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Sustained long-term antibody levels are the cornerstone of protective immunity, yet it
remains unclear how they are durably maintained. A predominant theory implicates
antigen-independent antibody production by a subset of long-lived plasma cells (LLPCs) that
survive within bone marrow (BM). Central tenets of this model—that BM LLPCs constitute a
subset defined by intrinsic biology distinct from PCs in other tissues and contribute to
long-term antibody titers—have not been definitively demonstrated. We now report that
long-term humoral immunity depends on the PC-intrinsic function of CD28, which selec-
tively supports the survival of BM LLPC but not splenic short-lived PC (SLPC). LLPC and
SLPC both express CD28, but CD28-driven enhanced survival occurred only in the LLPC. In
vivo, even in the presence of sufficient T cell help, loss of CD28 or its ligands CD80 and
CD86 caused significant loss of the LLPC population, reduction of LLPC half-life from 426
to 63 d, and inability to maintain long-term antibody titers, but there was no effect on
SLPC populations. These findings establish the existence of the distinct BM LLPC subset
necessary to sustain antibody titers and uncover a central role for CD28 function in the

longevity of PCs and humoral immunity.

Sustained levels of antibodies are the corner-
stone of long-term immunity against infection
by many pathogens, and induction of durable
antibody titers is an essential characteristic of
effective vaccines. As the half-life of immuno-
globulin is on the order of days to weeks but
protective levels of antibody may be sustained
for a lifetime, continued antibody production
by plasma cells (PCs) is required. How these
PC populations are maintained over a lifetime
remains unclear; however, two models have
been proposed. The first involves continuous dif-
ferentiation of antigen-specific memory B cells
into short-lived PCs (SLPCs; which survive
for weeks), driven by endemic/persistent
antigen or by polyclonal antigen-independent
B cell activators (Amanna and Slitka, 2010).
However, this mechanism as the exclusive
means to sustain antibody levels long term has
been called into question because antibody ti-
ters can persist despite decades elapsing before
antigen reexposure or with no reexposure at all
(Amanna et al., 2007). Additionally, sustained
antibody titers after immunization in humans
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does not appear to require memory B cell acti-
vation (Amanna et al., 2007), and vaccine-
induced antibodies in mice are maintained over
prolonged periods even in the absence of a re-
plenishing B cell compartment (Slitka et al.,
1998; Ahuja et al., 2008). To account for these
observations, a second model has been pro-
posed in which long-term antigen-specific
antibody levels are maintained in an antigen-
independent manner by a subset of PCs that are
long lived and, in some instances, would be
predicted to survive the lifetime of the host
(Slifka et al., 1998; Ahuja et al., 2008; DiLillo
et al., 2008). BM-resident nonproliferating PCs
have been implicated as the long-lived PCs
(LLPCs; Slifka et al., 1998; Manz and Radbruch,
2002), and in this model, BM LLPCs and
SLPC:s (in the spleen and other secondary lym-
phoid organs) are intrinsically distinct subsets
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Figure 1. CD28 is expressed on splenic and BM PCs.
(A and B) CD28 expression was determined in BM (A) or
splenic (B) CD138* PCs, CD3* T cells, and CD19* B cells
purified from WT mice. Gray lines represent isotype con-
trols; black lines represent anti-CD28 staining. Results
shown are one representative experiment of four.

(C and D) Total PC numbers in BM (C) or spleen (D) of WT
and CD28~/~ mice were determined from total mono-
nuclear cells by multiparametric flow cytometry using
CD138*B220~ to identify PC (representative plots are
shown). (E and F) PCs in BM or spleen of CD80~/~,
CD86~/-, and CD80/86~/~ mice were determined as in
Cand D. Mean + SD of 10 mice (C and D) or of three mice
(E and F) is shown. ns, not significant. **, P < 0.01; ** P <
0.001; *** P < 0.0001.

IL-6 [Minges Wols et al., 2002], and APRIL/
BAFF [Benson et al., 2008]) appear to be impor-
tant for all PCs, and none selectively affects the
generation or survival of the putative PC subsets
in the spleen or BM. There are specific charac-
teristics associated with BM homing and resi-
dency by PCs, such as the expression of the
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that do not interconvert into one another (Radbruch et al,,
2006) and differ in their generation, biology, longevity, and
anatomical localization. It has been hypothesized that one dis-
tinction between these subsets is the ability of LLPC to use a
limited number of specific BM stromal niches that are essential
for their survival (Manz et al., 1997; Radbruch et al., 2006)
and thus access to, competition for, and maintenance within
these niches are predicted to be major determinants of the
long-lived protective antibody repertoire (Moser et al., 2006).
However, although long-lived PCs have been identified
in the BM, careful review of the literature reveals there is no
direct evidence that BM PCs actually contribute to long-term
antibody responses, as it has not been possible to selectively
eliminate them while retaining other PC populations. This is
closely tied to the fact that it is far from clear that BM PCs are
actually a distinct PC subset as predicted by the model. No
intrinsic molecular or cellular characteristics have been iden-
tified that clearly define the putative LLPC or SLPC subset,
and certainly none that account for the differences in longev-
ity. Factors involved in PC differentiation (e.g., Blimp-1
[Shapiro-Shelef and Calame, 2005; Martins and Calame,
2008], Aiolos [Cortés and Georgopoulos, 2004], and Ets-1
[John et al., 2008]), adhesion (e.g., LFA-1/VLA-4 [DiLillo
et al., 2008]), and survival (e.g., FcyRIIb [Xiang et al., 2007],
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chemokine receptor CXCR4 (Tokoyoda et al.,
2004), reliance on the adhesion molecule CD93
(Chevrier et al., 2009), and association with re-
ticular CXCL12* stromal cells (Tokoyoda et al.,
2004), eosinophils (Chu et al., 2011), basophils
(Rodriguez Gomez et al., 2010), and megakaryo-
cytes (Rodriguez Gomez et al., 2010; Winter
et al., 2010). However, it is not known whether
all newly differentiated PCs can home to the BM
and become long-lived by stochastically finding a BM niche,
or whether the LLPC subset a priori has unique intrinsic
competency to access/use the BM niche for long-term sur-
vival (Radbruch et al., 2006). And, in the latter case, it is also
unknown what the molecular basis is for this competency to
interact with the BM niche and how it is different from SLPC
interactions in the spleen/secondary lymphoid organs.
Although CD28 has been almost entirely characterized as
the prototypic T lymphocyte receptor that provides the essen-
tial costimulatory signal that, in conjunction T cell receptor/
CD3 signaling, results in T cell activation (Sharpe and Freeman,
2002; Friend et al., 2006), enhanced function (Shapiro et al.,
1997; Friend et al., 2006), and survival (Boise et al., 1995;
Frauwirth et al., 2002), it is also expressed on the surface of
PCs (Kozbor et al., 1987). Interestingly, CD28 expression in
the B cells is specifically repressed by the B cell master regulator
Pax-5 and de-repressed during differentiation to PC (Delogu
et al., 2006). Little, however, is known about what function
CD28 has in the normal B cell lineage, as its role in humoral
immune responses has been predominantly attributed to helper
T cell co-stimulation and germinal center formation (Shahinian
et al., 1993; Ferguson et al., 1996) even though the absence
of CD28 diminishes short-term primary antibody responses
even with adequate T cell help (Delogu et al., 2006). For the
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Figure 2. BM PCs from CD28~/~ mice
have a competitive repopulation dis-
advantage. (A) Experimental design (D, day).
(B) Total splenocytes from chimeras were
analyzed by multiparametric flow cytometry
for percentages of CD3* T cells and
CD138+B220~ PC. CD45.1 (SJU) splenocytes
are plotted on top and CD45.2 (CD287/7)
splenocytes on the bottom. Dot plots and
histograms are representative of three mice.
(C) BMs from chimeras were analyzed by
multiparametric flow cytometry for per-
centages of CD138+B220~ PC. Dot plots are
representative of three mice. (D) Total PC
numbers in spleen (left) and BM (right) was
determined from total mononuclear cells by
multiparametric flow cytometry using
CD138+B220~ to identify PC. Histograms
are representative of three mice per group.
Error bars represent the mean + SD. ns, not
significant. **, P < 0.01.
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malignant BM-resident PCs in multiple myeloma, CD28 ex-
pression clinically correlates with significantly poorer prognosis
(Almeida et al., 1999) and disease progression (Robillard et al.,
1998), suggesting that CD28 provides the myeloma cells with
a survival advantage. Consistent with this, we and others have
found that CD28 activation in myeloma cells induces PI3K
and NF-kB signaling (Tu et al., 2000; Bahlis et al., 2007), IL-8
production (Shapiro et al., 2001), and a prosurvival signal that
protects in vitro against chemotherapy-induced death (Bahlis
et al., 2007). These observations led us to examine whether
intrinsic CD28 function in normal PCs plays a general or sub-
set-specific role in regulating their survival and, thus, the lon-
gevity of antibody responses.

RESULTS

Mice lacking CD28 or CD80/CD86 have selective loss of BM PC
Throughout our studies, we examined splenic and BM PCs as
the putative SLPC and LLPC subsets, respectively. In WT
C57BL/6] mice, purified BM PC (Fig. 1 A) and splenic PC
(Fig. 1 B) both expressed CD28 at similar levels to T cells. How-
ever, naive mice genetically deficient for CD28 (CD287/~) had
significantly fewer PCs in the BM (Fig. 1 C, right) but equiva-
lent numbers of splenic PC (Fig. 1 D, right) compared with WT
mice as analyzed by multiparametric flow cytometry of the total
mononuclear cell population (Fig. 1, C and D, left, representa-
tive plots for PCs based on their CD138"B220~ phenotype;
Shapiro-Shelef et al., 2003, 2005). More stringent phenotypic
gating for PCs (CD138*B220 " IL-6R*MHCII~; Moser et al.,
2006) in multiparametric flow analysis or direct enumeration of
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published data). Similarly, unvacci-
nated mice lacking the CD28 ligands
(CD80~/~, CD86~/~, and CD80/
CD867/7) had a selective loss of BM PC (Fig. 1 E) but a com-
parable number of splenic PC (Fig. 1 F) versus WT. Interest-
ingly, the loss of BM PC in the CD80~/~ or CD86~/~ single
knockouts indicates that even though either ligand can bind
CD28, they are not redundant in the context of maintaining the
BM PC population. And although PCs express low levels of
CD86, they do not express CD80 (unpublished data), suggesting
that BM PC interaction with CD80-expressing stromal cell in
the BM niche is required to sustain this PC subset (see Fig. 4).

CD28-dependent maintenance of the BM PC population

in vivo is PC intrinsic

Potential reasons for the decrease in BM PC in the CD287/~,
CD80~/~, CD86~/~, and CD80/CD86~/~ mice include an
intrinsic PC defect or extrinsic causes as a result of lack of T cell
help or other alterations in the host microenvironment. To
more definitively determine if CD28 was affecting BM PC di-
rectly in a cell-intrinsic manner, or if the selective loss of BM
PC was a result of extrinsic factors, competitive repopulation
studies were performed. Congenic BM chimeras were gener-
ated by transplanting 10° CD28** SJL (CD45.1) + C57BL/6]
WT (CD45.2) or SJL + CD287/~ (CD45.2) BM cells ata 1:1
ratio into lethally irradiated SJL hosts (Fig. 2 A). After reconsti-
tution, equal chimerization of CD3* T cells and CD138*B220~
PC was seen in the spleens of both chimeras (Fig. 2, B [repre-
sentative plots from SJL:CD287/~ chimeras] and D [left]).
However, in the BM of the SJL:CD287/~ chimeras both the
percentage of PC contributed by the CD45.2 CD287/~ BM
(Fig. 2 C) and the total number (Fig. 2 D, right) was substantially
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mined as described in Materials and methods,
and BM PC or SP PC alone were set as 1 and
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less than that contributed by the SJL CD45.1 marrow, which
is in contrast to the equal contribution by the C57BL/6]
WT marrow to the BM PC population in the SJL:WT chime-
ras. These data demonstrate that in the context of the same host
environment where both CD28"* and CD287/~ PCs have
access to the same T cell help and the same BM microenviron-
ment, the BM (but not splenic) PCs of CD287/~ origin are at
a competitive disadvantage, which is consistent with a direct
cell-intrinsic role for CD28 specifically in the BM PC subset.

CD28 activation enhances the survival of BM but not
splenic PCs

The potential intrinsic functions of CD28 in the BM PC in-
clude regulating LLPC generation during B—PC differentia-
tion, LLPC plasmablast proliferation, selective homing to/
adhesion within the BM, and/or survival within the BM niche.
Given the previous findings in T cells and myeloma cells, we first
examined whether CD28 activation had a prosurvival effect
in normal PCs. In vitro, anti-CD28 mAb-induced direct
CD28 activation by itself (without an exogenous signal 1) pro-
tected purified WT BM PC from serum starvation—induced
death (Fig. 3 A, left) but had no effect on splenic PC survival
(Fig. 3 A, right). Assessment of the purified BM and splenic
PC populations demonstrated that they were phenotypically
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and functionally similar (Fig. S1) and

that there was not an excess of

CD19*CD138* IgM-secreting plas-
mablasts in the splenic PC population that might account for
the differential responses (Kallies et al., 2004). Given that
splenic PCs express CD28, the basis for this differential re-
sponse was likely a result of differences in downstream signaling.
We confirmed that the components of the NF-kB pathway
were present, as both splenic and BM PCs express the p50
and p65 NF-kB subunits (Fig. 3 B, top). However, anti-
CD28 mAb induced NF-kB signaling in BM PC (Fig. 3 B,
bottom left) but not in splenic PC (Fig. 3 B, bottom right),
as measured by electromobility gel shift assays. NF-kB signal-
ing could be induced in splenic PC by the TLR 7 agonist
imiquimod (Tangye and Tarlinton, 2009), demonstrating
that there was not a global defect in NF-kB signaling in these
cells. To further validate CD28-mediated NF-kB signaling
(or lack thereof), we examined activation of NF-kB respon-
sive gene elements using splenic and BM PC isolated from
the NF-kB reporter mouse strain, which is transgenic for the
IkBa promoter linked to the firefly luciferase reporter gene
(Zhang et al., 2005). After 1 h of stimulation in vitro, BM PC
cultured with anti-CD28 mADb had a 2.3-fold increase of
relative NF-kB activity compared with BM PC cultured
alone or with control hamster Ig (Fig. 3 C, top), whereas
there was no effect of anti-CD28 stimulation on the NF-kB
activity in the splenic PC (Fig. 3 C, bottom). Altogether, these
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Figure 4. BMDCs interact with and
support PC survival and function through
CD28-CD80/CD86 interactions. (A) BM
sections from WT mice were stained with
antibodies against CD80 (red) and CD138
(green; image representative of four inde-
pendent experiments). (B) Immunohisto-
chemical staining from sternum sections of
WT mice. Brown is fascin, identifying DCs,
and pink is CD138* PCs identified by arrows

O cD2s*BM PC
W CD28” BM PC + BMDC

= a NS (image representative of two independent
§ P = experiments). (C-H) Purified BM PCs were
° . m wrsmpc+evoe 9 10 cocultured with BMDC of indicated geno-
5 types for the indicated time periods. Total
0 . y : ' ! 0+ ) viable PC numbers were determined by 7AAD
0 3 o 15 21 30 0 3 9 15 incorporation analyzed by flow cytometry
Thagsgays) Time (dayz) (mean + SD of three independent experi-
E 700 == F ments is shown). Culture supernatants were
=400 - NS analyzed for total IgG production by ELISA
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o 400 g experiment of three). ns, not significant.
z_g; zgg B W M P + BuDC ) *§, P < 0.05 PC + BMDC compared with PC +
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findings suggest that compared with BM PC, CD28 on splenic
PC has a higher activation threshold more characteristic of that
seen in T cells (Thompson et al., 1989; Stein et al., 1994).

BM-derived DCs (BMDCs) support BM PC survival

and lg production

The selective loss of BM PC also seen in the CD80/CD86
knockouts suggests that the essential stromal cells within the
BM PC survival niche (Shapiro-Shelef and Calame, 2005) ex-
press these CD28 ligands. Other work has suggested that DCs
(which can have high expression of CD80 and CD86) are
supportive stromal cells for the B lineage, as direct DC contact
provides critical differentiation and survival signals to normal
B cells (Sapoznikov et al., 2008), plasmablasts (Mohr et al.,
2009), and myeloma cells (Said et al., 1997; Bogen, 2002;
Kukreja et al., 2006). Additionally, BM DCs in myeloma pa-
tients are induced to produce the B lineage survival factor IL-6
(Said et al., 1997). Consistent with these studies, we have found
in situ within the BM of WT mice that CD138" PCs are in
direct contact with CD80* (Fig. 4 A) and fascin* (a DC marker;
Bahlis et al., 2007; Fig. 4 B) BM stromal cells (BMSCs)
phenotypically resembling DC. Enumeration of PCs across
entire BM sections demonstrated that 73.6% were in contact

JEM Vol. 208, No. 7

30 d of culture (Fig. 4 C). However,
BMDC could not support CD287/~ BM PC survival
(Fig. 4 D), indicating a central role for CD28 even within the
complexity of the PC-DC cellular interaction. Co-culture
with BMDC also did not support long term survival of
splenic PC (Fig. S2), which is consistent with their lack of
CD28 signaling, although there was enhancement of short-
term survival, possibly as a result of CD28 induction of IL-6
from the DC (see Fig. 5).WT BM PC function, as measured
by total IgG production, was also maintained in the BMDC
co-cultures (Fig. 4 E), whereas CD287/~ BM PC cultured
alone or with BMDC produced only low levels of IgG, IgM,
and IgA (Fig. 4 F and not depicted). This was not because
CD287/~ BM PCs were unable to make immunoglobulin, as
exogenously added IL-6 induced significant IgG production
(Fig. S3). Co-culture of WT BM PC with CD80 /",
CD867/~, and CD80/CD86~/~ BMDCs similarly yielded
significantly less long-term PC survival and production of
IgG compared with co-culture with WT BMDC (Fig. 4, G
and H). Interestingly, the observation that the individual ab-
sence of CD80 or CD86 affects PC survival/function in vitro
is consistent with the preceding in vivo findings and sug-
gests that they are not simply interchangeable ligands for
CD28 but have functions separate from activating CD28.
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Figure 5. BM PCs induce DC IL-6 pro-
R duction through a CD80- and CD86-

1000
poe 250 dependent mechanism. (A). 10* purified BM
= 323 =20 PCs were cultured with or without 105 WT
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=1 300 = anti-CD86 for 24 h. IL-6 production analyzed
e i % by ELISA. (B) Purified BM PCs were cultured
0 0 : — with or without WT or IL-6-/~ BMDC for 24 h
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control without WT or IL-6~/~ BMDC. Total PC num-
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20 & PC + IL-67 BMDC = 223 &ee+i-6-BMpc - previously described. Data are presented as
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S 10 Q 500 three independent experiments. *, P < 0.05;
a % 200 * P <0.01;™* P <0.001.
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BM PCs induce BMDC production of IL-6 that is necessary
for Ig production in a CD28-CD80/CD86-dependent manner
Given that the other receptor for CD80 and CD86, CTLA4,
has not been detected on normal or malignant PC (Shaffer et al.,
2002; Zhan et al., 2007; Driscoll et al., 2010), one possibility
is that this separate CD80/CD86 function is via their sig-
naling directly to the DC. It has been shown in DC-mediated
T cell activation that CD28 cross-linking of CD80/CD86
induces DC production of IL-6 (Orabona et al., 2004), a pro-
inflammatory cytokine necessary for T cell activation but also
a well characterized differentiation/survival factor for the B
cell lineage (Kawano et al., 1988; Minges Wols et al., 2002).
PCs also induce IL-6 production from the stromal micro-
environment, although the specific interactions involved are un-
clear (Minges Wols et al., 2002). This raised the possibility that
CD28 on the surface of PC also induces DC production of
microenvironmental IL-6 to support PC survival/function. In
vitro, although WT PC and WT BMDC did not make IL-6
by themselves, co-culture induced significant IL-6 produc-
tion that is dependent on CD80 (completely) or CD86 (par-
tially; Fig. 5 A) and was not seen when the co-cultured DC
could not make IL-6 (IL-6=/~ BMDC; Fig. 5 B). Surprisingly
however, even though exogenous IL-6 has a significant pro-
survival effect on BM PC cultured in medium alone (Fig. S4;
Minges Wols et al., 2002), BM PC survival was unaffected
when co-cultured with IL-67/~ BMDC compared with WT
(Fig. 5 C). However, there was significantly less IgG produc-
tion in IL-6=/~ BMDC co-cultures (Fig. 5 D), suggesting that
CD28 separately regulates BM PC survival directly and immuno-
globulin production indirectly via CD80/CD86-mediated
induction of IL-6 from the stromal DC.

Loss of CD28, CD80, or CD86 compromises BM PC survival
and durable antibody responses in vivo

If CD28 function is selectively important for the maintenance
of the LLPC subset, loss of CD28 in PCs may not affect total
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be unaffected, consistent with Delogu
et al., 2006) but would compromise
the survival of antigen-specific LLPC and the ability to sus-
tain antigen-specific antibody titers long term after vaccina-
tion. To examine this, BM chimeric mice lacking CD28
only in B cell compartment were generated by tandem trans-
plantation of WT hosts with BM from wMT mice that lack
B cells but have normally functioning CD28" T cells (Tuaillon,
2000; Delogu et al., 2006) plus BM from either CD287/~
or WT control mice (Fig. 6 A). Analysis of chimerization
showed comparable percentages of CD3"CD28" T cells,
whereas CD138% PCs were CD28" in WT and CD28~ in
CD287/~ chimeras (Fig. 6, B and C). The chimeras were
primed and boosted with the T cell-dependent antigen NIP-
ovalbumin, and serum immunoglobulin and PC numbers
were assessed over 180 d. WT:uMT and CD28 "/~ :uMT chi-
meras had equivalent total serum IgG1 levels over the 6 mo
(Fig. 6 D, left). However, although the NIP-specific IgG1
titers were similar at day 7, they were significantly lower in
the CD28/7:uMT chimeras by day 21 and back to prevac-
cination levels by day 180 (Fig. 6 D, right). NIP-specific IgA
and IgM titers were unaffected (Fig. S5, A and B), suggesting
that plasmablasts and mucosal PC are less dependent on CD28.
To determine if the loss of anti-NIP antibody titers was a
result of down-regulation of immunoglobulin production or
loss of the LLPC population, the number of total and antigen-
specific PCs was assessed. The total number of PCs in the
spleen was comparable between chimeras (Fig. 6 E, left) but
significantly lower in the BM of the CD28~/7:uMT mice
(Fig. 6 E, right). The frequency of NIP-specific antibody-
secreting cells (ASCs) was also similar in the spleens of the
chimeras (Fig. 6 F), but twofold (day 42) to sevenfold (day 180)
lower in the BM of the CD28/~:uMT mice (Fig. 6 G).The
smaller number of BM PCs in the CD28/~:uMT could also
be a result of defective B—LLPC differentiation or LLPC
BM homing versus decreased in situ survival, so the rate of
decline in PC numbers in the BM over time was determined.
This would be unchanged by a generation/homing defect
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(fewer LLPC would get to the BM but, once there, would have
normal survival) but accelerated by a survival defect. Consis-
tent with the latter, the decline in the NIP-specific BM PC
numbers was significantly faster in the CD28~/7:uMT (slope =
—0.29) with a half-life of 63 d versus WT:uMT chimeras
(slope = —0.12; P < 0.023) with a half-life of 426 d, with no
difference seen in rates of splenic PC decline.

These findings predict that if CD28-expressing LLPCs
are interacting with CD80/CD86-expressing stromal niche
DC, that loss of CD80 and/or CD86 expression will recapi-
tulate the effect of losing PC CD28. Additionally, involve-
ment of other CD80/CD86 binding receptors in addition to
CD28 would be unmasked if the loss of the CD80 or CD86
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A

D180 in CD80~/~ and CDS86/~ mice

compared with WT at all time points,

persisting out past 2 mo (Fig. 7 A,
right). The total numbers of CD138*B220~ PC were com-
parable in the spleens of CD80~/~, CD86~/~, and WT mice
(Fig. 7 B, left), but BM PCs were significantly decreased in
CD807/~ and CD867/~ mice compared with WT (Fig. 7 B,
right). Similarly, the frequency of NIP-specific ASC in the
spleens of CD80~/~, CD86~/~, and WT mice were equiva-
lent (Fig. 7 C) but significantly decreased over time in the
BM of CD80/~ and CD86~/~ mice compared with WT
(Fig. 7 D). Altogether, the loss of CD80 or CD86 recapitu-
lates the selective effect of CD28 loss on the BM PC pop-
ulation, supporting the model of an essential prosurvival
interaction involving CD28 expressed on LLPC with CD80
and CD86 in the stromal niche.
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DISCUSSION

Although long-lived antibody responses are a fundamental
component of protective humoral immunity and are essential
for effective vaccination, the molecular and cellular basis for
such sustained immunoglobulin production (in particular in
the absence of ongoing antigen exposure) remain poorly under-
stood. Prolonged survival of a subset of PCs in the BM has
been implicated as a key component of long-term humoral
immunity; however, the intrinsic characteristics of these PCs
(and if they even are a distinct subset), the basis of their longev-
ity, and their actual contribution to durable antibody titers are
not known. We have found that intrinsic CD28 function in
PCs plays a previously unrecognized but essential role in main-
taining long-lived antibody responses by selectively supporting
the survival of BM PC. Furthermore, the intrinsic difference in
CD28 signaling/function between short-lived splenic PC and
long-lived BM PC is the first clear evidence (to our knowl-
edge) that LLPC and SLPC are distinct subsets of PC. More
importantly, the loss of long-term antibody titers with the
selective loss of BM PC in the CD287/~, CD80~/~, and
CD867/~ mice is the first direct demonstration that BM LLPCs
are necessary to sustain antigen-specific antibody levels. Alto-
gether, our findings provide clear evidence that a distinct subset
of BM-resident LLPC is necessary and sufficient to maintain
long-term antibody levels, and they identify CD28 function in
PCs as a central determinant of LLPC function and survival.
Although there has been extensive evidence that CD28
is required for the generation of antibody responses (e.g.,
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cannot be separately distinguished in
these studies. The first clear indica-
tion of an intrinsic B cell role was
only recently suggested by the finding that CD28 deficiency
in B lineage blunted early (day 14 after vaccination) primary
antibody responses even with adequate T cell help (Delogu
et al., 2006), although the underlying mechanism (defects in
B—PC differentiation, homing, PC survival, antibody produc-

D42 D63

tion, or some other mechanism) and effect on durable anti-
body responses was not determined. We have found that CD28
on LLPC functions as a two-way molecular bridge, transduc-
ing a survival signal to the LLPC as well as back-signaling
through CD80/CD86 to modulate stromal niche DC to sup-
port LLPC (and possibly SLPC) function via IL-6 produc-
tion. This ability to transduce the prosurvival signal appears
limited to LLPC and suggests that survival within the BM
niches is restricted to PC that can signal through CD28.Thus,
the molecular competency (Manz and Radbruch, 2002) of a
PC to reside in a LLPC BM niche is in part set by its CD28
signaling threshold, with SLPC unable to use these niches be-
cause of a higher activation threshold more characteristic of
T cells. This setpoint may be determined by the type of B cell
being activated and/or the context in which the activation
takes place. For example, memory B cell activation would be
indicative of a recurring pathogen against which long-lived
antibody titers would be beneficial, and a highly inflamma-
tory setting caused by an acutely destructive pathogen for
which persistent protective antibodies against reinfection
would also be beneficial. This would be consistent with ob-
servations that repeated antigen exposure is necessary for
most vaccines to elicit durable antibody titers, and that the
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inflammation elicited by specific vaccines correlates with the
ability to generate long-lived humoral immunity (Pulendran,
2009). The molecular basis for where the CD28 activation
threshold is set is unknown but is likely to be a key determi-
nant of whether a newly differentiated PC is fated to become
a LLPC or SLPC.

These findings also underscore that CD28 has several sig-
nificantly different characteristics in LLPC compared with
T cells. First, there appears to be no “co-"" in the stimulation
induced by CD28 in LLPC, and this signal alone is sufficient
to support LLPC survival in the absence of other exogenous
factors (i.e., in serum-free conditions). How CD28 activation
supports LLPC survival is not clear as, unlike T cells, we have
not identified a role for Bel-x; up-regulation in PCs. Ongoing
studies suggest other antiapoptotic factors and enhanced
metabolic fitness are playing a role. Another difference is
the nonredundancy of CD80 and CD86 in maintaining the
LLPC population compared with their relative redundancy
in activating CD28 on T cells. Our data suggests that this
nonredundancy is not the result of another CD80/CD86-
binding receptor (CTLA-4 and PD-1), although more defin-
itive studies are needed to be conclusive. Whether this
nonredundancy is a result of some characteristic of CD28
signaling on the PC side or CD80/CD86 signaling on the
stromal side is unclear and is currently being examined.

The requirement for CD80 and CD86 for LLPC survival
and colocalization of BM PC and DC in vivo, as well as the
ability of DC to support LLPC survival in vitro, strongly sug-
gests that DCs (along with other myeloid professional antigen-
presenting cells) are stromal components of the LLPC BM
niche. The physical colocalization of LLPC with DC in the
BM closely parallels the direct association of plasmablasts with
DC and monocyte/macrophages in the lymph node, which in-
duces the myeloid cells to generate the IL-6/April-rich micro-
environment necessary for plasmablast survival and maturation
(Mohr et al., 2009). Furthermore, the ability of CD28 to in-
duce DC production of IL-6 via CD80/CD86 binding (which
has been shown in DC-T cell interactions [Orabona et al.,
2004] but not with PC) provides a molecular mechanism for
how PCs induce the stromal microenvironment to produce
this cytokine. Consistent with previous studies, we find that
this IL-6 production is less important for LLPC survival when
in contact with DC but is necessary for sustained antibody
production (Martins et al., 2006; Radbruch et al., 2006), and it
is possible that the decrease in IL-6 production within the BM
microenvironment caused by loss of CD28 or CD80/86 re-
sults in a disproportionately greater drop in serum NIP-IgG1
levels compared with the loss of NIP-specific PC in vivo. It is
interesting to speculate that regulation of Ig production is via
CD28-mediated induction of high level BLIMP-1 expression
that is needed for immunoglobulin production (Shapiro-Shelef
and Calame, 2005) and is characteristic of LLPC after they
enter the BM niches (Kallies et al., 2004). Of note, BLIMP-1
expression in T cells is increased by CD28 co-stimulation
(Martins et al., 2006), which suggests another pathway by
which CD28 may modulate LLPC function.
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Finally, an intrinsic role for CD28 in LLPC survival/func-
tion suggests that therapeutically targeting this receptor may
be directly effective in manipulating humoral immunity in
human health and disease. In the context of vaccine develop-
ment, strategies to augment CD28 signaling (for example, tra-
ditional, i.e., not super-agonist) anti-CD28 antibodies that
trigger signaling in PC but not T cells may lead to greater
LLPC survival and higher/more persistent antibody titers.
Conversely, inhibition of CD28 signaling may compromise
the survival of pathogenic LLPCs that are still dependent on
the BM niche for survival. These include the malignant LLPC
in multiple myeloma and autoreactive LLPC in many auto-
immune syndromes and organ graft rejection. In this regard, it
is relevant to note that agents that enhance or block CD28-
mediated T cell co-stimulation are already in clinical use (e.g.,
CTLA4-Ig [abatacept] for the treatment of theumatoid arthri-
tis) and may have new (or perhaps newly recognized) applica-
tion in normal and pathogenic humoral immunity.

MATERIALS AND METHODS

Animals. Female and male C57BL/6] (WT), B6.129S2-Igh-6!¢s"] (WMT),
B6.SJL-Ptprc' Pepc/Boy] (SJL), and B6.129S2-Cd28mM/] (CD28~/~)
mice were purchased from The Jackson Laboratory at 5-6 wk of age. Female
C57BL/6] retired breeders at ~9 mo old were purchased from The Jackson
Laboratory. Upon receipt, animals were housed and bred at the Division of
Laboratory Animal Resources (Roswell Park Cancer Institute [RPCI],
Buffalo, NY) in a pathogen-free barrier facility. All animal experiments were
approved by the RPCI Institutional Animal Care and User Committee.

Antibodies and flow cytometry. Antibodies for NF-kB p50 (clone NLS)
and p65 (clone F-6) were purchased from Santa Cruz Biotechnology, Inc.
Imiquimod was purchased from Sigma Aldrich. Anti-CD80 mAb (clone
16.10.A1) and anti-CD86 (clone GL-1) were generated from hybridomas.
Cells were stained with anti-CD45.1 (clone A20), anti-CD45.2 (clone 104),
anti-B220-PE/Cy7 (clone RA3-6B2), anti-I-A/I-E-PerCP/Cy5.5 (clone
M5/114.15.2), anti-CD19 (clone 6D5), and anti-CD3-PE (clone 17A2;
BioLegend); anti-hamster IgG (H + L)-FITC and isotype control rat IgG2a-
PE (Beckman Coulter); anti-CD28 (clone PV1; Beckman Coulter; gift from
C. June and B. Levine, University of Pennsylvania, Philadelphia, PA); anti—
CD138-PE (clone 281-2; BD); anti-mouse IL-6R (R&D Systems); and
anti—goat IgG-FITC (United States Biochemical Corporation). Polyclonal
control hamster-IgG was purchased from Genetex, Inc. Polyclonal control
hamster IgG and anti-CD28 mAb were conjugated to Dynabeads goat anti—
mouse IgG (Invitrogen) per the manufacturer’s instructions and were cul-
tured with cells at a 2:1 bead to cell ratio, respectively. Cells were incubated
with staining reagents in staining media (PBS-1% FCS, 5 mM Hepes, and
5 mM 10% sodium azide) for 30 min in 4°C. Analysis was performed by flow
cytometry (LSR IT and FACScan 2; BD).

PC isolation. PCs from WT and CD287/~ mice were isolated using a
MACS (Miltenyi Biotec) CD138* PC isolation kit. Cells were labeled with
non-PC depletion cocktail and anti-biotin microbeads for non-PC deple-
tion. Cells were then labeled with CD138 microbeads and run over the
magnetic column twice to remove any CD138~ cells (Minges Wols and Witte,
2008). The purity of the CD138* population was >83%.

CellVue labeling and cell cultures. BMDCs were generated from BM of
WT, B6.129S4-Cd80u=15kr/] (CD80~/ ), B6.129S4-Cd86w1Skr/] (CD86~/7),
B6.129S4-Cd80m1str Cd86m™2Shr/T (CD80/867/7), and B6.129S2-116mKopf/]
(IL-67/7) mice (gift from A. Grakoui and H. Scarborough, Emory Univer-
sity, Atlanta, GA). BM cells were differentiated in culture with 20 ng/ml
GM-CSF (derived from supernatant; gift from J.L. Clements, RPCI) for 7 d

1443

920z Areniged 60 uo 1senb Aq 4pd 01001 L0Z Wel/gr61Ly.L/SEYL/L/80Z/4Pd-8lonie/wal/Bi0 sseidni//:dpy woy papeojumoq



JEM

(Luckashenak et al., 2006). BMDCs were stained with CellVue Claret Fluo-
rescent Cell Linker (Molecular Targeting Technologies, Inc.) per the manu-
facturer’s instructions to distinguish BMDC from PC by FACS. 2 or 2.5 X
10* PCs with or without 2 X 10> BMDCs were cultured in a 48-well flat-
bottom tissue culture plate in 0.8 ml of culture medium/well at 37°C with
5% CO, with 20 ng/ml GM-CSF for 30 d (Minges Wols et al., 2002).
Serum starvation assays were completed as described in Bahlis et al. (2007).

BM reconstitution and immunizations. BM chimeras were generated as
previously described (Delogu et al., 2006). In brief, the chimeras were gen-
erated by retroorbitally injecting 10° BM cells, depleted of T cells (Miltenyi
Biotec), at a 1:1 ratio of either SJL and WT or SJL and CD28~/~ BM for the
competitive repopulation studies into lethally irradiated SJL mice. BM chi-
meras were generated as described at a 40:60 ratio of WMT and WT or uMT
and CD287/~ BM into lethally irradiated WT mice. Mice were immunized
subcutaneously with 1:1 ratio of 100 pg NIP-ovalbumin (Biosearch Tech) in
complete Freund’s adjuvant (Thermo Fisher Scientific) on day 0 and boosted
on day 7 with a 1:1 ratio of 100 pg NIP-ovalbumin in incomplete Freund’s
adjuvant (Thermo Fisher Scientific).

ELISAs. Murine IgM, IgG, IgA, IgG1, and NIP-IgG1 Ab titers were deter-
mined by ELISA per the manufacturer’s instructions (Bethyl Laboratories,
Inc.). In brief, NUNC 96-well plates were precoated with capture antibody
in coating buffer or NIP-bovine serum albumin in 15 pg/ml PBS-0.2 M
NaCl (Biosearch Technologies) overnight in 4°C. Murine IL-6 was assayed
by ELISA per manufacturer’s instructions (R&D Systems).

ELISPOT assays. NIP-specific and total IgG ASC were quantified by
ELISpot assay as per manufacturer’s instructions (Mabtech). In brief, 96-well
plates (Millipore) were precoated with 15 pg/ml anti-IgG capture antibody
or 20 pg/ml NIP-bovine serum albumin in PBS.

Electromobility shift assay (EMSA). EMSAs were done for NF-kB
as previously described (Bahlis et al., 2007). In brief, purified BM and
splenic PC were cultured with or without polyclonal control hamster Ig
or anti-CD28 mAb beads in 10% FCS media for 30 min. Whole lysates
were made, and equal amounts of protein were incubated with 3?P-labeled
primer containing consensus NF-kB-binding sites (5'-GATCCAACG-
GCAGGGGAATTCCCCTCTCCTTA-3") and separated on a 4% poly-
acrylamide gel.

Immunohistochemical staining and confocal microscopy. For sec-
tion staining, samples were fixed in 10% neutral buffered formalin. Sternum
and femurs were sectioned at 5 pm. For antigen retrieval, slides were heated
in the microwave for 20 min in citrate buffer, pH 6.0, followed by a 15-min
cool down and a PBS/Tween wash. Slides were then loaded on the DAKO
autostainer and the following program was run: casein 0.03% (in PBS/T)
was used to block for 30 min, blown off, and fascin (neomarkers), primary
rat monoclonal antibody CD138 (clone 281-2; BD), or rat IgG2a (isotype
control) was on slides for 1 h. A PBS/Tween wash was followed by labeled
Polymer (Dako envision+) for 30 min on fascin slides and biotinylated rabbit
anti-rat IgG for 30 min on CD138/rat IgG2a slides, another PBS/Tween
wash, and Elite ABC kit (VECTASTAIN; Vector Laboratories) for 30 min.
Slides were again washed with PBS/Tween, the DAB chromagen (Dako)
was applied for fascin (brown), and Fast-red was applied for CD138 (pink)
for 5 min. The slides were dehydrated, cleared, and cover-slipped. An entire
section of sternum and femur were used to quantify CD138" cells adjacent
to fascin® BMSC. CD138 positively stained cells alone or adjacent to fascin®
BMSC were counted. Percentage of adjacent CD138" cells to fascin® BMSC
was determined by the number of CD138" cells adjacent to fascin® BMSC
cells/total number of CD138* cells.

Intact BM cores were removed from femurs of WT mice and embed-
ded in OCT, snap-frozen in liquid nitrogen, and stored in —80°C. 9-pm
tissue sections were prepared and fixed with acetone at —16°C for 20 min.
Nonspecific binding was blocked by preincubation with PBS + Tween/Casein
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for 30 min. Staining with antibodies and secondary reagents was performed
for 60 and 30 min, respectively, at room temperature. The following anti-
bodies were used: anti-hamster IgG-PE (clone HTK888; BioLegend), anti—
CD80-PE (clone 16-10AI; BioLegend), anti-CD138 (clone 281-2; BD),
and anti—rat IgG-FITC (eBioscience). Sections were analyzed by a confocal
system microscope (DM IRE2 and TCS SP2; Leica) with software (version
2.61). Four BM sections were used to quantify CD138% cells adjacent to
CD80* BMSC. CD138 positively stained cells alone or adjacent to CD80*
BMSC were counted. Percentage of adjacent CD138" cells to CD80*
BMSC cells was determined by the number of CD138" cells adjacent to
CD80" BMSC cells/total number of CD138" cells.

NF-kB luciferase assay. BALB/c-Tg(IkBo-luc)-Xen (IkBa-luc) mice (gift
from I. Gitlin and A.V. Gudkov, RPCI) were used in the NF-kB luciferase
assay. NF-kB activity was assayed using Dual Luciferase Reporter Assay (Pro-
mega) per the manufacturer’s instructions. In brief, purified BM and splenic PC
were cultured in 10% FCS media alone or with polyclonal hamster Ig or anti-
CD28 mAb beads for 1 h. Cells were lysed in 1X passive lysis buffer (PLB), and
the PLB lysate was then resuspended in LARII buffer and firefly luciferase
activity was measured by a luminometer (Monolight 3010; BD). Relative
NEF-kB activity was determined as follows: (luciferase activity)/(cell number
for each sample/volume of lysis buffer) X (ul of LARII added to sample).

Statistical analysis. A Student’s ¢ test was performed for statistical analysis
using two-tailed nonequal variances and 95% CI. For comparison of NIP-
specific ASC of WT:uMT versus CD287/7:uMT in spleen and BM linear
regression, analysis was performed for each mouse to give a single estimated
slope value. Rate of decay was performed by ANOVA and the following
equation was used to determine half-life: (elapsed time X log2)/[log(beginning
amount/ending amount)].

Online supplemental material. BM and splenic PC were characterized
by CD138 and CD19 expression by flow cytometry prior and after CD138
purification. Supernatant from PC were analyzed for IgM and IgG produc-
tion by ELISA (Fig. S1). Splenic PC survival was assessed by co-culture
studies with BMDCs (Fig. S2). Induction of Ig from CD28/~ BM PC was
assessed with the addition of recombinant IL-6 (Fig. S3). BM PC survival
was assessed with the addition of recombinant IL-6 (Fig. S4). Serum from
chimeras was analyzed for IgA and NIP-specific IgA or IgM and NIP-specific
IgM by ELISA (Fig. S5). Online supplemental material is available at http://
www .jem.org/cgi/content/full/jem.20110040/DC1.
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