbor the scanT mutation,
yet only one of which (Ensembl release 65 accession no.
ENST00000394712) is predominantly expressed in T cells
and other leukocytes in mouse and man (Fig. S2). The other
(Ensembl release 65 accession no. ENST00000358738) is
known to be transcribed in HeLa cells by the nonconventional
single-polypeptide nuclear RNA polymerase IV (Kravchenko
et al., 2005).

To confirm that the mutation in Zbtb1 was responsible
for the scanT phenotype, wild-type Zbtb1 was retrovirally
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Figure 2. Identification of a missense mutation in ZBTB1. (A and B) Chromosomal mapping (A) and fine mapping (B) of the scanT phenotype. LOD, loga-
rithm of odds score. (C) DNA sequence chromatograms of the mutated nucleotide in Zbtb 1 (thymine to cytosine), resulting in the substitution of arginine for
cysteine at codon 74. (D) Predicted ZBTB1 protein domain structure. (E) Conservation of ZBTB1 sequence across multiple vertebrates, with the amino acid corre-
sponding to ZBTB1%74 highlighted in red. ZBTB1 counterparts were not found in nonvertebrate proteomes. (F) Schematic of the MIG-Zbtb1 and control retroviral
constructs. MIG, MSCV-IRES-GFP; LTR, long terminal repeat. (G) Bone marrow cells from scanT mice or heterozygous controls (CD45.2+) were transduced with a
retroviral construct expressing Zbtb 1 and transferred into irradiated CD45.1* recipients (~2 x 10 cells/mouse). Transduced CD3e* cells were identified in blood
4 mo after transfer by coexpression of GFP. (H) Phenotypic reversion associated with somatic mutation of Zbtb 1. DNA was prepared from tail clippings and flow-
sorted CD19* and CD3e* lymph node cells and sequenced at the locus mutated in the scanT pedigree. Contour plots were obtained from blood. Data in G are
representative of three independent experiments. (C and H) Yellow highlighting indicates the position of the nucleotide mutated in the scanT pedigree..
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transduced into scanT hematopoietic progenitors (Fig. 2 F). We hypothesized that these cells arose from a somatic muta-
GFP* T cells were recovered from recipients of Zbtb1- tion that suppressed the scanT phenotype, considering the
transduced scanT progenitors (Fig. 2 G), presumably as a con- strong selective advantage that such a mutation would confer
sequence of restored thymic development. These data indicated ~ and given that a similar phenomenon is known to occur in
that the mutation in Zbtb1 could account for T cell defi- human T cell-deficient SCID (Hirschhorn et al., 1996).

ciency in scanT mice. To test for somatic suppressor mutations, DNA was isolated
In a minority of cases (3/16 in a 3-mo-old cohort of  from sorted T and B cells. Sequencing of the mutated Zbth1
Zbtb 1T homozygotes), T cells were detected at dimin- locus revealed a heterozygous mutation within the T cell
ished frequencies in the blood of germline mutant mice.  compartment of one phenotypic revertant (but not the other
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Figure 3. scanT mice have generalized deficiencies of lymphoid but not myeloid cells. (A) Total numbers of major lymphoid and myeloid cell
subsets in the spleen of 8-wk-old sex-matched littermates, gated as follows: T (CD3g*), B (CD19*), NK (NK1.1*CD3& ™), plasmacytoid DCs (pDC;
Lin~PDCA1+SiglecH*), CD8a~ DCs (Lin=CD11¢*CD116*CD8a~), CD8act DCs (Lin~CD11c*CD11b~CD8«*), macrophages (Lin~CD11b*F4/80+SSCP), neutro-
phils (Lin=CD11b*F4/80~Ly6G"), and eosinophils (Lin=CD11b*F4/80*SSC"). Lineage markers included CD19, TCR-B, NK1.1, and the viability dye 7-AAD.
(B-D) Frequencies (B and C) and numbers (D) of major B cell subsets in bone marrow and spleen. Subsets in bone marrow were gated as follows:

A (CD11b=CD3e~Ter119-Ly6G~NK1.1-IgM~B220+*CD19-CD24~BP-1-), B (B220*IgM~CD43+CD24+*BP-1-), C (B220*IgM~CD43+CD24+*BP-1+), D
(B220*CD43~IgM~IgD~), E (B220+*CD43~IgM*IgD~), and F (B220*CD43~IgM+IgD*). Subsets in spleen were gated as follows: T1 (B220*CD93+CD237),

T2 (B220+CD93+CD23*), Fo (follicular; B220*CD93~CD23+CD21/35M), and MZ (marginal zone; B220+*CD93~CD23-CD21/35"). (E) NP (4-hydroxy-3-nitro-
phenylacetyl)-specific antibodies in the serum of mice immunized with NP-Ficoll or NP-CGG at 7 or 14 d (NP-Ficoll) or 14 d (NP-CGG) after immuniza-
tion, presented as absorbance at 450 nm (A,so). (A-E) Data are representative of one (E) or two (A-D) independent experiments with four or more mice per
group. Error bars represent standard error, and symbols represent individual mice.
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two; Fig. 2 H), indicating that most, if not all, T cells in this
mouse were clonally derived. This mutation either occurred
after the CLP stage or did not confer a selective advantage
in the B cell lineage because it was not observed in DNA
from CD19* cells (Fig. 2 H). The mutation in question
occurred at the same nucleotide as the scanl” mutation
(the first base of codon 74), yet rather than a reversion to the
wild-type codon (TGC, encoding cysteine) changed the
codon to serine (AGC). Given the physical similarities of
serine and cysteine, we propose that Zbth1¢7#S is permissive
to T cell development and T cell clonal expansion, whereas
Zbth1€7R is not.

Defects in lymphoid but not myeloid development

The effects of Zbtb1 mutation were not restricted to the
T cell lineage. Numbers of all lymphocyte lineages (T, B,
and NK) were reduced in the spleens of mutant mice,
whereas numbers of myeloid cells were not (Fig. 3 A). An
examination of B cell development in mutant bone marrow
revealed an accumulation of B cell progenitors at the Hardy
Fraction C stage, followed by a reduction of progenitors at
each subsequent stage (Fig. 3, B and D). In the mutant
spleen, numbers of transitional and follicular B cells were
significantly reduced by an average of 72% and 44%, respec-
tively (Fig. 3, C and D). The relatively minor reduction
in follicular as compared with transitional B cell numbers
may indicate mild compensatory expansion in the follicular
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compartment. Mutant B cells nevertheless responded to
T-independent (but not T dependent) immunization (Fig.
3 E), implying a developmental rather than a functional
B cell defect.

A cell-intrinsic defect

To distinguish between potential hematopoietic and non-
hematopoietic origins of the Zbth1 mutant phenotype, we
created radiation chimeras. Rag mutants reconstituted with
Zbtb1 mutant bone marrow developed B cells but not
T cells (Fig. 4 A). This defect was intrinsic to Zbtb1 mutant
T cell progenitors, rather than other radiosensitive hemato-
poietic cells, because T cells in mixed bone marrow chime-
ras were exclusively derived from wild-type donors (Fig. 4 B).
In fact, all blood lymphocytes (but not CD11b* myeloid
cells) were wild-type donor derived, implying a general
competitive failure of Zbth1 mutant lymphoid progenitors
(Fig. 4 B). Finer phenotyping of the spleen, bone marrow,
and thymus of mixed bone marrow chimeric mice con-
firmed this to be the case. B, T, and NK cells in the spleen
were exclusively wild-type derived (CD45.1%), whereas lit-
tle or no competitive disadvantage was seen in the myeloid
compartments (Fig. 4 C). Cells of wild-type origin domi-
nated the B cell compartment from the Fraction A stage
onward and similarly outcompeted Zbtb1 mutant NK pro-
genitors in bone marrow and T cell progenitors in the thymus
(Fig. 4 C).
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Figure 4. A cell-intrinsic T cell deficiency and competitive failure of lymphoid reconstitution. (A and B) Lethally irradiated Rag7 mutant mice
(CD45.2%) were reconstituted with unmixed scanT or wild-type bone marrow (CD45.2+; A) or a mixture of scanT or wild-type marrow (CD45.2+) with wild-
type bone marrow (CD45.1+; B). Chimerism was measured 8 wk after transplant. Panels in B have been gated on the indicated cell subset. (C) Lethally
irradiated wild-type recipients (CD45.1+) were transplanted with an equal mixture of wild-type (CD45.1+) and heterozygous or homozygous mutant
(CD45.2%) bone marrow. Wild-type donor chimerism (CD45.1+) was measured 8 wk later in the spleen, bone marrow, and thymus. Subsets were gated as
in Fig. 3, with the addition of NK progenitors (NKP; 7-AAD~CD19-TCR-B~CD122*NK1.17). (A-C) Data are representative of one (A) or three (B and C)
independent experiments with at least three mice per group. Error bars represent standard error.
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Uncompromised hematopoietic progenitor function

However, the scanT mutation did not appear to affect hema-
topoietic development before lymphoid specification. Per-
centages and numbers of early hematopoietic progenitors,
including CLPs, were comparable in heterozygous and ho-
mozygous mutant bone marrow (Fig. 5, A and B) and were
reconstituted at equivalent percentages in mixed bone mar-
row chimeras (Fig. 5 C). Hematopoietic stem cell (HSC)
turnover, as measured by incorporation of the thymidine an-
alogue 5-ethynyl-2'deoxyuridine (EdU), occurred at similar

rates in wild-type and mutant mice (Fig. 5 D). Wild-type and
Zbtb1 mutant bone marrow also generated equivalent num-
bers of hematopoietic colonies in the spleens of lethally irra-
diated recipients, both at days 8 (indicative of megakaryocyte/
erythroid progenitor function) and 12 (reflective of multi-
potent progenitor function; Fig. 5 E; Na Nakorn et al.,
2002). Myeloid engraftment did not occur in uncondi-
tioned Zbtb1 mutant recipients of wild-type bone marrow,
which is consistent with the interpretation of intact HSC
function (Fig. 5 F).
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Figure 5.

Normal development and function of hematopoietic progenitors. (A and B) Frequencies (A) and numbers (B) or hematopoietic progeni-

tors in heterozygous and homozygous Zbtb 7 mutant bone marrow. LT-HSC (long-term HSC; CD135-CD34~ or CD150*CD48~), ST-HSC (short-term HSC;
CD135-CD34+ or CD150*CD48*), MPP (multipotent progenitors; CD135*CD34+ or CD150~CD48+), CMP (common myeloid progenitors; CD16/32~CD34+),
GMP (granulocyte/monocyte progenitors; CD16/32+CD34+), MEP (megakaryocyte/erythroid progenitors; CD16/32-CD34~), and CLP (CD117"Sca-1")
were gated as indicated. (C) Chimerism of a subset of hematopoietic progenitors outlined in A, 8 wk after reconstitution of lethally irradiated CD45.1*
recipients with an equal mixture of CD45.1+ and Zbtb 1+/507T (CD45.2+) or CD45.1+ and Zbtb 15canT/scanT (CD45.2+) bone marrow cells. (D) Incorporation of the
thymidine analogue EdU 4 h after injection. (E) Spleen colony forming units (CFU-S) counted 8 or 12 d after transfer of 10° bone marrow cells (or media
alone) into lethally irradiated recipients. (F) Engraftment of 2 x 108 CD45.1+ bone marrow cells in unconditioned recipients 8 wk after injection. Lineage
markers in A-D were CD11b, CD3e, B220, Ter119, Ly6G, NK1.1, and CD8a. (A-F) Data are representative of one (D and F), two (A-C), and three (E) inde-
pendent experiments with at least three mice per group. Error bars represent standard error, and symbols in D and E represent individual mice.
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In certain aspects, Zbth1 mutants reflect the phenotype of
mice lacking Notchl. Both Zbth1 and Notch1 mutants are
profoundly T cell deficient and show an accumulation of
B cells in the thymic rudiment (Radtke et al., 1999).Yet al-
though Zbtb1 mutants have a competitive disadvantage in the
B and NK lineages, Notch1 mutants do not (Radtke et al.,
1999). Germline mutation of Zbtb1 appears permissive to
embryonic development, whereas mutation of Notch1 is not
(Swiatek et al., 1994), indicating a more specialized role for
ZBTB1 in determining lymphoid fate. This is consistent with
the conservation of Zbtb1 only among vertebrate genomes
and might implicate the human ZBTB1 locus in genetically
obscure cases of T cell-deficient SCID (Fischer, 2007).

Although there are no previous studies of a physiological
role for ZBTBI1, one describes some of its biochemical char-
acteristics (Matic et al., 2010). ZBTB1, like many of its BTB-
ZF counterparts, acts as a potent transcriptional repressor, as
determined by the repressive activity of a Gal4-ZBTB1 fu-
sion protein. This repressive activity, as well as the colocaliza-
tion of ZBTB1 with the SMRT transcriptional repressor, is
also regulated by SUMOylation (Matic et al., 2010).

Our data raise several questions about the function of
ZBTB1 in T cell and lymphoid specification. In particular,
why is ZBTB1 critical for T cell development but only es-
sential for B and NK development under competition? Can
the reduction in ETP numbers be explained by their failure
to migrate to the thymus, by a failure to proliferate within it,
or a combination of both? Programmed death of T cell pro-
genitors is unlikely to account for this because T cells also fail
to develop in the absence of the proapoptotic protein BIM
(which can rescue erythropoiesis in mice deficient for the
BTB-ZF relative LRF; Fig. S3; Maeda et al., 2009).

In summary, our work defines ZBTB1 as a regulator of
lymphoid development, joining the ranks of several other
lymphoid-promoting BTB-ZF proteins. As is the case with
other BTB-ZF family members, ZBTB1 presumably acts as a
transcriptional suppressor, and the determination of precisely
which genes it regulates will be of central importance to our
understanding of lymphopoiesis.

MATERIALS AND METHODS

Mice and positional cloning. Zbth 1" was generated on a pure C57BL/6]
(The Jackson Laboratory) background by N-ethyl-N-nitrosourea (ENU)
mutagenesis as previously described (Georgel et al., 2008). The index scanT
mutant (C57BL/6]) was outcrossed to C3H/HeN females (Taconic), and F1
progeny were intercrossed. Blood was collected from the retroorbital plexus
of 26 F2 progeny, and mice were grouped into mutant and wild-type co-
horts (7 and 19 mice, respectively) based on relative percentages of CD19"
and CD3g" cells as measured by flow cytometry. Individual mice were typed
at 128 microsatellite markers spaced across the genome (complete list avail-
able in the Supplemental material), with expected and observed genotype
frequencies used to calculate LOD (logarithm of odds) scores at each marker.
For fine mapping, an extra 71 F3 backcross progeny were genotyped at ad-
ditional loci within the critical region. Candidate gene amplicons from wild-
type and scanT genomic DNA were sequenced using a capillary sequencer
(3730xl; Applied Biosystems). Genomic DNA from a single scanT homozy-
gote was used to create a fragment library for single slide whole-genome se-
quencing on the SOLID 3 platform (Applied Biosystems). Rag 1"t mice
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(C57BL/6], MGI:3851764) were generated in-house by ENU mutagenesis,
and B6.SJL-Pipre Pep3'/Boy] (CD45.1, backcrossed >22 generations to
C57BL/6), Bel2l11™! 14 (backcrossed 13 generations to C57BL/6; Bouillet
et al., 1999), and C57BL/6] males used for mutagenesis were obtained from
the Jackson Laboratory. All other C57BL/6] mice were obtained from The
Scripps Research Institute breeding colony. All animal procedures were per-
formed in accordance with guidelines of the Institutional Animal Care and
Use Committee of The Scripps Research Institute, and all experiments were
conducted with homozygous mutants and sex-matched littermate controls.

Flow cytometry. Blood from the retroorbital plexus of isoflurane-anesthe-
tized mice was collected in cluster tubes (Costar) containing 20 pl of 6%
(wt/vol) EDTA in water. 50 pl of blood was subjected to two rounds of red
blood cell lysis with ammonium chloride before staining. Lymphocyte sus-
pensions from bone marrow (femurs and tibias from one hind leg), spleen,
and thymus were counted (Z2 Coulter Counter; Beckman Coulter) and
were stained with a combination of the following mouse-specific antibodies:
FITC-conjugated IgM (goat polyclonal; 1020-02; SouthernBiotech); FITC-
conjugated CD24 (30-F1), CD48 (HM48-1), F4/80 (BMS8), CD127
(A7R34); PE-conjugated CD122 (5H4), CD135 (A2F10), CD150 (9D1),
IgD (11-26), PDCA1 (927), TCR-B (H57-597; PerCP-Cy5.5); CD117
(2B8; eFluor710), APC-conjugated CD8a (53-6.7), CD11b (M1/70),
CDY3 (AA4.1), IgM (1I/41), Ly6G (RB6-8C5), NK1.1 (PK136), TER119
(TER-119; eBioscience); FITC-conjugated CD4 (GK1.5), CD23 (B3B4),
CD25 (7D4), CD34 (RAM34), PE-conjugated BP-1 (BP-1), CD11b
(M1/70), CD19 (1D3), CD21/35 (7G6), CD44 (IM7), PerCP-Cy5.5—
conjugated B220 (RA3-6B2), CD8a (53-6.7), CD19 (1D3), NKI1.1
(PK136), APC-conjugated CD11c¢ (HL3) and CD43 (S7), CD44 (IM7;
Horizon V500; BD); APC-conjugated SiglecH (551), CD3e (145-2C11),
APC-Cy7—conjugated Sca-1 (D7) and CD45.2 (104), PE-Cy7—conjugated
CD16/32 (93) and CD19 (6D5), CD45.1 (A20; Pacific blue), and CD16/32
(93; purified; BioLegend). Samples were acquired on a FACSCalibur or
LSRFortessa (BD), and data were analyzed with Flow]Jo software (Tree Star).
7-AAD was purchased from eBioscience, and EdU labeling and staining
were performed according to the manufacturer’s instructions (Invitrogen)
4 h after a single intraperitoneal injection of 100 mg/kg EdU. For sorting
experiments, lymph node or suspensions were labeled with antibodies, and
target populations were sorted by a FACSAria II (BD) into serum for ge-
nomic DNA extraction.

Immunizations. Immunizations were performed as described previously
(Siggs et al., 2011).

Hematopoietic chimeras. Recipient mice were y-irradiated with a split
dose of 11 Gy (2 X 5.5 Gy, ¥/Cs source). The next day, mice were injected
with 2 X 10° bone marrow cells via the retroorbital plexus and were main-
tained on trimethoprim/sulfamethoxazole antibiotic water until sacrificed
for analysis 8 wk later. For colony forming unit assays, mice received 10°
bone marrow cells and were sacrificed 8 or 12 d later. Spleens were fixed
overnight in Bouin’s solution (Sigma-Aldrich), and colonies were counted
the next day. For unconditioned chimeras, unconditioned recipients re-
ceived a single retroorbital injection of 2 X 10° bone marrow cells.

Retroviral transduction. The open reading frame of Zbth1 was cloned
into the BgllI-EcoRI site of pMIG (MSCV2.2-IRES-GFP; Addgene
#9044, deposited by W. Hahn [Dana-Farber Cancer Institute, Boston, MA])
to generate the pMIG-Zbtb1 vector. Vectors were transfected into the Plat-E
packaging cell line using Fugene 6 (Roche), and retrovirus-containing
supernatant was collected 24 and 48 h later. Bone marrow donor mice were
primed 5 d before harvest with 150 mg/kg 5-fluorouracil (Sigma-Aldrich),
and bone marrow cells were prestimulated overnight with 10 ng/ml of
mouse recombinant IL-3, 10 ng/ml IL-6, 50 ng/ml SCF, 50 ng/ml TPO,
and 5 ng/ml FLT3L (all from PeproTech). The next day, 3 ml/well of ret-
roviral supernatant was centrifuged (2,000 rpm for 2 h at 32°C) onto Retro-
Nectin-coated 6-well plates (20 pg/ml; Takara Bio Inc.), and cells were
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cultured on coated plates in the presence of 4 pg/ml Polybrene (Sigma-
Aldrich) for 48 h. Recipient CD45.1" mice were y-irradiated with a split
dose of 11 Gy ('¥Cs source) and the next day injected with ~2 X 10° trans-
duced bone marrow cells via the retroorbital plexus.

Histology. Thymi were fixed in 10% neutral buffered formalin and embed-
ded in paraffin wax, and 5-pm sections were stained with hematoxylin and
eosin (H&E).

PolyPhen-2. The deleterious effect of the scanl” mutation was predicted
using the HumVar-trained PolyPhen-2 server (version 2.1.0; Adzhubei
etal,, 2010).

Online supplemental material. Fig. S1 compares the sequence of ZBTB1
with other BTB-ZF proteins. Fig. S2 shows the tissue-specific expression of
Zbtb1 transcripts. Fig. S3 shows flow cytometric analysis of lymphocyte pop-
ulations in Zbtb1;Bcl2111 double mutant mice. Table S1 is a list of protein-
encoding genes in the scanT critical region. The whole genome mapping
panel for C57BL/6] versus C3H/HeN is also included in the supplemen-
tal material. Online supplemental material is available at http://www.jem
.org/cgi/content/full/jem.20112084/DCT1.
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