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DNA methylation prevents CTCF-mediated
silencing of the oncogene BCL6

in B cell lymphomas
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Aberrant DNA methylation commonly occurs in cancer cells where it has been implicated in
the epigenetic silencing of tumor suppressor genes. Additional roles for DNA methylation,
such as transcriptional activation, have been predicted but have yet to be clearly demon-
strated. The BCL6 oncogene is implicated in the pathogenesis of germinal center—derived

B cell lymphomas. We demonstrate that the intragenic CpG islands within the first intron
of the human BCL6 locus were hypermethylated in lymphoma cells that expressed high
amounts of BCL6 messenger RNA (mRNA). Inhibition of DNA methyltransferases decreased
BCL6 mRNA abundance, suggesting a role for these methylated CpGs in positively regulat-
ing BCL6 transcription. The enhancer-blocking transcription factor CTCF bound to this
intronic region in a methylation-sensitive manner. Depletion of CTCF by short hairpin RNA
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in neoplastic plasma cells that do not express BCL6 resulted in up-regulation of BCL6
transcription. These data indicate that BCL6 expression is maintained during lymphoma-
genesis in part through DNA methylation that prevents CTCF-mediated silencing.

DNA methylation in mammals occurs on cyto-
sine residues at the C5 position of the pyrimidine
ring primarily at the palindromic dinucleotide
sequence 5'-CG-3" (Bestor, 1990; Lister et al.,
2009). This covalent modification is essential for
normal mammalian development (Li et al., 1992;
Okano et al., 1999) and has been linked to tran-
scriptional repression and formation of repressive
chromatin structures on the underlying DNA
(Jaenisch and Bird, 2003). DNA methylation is
associated with imprinted regions, the inactive X
chromosome, and parasitic DNA elements and
their relics (Bestor, 2000; Lister et al., 2009). The
role of DNA methylation in regulation of gene
expression remains controversial (Bird, 1995;
Bestor, 1998) but is generally thought to be asso-
ciated with gene silencing.

CpG islands are genomic regions defined
by a regional frequency of CG dinucleotides that
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approaches statistical expectations (Gardiner-
Garden and Frommer, 1987). Presumably, this
CG dinucleotide content is retained because these
regions remain unmethylated in the germ line
(Jones et al., 1992) or are subject to genetic selec-
tion (Rollins et al., 2006). These sequences are
found in association with promoters in the human
genome at high frequency (Saxonov et al.,
2006). Their aberrant methylation in pathological
processes is associated with loss of expression
of the genes with which they are tightly linked
(Feinberg et al., 2002). In mammalian cells, it is
widely accepted that DNA methylation at pro-
moter regions inhibits transcription initiation
(Bird and Wolffe, 1999). In contrast, a body of
evidence also indicates that the process of tran-
scription elongation is largely refractory to DNA
methylation in mammals (Robertson and Wolfte,
2000). A recent analysis of the methylation status
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of the X chromosome in female mammals indicated that DNA
methylation levels were consistently higher within transcribed
regions on the active allele compared with the inactive allele
(Hellman and Chess, 2007). In this case, DNA methylation may
serve to prevent activation of functional DNA elements (such as
cryptic promoters, recombination hotspots, or transposable ele-
ments) embedded within transcription units (Jones, 1999).

In addition to its well documented roles in impacting local
chromatin architecture, cytosine methylation serves to alter the
chemistry of the major groove of DNA (Bird and Wolffe, 1999).
The presence of additional functional groups in this location can
serve to alter the binding of transcription factors to their cognate
recognition elements. An example of such a factor is the CCCTC-
binding factor CTCF (Lobanenkov et al., 1990), which binds
DNA in a methylation-sensitive manner (Bell and Felsenfeld,
2000; Hark et al., 2000; Rodriguez et al., 2010). CTCF has un-
usual properties, exerting an influence on local chromatin archi-
tecture through the formation of higher order structures (Splinter
et al., 2006). It also has the property, when located between a
promoter and enhancer, of blocking enhancer function (Bell
et al., 1999), potentially through its ability to organize chromo-
somal domains within the nucleus (Yusufzai et al., 2004). There-
fore, DNA methylation has the potential to positively regulate
gene transcription, albeit in an indirect manner, by preventing
CTCEF binding and thereby abolishing an enhancer block.

Aberrant DNA methylation has been observed in a wide
range of cancer cells. Repetitive sequences within the inter-
genic regions of the genome, which are normally heavily meth-
ylated, often become hypomethylated in tumors (Feinberg
et al., 1988). This global DNA hypomethylation is thought to
contribute to genome instability during tumorigenesis (Howard
et al., 2008). In contrast, promoter CpG islands are frequently
hypermethylated and are strongly associated with transcrip-
tional silencing (Costello et al., 2000; Rauch et al., 2008).
Hypermethylation has been observed at promoters of various
types of genes that can confer a growth advantage in tumors, en-
compassing tumor suppressor genes including VHL and RB1,
cell cycle regulators such as p15™NK# and p16™K* DNA repair
factors like BRCA1 and MLH1, and cell invasion/adhesion
proteins such as E-cadherin (Boultwood and Wainscoat,
2007; McCabe et al., 2009). CpG islands outside of gene pro-
moter regions in cancer cells have also been found to be hyper-
methylated, although their functional role in regulating gene
expression is not clear (Weber et al., 2005; Smith et al., 2007).
Although the role of DNA methylation in gene inactivation to
promote tumorigenesis is well documented, a role for DNA
methylation in gene activation, particularly of oncogenes, has
yet to be clearly demonstrated.

The BCL6 (B cell lymphoma 6) oncogene was identified
based on its involvement in translocations, placing its expres-
sion under the control of a strong enhancer in lymphoma (Ye
etal., 1993a,b). The gene encodes a 95-kD protein, containing
BTB/POZ and zinc finger motifs, that functions as a tran-
scriptional repressor. In B lymphocytes, it is required for ger-
minal center (GC) formation, which is the site of antibody
affinity maturation in secondary lymphoid tissue (Ye et al.,
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1997). BCL6 1s widely believed to restrain expression of the
plasma cell transcriptional program before the initiation of
terminal differentiation triggered by cell surface signaling
events (Calame et al., 2003). Its deregulation is implicated in
the pathogenesis of GC-derived diffuse large B cell lym-
phoma (DLBCL; Kusam and Dent, 2007). Mice engineered
to express Bcl6 constitutively in B cells developed lympho-
mas with characteristics typical of human DLBCL (Cattoretti
et al., 2005). Furthermore, sustained expression of BCL6 in
DLBCLs is necessary for tumor survival and proliferation
(Polo et al., 2004; Cerchietti et al., 2009b). Therefore, un-
derstanding the molecular mechanisms in regulating BCL6
expression has important implications in the identification of
therapeutic targets for B cell lymphomas.

Constitutive BCL6 expression in a subset of DLBCLs occurs
through chromosomal translocation or mutations in the pro-
moter region of BCL6 (Ci et al., 2008). However, the majority
of DLBCLs express BCL6 in the absence of genetic lesions (Ci
et al., 2008). Therefore, additional regulatory mechanisms must
be used in these DLBCLSs to sustain BCL6 expression. Recently,
it has been shown that the molecular chaperone Hsp90 can be
up-regulated to stabilize and maintain BCL6 mRNA and pro-
tein in DLBCLs (Cerchietti et al., 2009a). In addition, epigenetic
silencing of a microRINA targeting BCL6 also indirectly con-
tributed to the maintenance of BCL6 expression in lymphomas
(Saito et al., 2006). In this paper, we describe an unusual role for
DNA methylation in the high level expression of BCL6 mRINA
in lymphoma cells. Transcription of this protooncogene can be
positively regulated by DNA methylation of intragenic CpG is-
lands. This aberrant DNA methylation, specific to lymphoma,
acted to prevent CTCF-mediated silencing of BCL6. These re-
sults provide a graphic example of aberrant DNA methylation in
cancer serving to promote expression of an oncogene.

RESULTS
BCL6 transcription is initiated predominately
at the upstream transcription initiation start site
BCL6 is located at human chromosome 3q27. The locus
contains 11 exons, including two alternative noncoding first
exons associated with two alternative transcription initiation
sites. Both mRINA species code for identical proteins. We
assessed steady-state levels of BCL6 mRNA in two model
cell lines: Raji, a Burkitt lymphoma line with a transcrip-
tional program similar to that of primary GC B cells (Epstein
et al., 1966; Shaffer et al., 2002), and NCI-H929, a plasma cell
myeloma cell line similar in many respects to primary plasma
cells (Gazdar et al., 1986). By Northern analysis (Fig. S1 A)
and by quantitative RT-PCR (not depicted), we detected
high levels of BCL6 mRNA in Raji but were unable to de-
tect the message in H929 above background levels.
Transcript mapping using publicly available expressed
sequence tags (Kent et al., 2002) indicated the use of two
transcription start sites at the human BCL6 locus that differ by
roughly 9 kb. Both transcripts code for identical proteins, difter-
ing only in the sequences found in the alternative 5" noncoding
first exons. The biological functions of these noncoding exons,
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if any, remain unknown. In the current system, we analyzed uti-
lization of the upstream versus downstream transcription start
site by quantitative exon-specific RT-PCR (Fig. S1 B), finding
that the vast majority of transcripts in Raji cells (>90%) initiate
at the upstream start site (Fig. 1 A, locus map).

Differential DNA methylation status at BCL6 intronic

CpG islands

Cytosine methylation is known to exert an influence on the
transcriptional properties of DNA in mammals (Bestor, 2000;
Jaenisch and Bird, 2003). Careful examination of the genomic
context of human BCL6 (Fig. 1 A) revealed the presence of
multiple CpG islands. As aberrant methylation of CpG islands
is known to be associated with cancer (Laird, 2005; Baylin and
Ohm, 2006), the methylation status of the CpG islands in Raji
and H929 cell lines were determined by genomic bisulfite se-
quencing (Fig. 1 A). The most 5" CpG island (CpG island 17)
was almost completely unmethylated in both cell lines. CpG
island 32 and CpG island 27, in contrast, were completely
methylated in Raji and completely unmethylated in H929.
CpG island 38 was methylated in both cell lines, with a mar-
ginally higher level of methylation in Raji.

To gain further insights into the DNA methylation status
across the 5" end of the BCL6 gene, we enriched for methyl-
ated DNA using the methylated CpG island recovery assay
(MIRA; Rauch and Pfeifer, 2005; Rauch et al., 2006) in Raji
and H929 and hybridized onto a DNA promoter tiling micro-
array. Using the MIR A-chip method, we obtained DNA
methylation enrichment signal spanning from about —7 kb to
+10 kb from the upstream transcription start site of BCL6, in-
cluding the entire first intronic region of the gene at ~150-bp
resolution (Fig. 1 B). Consistent with the bisulfite sequencing
data (Fig. 1 A), a peak-finding algorithm detected differential
enrichment of methylated CpGs at the corresponding CpG is-
lands in Raji and H929 (Fig. 1 B). In addition to robust enrich-
ment of methylated CpGs at CpG islands 32, 27, and 38 in
Raji, DNA methylation was present in the neighboring re-
gions spreading along both ends of CpG island 32 (Fig. 1 B,
top). H929 cells were enriched for methylated CpGs at CpG
islands 17 and 38 but were devoid of DNA methylation in the
entire region between these two CpG islands (Fig. 1 B, bot-
tom). Bisulfite sequencing results indicated that CpG island 17
was only sparsely methylated in ~50% of the alleles analyzed in
H929 (Fig. 1 A). Nonetheless, this low density of methylated
CpG in the region was detected as significant enrichment by
MIR A-chip (Fig. 1 B, bottom), indicating a high sensitivity of
this assay as previously reported (Rauch and Pfeifer, 2005).
The MIRA-chip data were validated by quantitative PCR
(Fig. S1 C), which demonstrated a strong correlation between
the two detection methods. The hypermethylated status at the
BCL6 intronic region in Raji cells suggested a possible role of
DNA methylation in driving transcription of the gene.

Positive regulation of BCL6 transcription by DNA methylation
To ascertain whether DNA methylation might influence expres-
sion of BCL6 in this system, cells were treated with the DNA
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Figure 1. Cell type-specific DNA methylation status at BCL6 intronic
region. (A) The diagram depicts the genomic organization of the human
BCL6 locus. Indicated are the two transcription start sites (arrows), the four
CpG islands (17, 32, 27, and 38), and the exons (black rectangles). Below the
cartoon, the results of genomic bisulfite sequencing are presented. Each line
of circles indicates an individual clone sequenced in the analysis after bisul-
fite treatment and PCR. Open circles indicate CpG sites at which no DNA
methylation is detected. Blackened circles indicate CpG sites which are
methylated. Data shown is representative of the results of three independent
biological replicates. (B) MIRA-chip analysis of Raji (top) and H929 (bottom)
across the 5" end of the BCL6 locus. Each vertical line represents the mean
normalized log, ratio of enriched/input probe signal from two replicate sam-
ples, corresponding to the genomic location on chromosome 3 at the BCL6
locus (UCSC genome browser HG18) as listed on the x axis. Blue and yellow
colors represent methylated and unmethylated regions, respectively.

methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-Aza-C).
Treatment of multiple Burkitt lymphoma and DLBCL cell lines
with this drug led to a marked alteration in steady-state levels of
BCL6 mRNA, as assessed by quantitative RT-PCR (Fig. 2 A
and Fig. S2 E). Inhibiting DNA methyltransferases led to three-
to fivefold reductions in mRINA levels, which is consistent with
a positive role for this epigenetic mark in regulation of the locus.
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Genomic bisulfite sequencing indicated that the transcriptional
changes observed here were accompanied by alterations in the
DNA methylation profiles at the intronic CpG islands (Fig. S2 A).
Furthermore, consistent with the known role of BCL6 in speci-
fying the identity of GC B lymphocytes (Kusam and Dent,
2007), treatment of Raji cells with 5-Aza-C led to increased
steady-state levels of plasma cell-specific transcripts including
PRDMT1 and IRF4 (Fig. 2 B). In contrast to Raji, treatment with
5-Aza-C in H929 did not result in changes in BCL6 expression
or up-regulation of IRF4 and PRDM!1 transcripts (Fig. S2 B).

It has been reported that genotoxic stress can lead to degra-
dation of BCL6 protein (Phan et al., 2007), and 5-Aza-C treat-
ment has been linked to induction of DNA damage (D’Incalci
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et al., 1985). To determine whether 5-Aza-C—mediated BCL6
down-regulation is not a result of DNA damage, Raji cells were
treated with high (1 uM) and low (0.1 uM) nondamaging dos-
ages of 5-Aza-C. Both concentrations of 5-Aza-C resulted in
down-regulation of BCL6 transcript and protein level after 24 h
of treatment (Figs. S2, C and D). Phosphorylated histone
H2AX (YH2AX), a sensitive molecular marker of DNA damage
(Rogakou et al., 1998), did not accumulate after treatment of
Raji with either dosage of 5-Aza-C (Fig. S2 D). In contrast, Rajt
cells treated with etoposide, a topoisomerase II inhibitor which
induces DNA damage, readily up-regulated yYH2AX phosphory-
lation (Fig. S2 D). Treatment of an independent cell line, the
DLBCL cell line Su-DHL-6, with both high and low doses of
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Figure 2. Positive regulation of BCL6 transcription by DNA methylation. (A) The Raji, HsSultan, and EB1 Burkitt lymphoma cell lines were treated with
5-Aza-C for 24 h, and BCL6 and actin mRNA abundance was determined by quantitative RT-PCR. The bar graph depicts the BCL6 to actin ratio from three
independent replicates. Error bars indicate standard deviation. The value from untreated cells for each replicate was arbitrarily set to 1. (B) Raji cells were treated
with 5-Aza-C for the indicated times. BCL6, IRF4, and PRDM T mRNA abundance was determined by quantitative RT-PCR. The bar graphs depict the ratio of each
transcript to GAPDH mRNA, with the value from untreated cells (day 0) arbitrarily set to 1. Data represent the mean of three independent replicates. Error bars indi-
cate standard deviation. (C) The diagram depicts the basic features of the BCL6 locus 5" end along with the approximate locations of primer sets used to analyze

the chromatin immunoprecipitated with the indicated antibodies in each panel. Each ChIP primer was analyzed by quantitative PCR with the graph depicting the
percentage of input chromatin recovered in the immunoprecipitation for each primer set. The data represent the mean of two independent biological replicates.
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5-Aza-C resulted in reduction of BCL6 transcript level but only
after 3 d of incubation in the presence of the drug (Fig. S2 E).
We determined that this delayed BCL6 down-regulation was
the result of a slower growth rate in Su-DHL-6 cells compared
with Raji (Fig. S2 F). Collectively, these results indicate that the
observed down-regulation of BCL6 was a consequence of DNA
methyltransferase inhibition that is dependent on active cell divi-
sion and not a consequence of DNA damage.

To further investigate whether the intronic DNA methyl-
ation directly regulates BCL6 transcription, we first examined
several histone modifications that correlate with promoter
chromatin accessibility or active transcription status across the
BCL6 gene locus by chromatin immunoprecipitation (ChIP).
PCR amplicons were designed to tile the human BCL6 locus
at ~500-bp intervals beginning upstream of the 5’ transcrip-
tion start site and extending 3" of the alternate transcription
start site, spanning a genomic region of 15 kb (Fig. 2 C). First,
the methylation status of histone H3 lysine (K) 4 and the acet-
ylation status of histone H3 were analyzed across the 5" end of
the locus. The presence of both histone modifications at gene
promoters is associated with genes either actively being tran-
scribed or with the potential to be transcribed (Barski et al.,
2007; Birney et al., 2007). Enrichment of both marks was ob-
served just downstream of the transcription start site at the ac-
tive locus in Raji (Fig. 2 C, top left and center), whereas the
total histone H3 level remained constant throughout the 5’
end of the transcription unit (Fig. S2 G). At the inactive locus
in H929, peaks for both marks were also observed near the
transcription start site but at a lesser magnitude (Fig. 2 C, top
left and center). In addition, a second peak of trimethyl H3K4
was observed in a region coincident with the differentially
methylated CpG islands CpG 32 and CpG 27 (Fig. 2 C, top
left) only in H929. These patterns of histone modification at
the BCL6 locus are very consistent with the patterns observed
in the human genome (Birney et al., 2007; Guenther et al.,
2007; Heintzman et al., 2007)—notably, the presence of a
sharp peak of active chromatin marks just downstream of the
transcription start site of an actively transcribed gene.

The presence of the same marks—trimethyl H3K4 and
acetyl H3—at the inactive locus in H929 suggests that the core
promoter may be poised to fire in plasma cells despite the lack
of detectable transcripts. However, despite the active chroma-
tin conformation at the promoter of BCL6 in plasma cells, we
did not observe enrichment of RNA polymerase II (Fig. 2 C,
top right) or histone modifications that correlate with active
transcription, such as trimethyl H3K36, dimethyl H3K79, and
trimethyl H3K79 (Fig. 2 C, bottom), at the promoter or along
the BCL6 gene in H929. In contrast, enrichment of these
marks was readily detected throughout the transcription unit of
BCL6 in Raji (Fig. 2 C, bottom). These results are consistent
with the transcription status of BCL6 in the two cell types.

To further confirm a role of DNA methylation in directly
regulating transcription of BCL6, we treated Raji with DNA
methylation inhibitor 5-Aza-C for 72 h and assessed altera-
tions in the histone modifications that correlate with tran-
scriptional elongation. Although the level of trimethyl H3K4
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sensitive sites and their locations are summarized in A. Marker positions were
measured from ethidium-stained gel before transfer. Data shown is represen-
tative of results from at least three independent experiments.
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did not decrease (Fig. S2 H), treatment of Raji with DNA
methylation inhibitors led to dramatic reductions in the level
and extent of all three elongation-associated modifications
(trimethyl H3K36, dimethyl H3K79, and trimethyl H3K79),
which is consistent with the loss of transcript (Fig. 2 C, bot-
tom). These results strongly indicate that the presence of DNA
methylation directly promotes the transcription of the BCL6
gene in lymphoma cell lines.

Presence of DNase | hypersensitive sites within CpG islands
32 and 27 in the absence of DNA methylation

One of the proposed regulatory mechanisms ascribed to DNA
methylation is to prevent the binding of transcription factors
(Bird and Wolffe, 1999). DNase I hypersensitive site analysis
was used to identify putative transcription factor binding sites
within the human BCL6 locus in Raji and H929. We observed
a complicated pattern of nuclease hypersensitivity at the locus
that differed with cell type (Fig. 3). At the extreme 5’ end of the
locus, we observed a hypersensitive site located ~2 kb upstream
of the transcription start site that was present in both Raji and
H929 (site C1; Fig. 3 A, and B). We also identified a second
constitutive hypersensitive site (site C2; Fig. 3, A and B) which
mapped to the region between CpG islands 32 and 27 in the
first intron. A series of additional hypersensitive sites at the 5’
end of the locus differed in intensity between the two cell types.
Two sites (sites B1 and B2; Fig. 3, A and B) were present in
both cell types but were more pronounced in Raji. Two other
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sites (sites P1 and P2; Fig. 3, A and B), coinciding with CpG
islands 32 and 27, respectively, were apparent only in H929.
Because sites P1 and P2 are not present in Raji where DNA
methylation is detected, these sites could represent the presence
of methylation-sensitive DNA binding factors.

The remainder of the coding sequence was also analyzed. No
hypersensitivity was observed in genomic DNA corresponding
to a HindIII fragment covering the 3’ end of intron 1 through
intron 4 (unpublished data). In contrast, the HindIII fragment
covering a region from intron 4 to the 3" UTR (Fig. S3, top) ex-
hibited two diffuse hypersensitive regions that mapped toward
the 3" end of the transcription unit (sites C3 and C4; Fig. S3 A).
DNase I analysis of the far 3" end of the locus was also performed
(Fig. S3, top). Two constitutive hypersensitive sites were ob-
served (sites C5 and C6; Fig. S3 B). Thus, the human BCL6
locus presents a complex pattern of nuclease hypersensitivity
marked by constitutive sites flanking the locus, cell type-specific
sites within the 5" end of the transcription unit, and additional
constitutive sites within the 3" end of the transcription unit.

CTCF binding at BCL6 negatively regulates its transcription
The presence of DNA methylation-sensitive DNase I hypersen-
sitivity within the first intron of BCL6 was somewhat reminis-
cent of the situation at the mammalian H19/IGF2 locus, where
CTCEF 1s present to block enhancer activity at this imprinted
locus (Bell and Felsenfeld, 2000; Hark et al., 2000). The pres-
ence of putative binding sites for CTCF at BCL6 was therefore
analyzed in silico. ChIP data from a whole-genome analysis of
CTCEF binding (Kim et al., 2007) was used to identify putative
CTCF sites in those loci. Using a motif discovery tool (Li, 2009),
~11,000 CTCEF binding sites (Fig. S4 B, motif logo) were iden-
tified in the 13721 ChIP-chip CTCEF loci, from which a motif
model (position weight matrix) was generated (Fig. S4 B). The
model was subsequently used to scan for putative CTCF binding
sites in the genomic DNA at BCL6. High score sites that are also
conserved across a series of mammalian species are reported as
putative CTCEF binding sites. Two putative binding sites were
observed at a region coincident with the 5" constitutive hyper-
sensitive site C1 (Fig. 4 A and Fig. S4 C). An additional predicted
CTCEF site colocalized with the 3" constitutive hypersensitive
sites C5/C6 (Fig. 4 A and Fig. S4 D). Multiple putative CTCF
elements were found within intron 1. Most putative CTCFE
binding sites within the first intron of human BCL6 contain at
least one CpG dinucleotide, presenting the opportunity for DNA
methylation to modulate the interaction of CTCF with these re-
gions of the genome (Fig. 4 A and Fig. S5). In general, sequence
conservation across mammals is higher at the putative CTCF sites
flanking the locus than at the individual intronic elements, im-
plying a strict evolutionary requirement for maintenance of DNA
sequence at those sites (Fig. S4, C and D; and Fig. S5).
Whether these putative sites were bound by CTCF was
verified in two independent ways. First, these regions were ana-
lyzed in two publicly available datasets of CTCEF localization in
the human genome (Barski et al., 2007; Kim et al., 2007) assem-
bled using different analysis techniques. In all cases, the putative
CTCEF binding sites identified in our analysis, including the
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intronic sites coinciding with the differentially methylated CpG
islands, were sites of enrichment in these datasets. Importantly,
cell types used for these analyses did not express BCL6. In addi-
tion, the occupancy of these sites by CTCF was determined ex-
perimentally by ChIP in our system (Fig. 4, A and B). In both
Raji and H929, modest peaks of CTCF enrichment were ob-
served at genomic regions coincident with the constitutive hy-
persensitive sites (sites C1 [primer set C|] and C5/C6 [primer sets
EE and FF]) flanking the locus. In H929, but not in Raji, we ob-
served robust enrichment for CTCF across a region of intron 1
coinciding with the putative CTCF binding sites and with the
differentially methylated CpG islands. Enrichment was highest
at primer sets L and M which correspond roughly to predicted
CTCEF intronic sites (sites 3—6; Fig. 4, A and B). Another peak of
substantial enrichment in the first intron (primer set O) correlated
with an additional putative CTCEF site (site 7; Fig. 4, A and B).
As a test of our model of DNA methylation-regulated binding
of CTCF at BCL6, we examined CTCF occupancy of these
same sites in Raji cells treated with 5-Aza-C. We observed ele-
vated CTCF occupancy at intronic sites 3—6 after 5-Aza-C
treatment (Fig. 4 B), further demonstrating that DNA methyla-
tion serves as a regulator of CTCF binding at these sites.

The functional relevance to BCL6 expression of CTCF
binding within the intronic region was probed by manipulation
of CTCEF expression levels. Lentiviral particles were prepared to
deliver a short hairpin RINA designed to target CTCF and in-
troduced into H929. After infection, cells were selected briefly
for integration and live cells were purified for transcript analysis.
RINA analysis indicated that depletion of CTCF transcript levels
was accompanied by a corresponding increase in levels of BCL6
mRNA (Fig. 4 C). CTCEF protein depletion in the presence of
short hairpin (sh) RINA was also confirmed (Fig. S4 A). The
level of BCL6 mRNA detected in H929 in the absence of
CTCEF is comparable to the level of BCL6 mRNA in B cell lines
(Fig. 2, A and B), strongly implying that CTCF plays an active
role in control of BCL6 expression. As BCL6 encodes a master
regulator of the transcriptional program, we analyzed additional
transcripts to ascertain whether CTCF depletion elicited altera-
tions consistent with the action of BCL6. Transcript levels diag-
nostic (within the cell lines used) for GC identity including
MTA3 and AID were elevated (Fig. 4 C). In contrast, transcript
levels for multiple markers of the plasma cell transcriptional pro-
gram, including IRF4, PRDM1, and XBP1, decreased after de-
pletion of CTCEF. These data are consistent with CTCF playing
a key regulatory role at the BCL6 locus and, by extension, in the
elaboration of cell type—specific transcription during the B cell to
plasma cell transition.

Elevated DNA methylation at BCL6 intronic CTCF binding
site in primary lymphoma cells

Next, we asked whether changes in intronic BCL6 DNA
methylation status also occur in a similar fashion during the tran-
sition from GC B cell to plasma cell in an immune response.
We performed genomic bisulfite sequencing analysis on
BCL6 intronic CpG islands in primary human GC B cells and
plasma cells isolated from tonsil. Little DNA methylation was
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Figure 4. CTCF binding controls BCL6 expression. (A) The diagram depicts the genomic features of the BCL6 locus, including the locations of hypersensitive
sites and the PCR amplicons used in the ChIP analysis. (B) The graph (left) depicts a representative example of CTCF ChIP at the BCL6 locus in Raji and H929. CTCF
enrichment at intronic CTCF sites was also analyzed in Raji after 5-Aza-C treatment for 5 d (right). The graph represents mean enrichment levels from two ex-
periments for each treatment condition. Data are presented as the percentage of input for each primer set, determined by quantitative PCR with comparison

of immunoprecipitated DNA with a standard curve of DNA purified from input chromatin for each sample. (C) mRNA abundance in H929 cells treated with CTCF
shRNA or empty vector was determined by quantitative RT-PCR. Data represent the mean of three independent replicates. Error bars indicate standard deviation.

detected at the intronic CpG islands in these cells (Fig. S6 A),
indicating that the DNA methylation events described in this
paper are likely to be either cancer or cell line associated.
Accordingly, we investigated whether hypermethyl-
ation in BCL6 intronic region also occurs in primary lym-
phoma cells orifitisa cell line—specific phenomenon. Down-
regulation of BCL6 expression can promote cell cycle arrest
(Phan et al., 2005) and can reactivate the tumor suppressor gene
p53 (Phan and Dalla-Favera, 2004); therefore, it is likely that
lymphomas adapt regulatory mechanisms to ensure high ex-
pression of BCL6. To address this question, we compared the
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DNA methylation status at intronic CTCEF sites within the
BCL6 locus in a panel of B cell lymphoma (DLBCL) and
plasma cell myeloma samples, which express high and low
levels of BCL6, respectively (Table S2, clinical data for lym-
phoma samples). The BCL6 transcript level in the two cancer
cell types was determined by quantitative RT-PCR (Fig. 5 A).
The expression level of BCL6 in lymphoma samples was
lower than that of Raji (Fig. 5 A), likely as a result of the het-
erogeneity of lymphoma samples (comprising both tumor
and normal cell types). Despite this heterogeneity, we still
detected significantly higher levels of BCL6 transcripts in
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lymphomas compared with myelomas (as determined by a
one-tailed Student’s f test where P = 0.05; Fig. 5 A).

Methylation-specific PCR (MSP) was used to detect DNA
methylation in the same tumor samples. We tested for the meth-
ylation status of CpGs at intronic CTCF sites 3, 4, and 5, where
CTCEF occupancy is highest by ChIP in H929 plasma cells
(Fig. 4). Although a gain of CpG methylation signal at intronic
site 5 was not detected (not depicted), we observed significantly
higher signals of DNA methylation along the tandem CTCEF
sites 3 and 4 in lymphomas compared with the myelomas (as de-
termined by a one-tailed Student’s ¢ test where P =5.53 X 107¢;
Fig. 5 B). Differential methylation status at the CpG dinucleo-
tides at CTCF sites 3 and 4 was also observed in Raji and H929
cells (Fig. S6 B and Fig. 1 B). Of the 11 lymphoma samples ana-
lyzed, only one sample had detectable level of translocation at
the BCL6 locus (Fig. S6 C). This lymphoma sample had one of
the lowest methylation signals at CTCF sites 3 and 4 (Fig. S6 D).
This result supports the hypothesis that elevated DNA methyla-
tion is a mechanism that contributes to sustained high level tran-
scription of BCL6 selectively in lymphomas that do not have
translocation at the BCL6 locus. Altogether, the results from this
paper demonstrate an intriguing new role for DNA methylation
in transcriptional activation of an oncogene in cancer.

DISCUSSION

The role of DNA methylation in regulating gene expression has
been extensively studied in the context of cancer, where aber-
rant accumulation of this epigenetic mark is strongly associated
with transcriptional silencing of tumor suppressors (Feinberg
et al., 2002; Jones, 2003; Baylin and Ohm, 2006). The data
presented in this work provide evidence that aberrant DNA
methylation in the context of cancer cells can also promote ex-
pression of an oncogene, BCL6. Presumably, the DNA meth-
ylation events described here serve to stabilize a functional
chromatin state at the locus that excludes CTCF binding to in-
tronic regulatory DNA and confers a growth advantage.

The regulatory mechanisms controlling transcription at
the BCL6 locus are partially understood. BCL6 mRNA is
expressed at high levels in GC B cells (Cattoretti et al., 1995;
Onizuka et al., 1995) and its transcript levels are negatively
controlled via autoregulatory elements in exon 1 and the first
intron of the locus, sites of frequent mutation in lymphoma
(Wang et al., 2002). IRF4 directly represses BCL6 expression
during the transition from GC B cell to plasma cell, and by
binding to regulatory DNA at the 5" end of the transcription
unit in a region that serves as a target for mutation in cancer
(Saito et al., 2007). In this paper, we showed that gain of DNA
methylation events at CTCEF sites in the first intron of BCL6
are restricted to lymphomas and do not occur during normal
B cell differentiation in the GC reaction (Fig. S6 A) when BCL6
expression is developmentally up-regulated. Our results sug-
gest that DNA methylation acts in a cancer-specific manner
to block access of CTCEF to critical cis-acting regulatory DNA
at BCL6 in a manner analogous to mutation of the BCL6
or IRF4 binding sites. It is likely that during a normal GC reac-
tion, BCL6 transcription is activated in B lymphocytes, at least
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Figure 5. DNA methylation analysis at CTCF binding sites in BCL6
intronic region of primary tumors. (A) Quantitative RT-PCR analysis of BCL6
mRNA abundance in lymphoma and plasma cell myeloma samples. The box-
and-whisker plot illustrates the BCL6 expression level of 11 lymphoma and 8
myeloma samples as the percentage of expression level in Raji (y axis is plot-
ted in log scale). The horizontal bar within the box represents the median
(50th percentile) of the data points within each sample group, whereas the
top and the bottom of the box represent the upper and lower quartile range
(75th and 25th percentile), respectively. The whiskers represent the spread of
data points within 1.5 interquartile range, and outliers are represented as open
circles. (B) MSP analysis of CpGs at CTCF sites 3 and 4 in BCL6 intronic region.
Intensities of 32P signal in the Southern blot of MSP and the corresponding
unmethylated-specific PCR (USP) were quantified and represented as MSP/
USP intensity ratio. MSP/USP primer locations and the CpGs being analyzed
are shown in Fig. S6 B. The box-and-whisker plot compares the MSP/USP
intensity ratio of the same lymphoma and myeloma samples analyzed in A.

in part, through CTCF exclusion in a DNA methylation-
independent mechanism mediated through extracellular signal-
ing events (Lefevre et al., 2008). The gain of DNA methylation
in B cell lymphomas may result from selective pressure to sta-
bly maintain BCL6 expression outside the GC microenviron-
ment in the absence of the necessary extracellular stimuli.

We have observed differential binding of CTCF to con-
served sites located in close proximity to, or contained within,
the differentially methylated regions of intron 1. Binding of
CTCEF to these sites in plasma cells, but not in B cells, could
lead to blockade of an enhancer element (Fig. S7 A), precisely
as occurs at the imprinted H19/IGF2 locus (Bell and Felsenfeld,
2000; Hark et al., 2000). Alternatively, the presence of CTCF
in the intronic BCL6 region can directly block transcription of
the gene (Fig. S7 B) as previously described (Lobanenkov
et al., 1990; Filippova et al., 1996). To our knowledge, this is
the first example of differentially methylated CTCF binding
sites located within the transcription unit they are proposed
to regulate. This model of CTCF-regulated transcription is
bolstered by depletion of CTCF by RNA interference in
plasma cell lines, which leads to increased expression of BCL6
(Fig. 4 C) and alterations to the cellular transcriptional pro-
gram consistent with a change in cell identity (Fig. 4 C).

Although this model explains the differential binding of
CTCEF to the BCL6 locus in these two cell types, it does not
address the reason why BCL6 is regulated by such a complicated
mechanism. The biology of genomic imprinting is embedded
within evolutionary selective pressures that are not entirely
understood (Tilghman, 1999; Reik and Lewis, 2005). That
genes subject to complex patterns of expression, like imprinted
genes, should have correspondingly complicated regulatory

DNA methylation relieves BCL6 silencing | Lai et al.

920z Areniged 60 uo 1senb Aq 4pd¥0Z0010Z Wel/L£6.v.1/6£61/6/L0Z/Ppd-8lonie/wal/Bio sseidni//:dpy woy papeojumoq


http://www.jem.org/cgi/content/full/jem.20100204/DC1
http://www.jem.org/cgi/content/full/jem.20100204/DC1

mechanisms is, perhaps, not surprising. BCL6, in contrast, pres-
ents an expression pattern reminiscent of many developmentally
regulated genes. Transcription from the locus is maintained in a
repressed state through much of development. There is a burst
of activity in the developmental stage corresponding to the GC
reaction, and then the gene is silenced concomitant with termi-
nal differentiation to a plasma cell (Kusam and Dent, 2007). This
pattern, OFF-ON-OFF, is recapitulated at many genes in mul-
ticellular organisms. However, two aspects of BCL6 biology
suggest unique requirements for maintenance of a repressed state
in most cell types. First, BCL6 functions as an oncogenic tran-
scription factor (Melnick, 2005; Staudt and Dave, 2005). Sec-
ond, high level expression of BCL6 leads to down-regulation of
a set of genes integral to maintenance of genome integrity (Phan
and Dalla-Favera, 2004; Ranuncolo et al., 2007). Sustained ex-
pression is sufficient to trigger lymphomagenesis, and experi-
mental models have elegantly demonstrated this very point
(Cattoretti et al., 2005). That the primary promoter used in B
lymphocytes should be insulated by the action of CTCF in cells
not participating in the GC reaction may be reflective of the in-
herent danger of expressing BCL6 protein at high levels.

The data presented in this work are consistent with a surpris-
ing role for DNA methylation in transcriptional regulation of an
oncogene in cancer. Mechanistic predictions derived from these
results suggest that, contrary to predominant models, DNA meth-
ylation likely contributes to transcriptional regulation in more
than one capacity. The fundamental outcome of DNA methyl-
transferase activity is to alter the chemical properties and informa-
tion content of the DNA major groove. We predict that evolution
has used this information content to regulate multiple aspects of
chromosomal biology, including transcriptional activation.

MATERIALS AND METHODS

Cell lines

All cell lines used in this work were obtained from American Type Culture
Collection and were maintained in RPMI 1640 medium (Invitrogen) with
10% FBS.

Nucleic acid extraction and manipulation

Total RNA was isolated using TRIzol reagent (Invitrogen) according to the
manufacturer’s protocol. Genomic DNA was extracted as previously described
(Laird et al., 1991). cDNA was synthesized as previously described (Fujita et al.,
2004). For genomic bisulfite sequencing, extracted DNA was treated with so-
dium bisulfite as previously described (Frommer et al., 1992). Primers used for
RT-PCR and amplification of bisulfite converted DNA are listed in Table S1.

RNA analysis

For Northern analysis, total RINA was electrophoresed in agarose gels, trans-
ferred to Hybond-N* membrane (GE Healthcare) and hybridized using
ExpressHyb hybridization solution (Takara Bio Inc.) according to the man-
ufacturer’s protocol. The probe was labeled with a-[*P]dCTP using Prime-It
RmT Random Primer Labeling kit (Agilent Technologies). The radiola-
beled signals were detected using phosphor screen (GE Healthcare) and
phosphor imager Storm 860 (Molecular Dynamics). Template DNA for ran-
dom priming was prepared from a BCL6 cDNA clone (Fujita et al., 2004).
The primers used are listed in Table S1.

MIRA-chip analysis
Genomic DNA purified from Raji and H929 were sonicated using a Bioruptor
(Diagenode) to generate 200-500-bp fragments. Methylated CpG DNA
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fragments were enriched from 200 ng of sonicated DNA using the MethylCol-
lector Ultra kit (Active Motif) according to the manufacturer’s protocol. Input
and methylated CpG DNA fragments were amplified (WGA2; Sigma-Aldrich),
labeled with Cy3 and Cy5 random monomers (TriLink Biotechnologies), re-
spectively, and hybridized onto a NimbleGen 2.1M Deluxe Human Promoter
Array (Roche). Probe labeling, microarray hybridization, and processing were
performed according to NimbleGen’s protocol. The microarray slides were
scanned using a DNA microarray scanner (G2565BA; Agilent Technologies).
Images were processed using the NimbleScan software. All microarray data files
were deposited into GEO under accession no. GSE22884.

Data normalization. A two-step normalization approach was used, where
the first step is designed to correct for GC bias and dye bias within a chip (in-
trachip correction) and the second step corrects for variations across chips (in-
terchip correction). The first step was within-chip normalization. First, all
probes were binned according to their GC content. The GC content was com-
puted as a ratio of C and G nucleotides to the total number of nucleotides in the
probe sequence. The overall variability in GC content values was used to com-
pute bin width according to zero-stage rule described in Wand (1997). These
bin widths are proven to be approximate L2 optimal; i.e., they minimize mean
integrated square error. The bins with fewer probes were then merged so that
each bin contains at least 500 probes. Within each bin, Lowess regression
(Cleveland et al., 1988; Hastie and Tibshirani, 1990) was used to predict log-
transformed cy5 values as a smooth function of log-transformed cy3 values. The
scaled (median of absolute residuals is used for scaling) difference between ob-
served and predicted log(cy5) values were used as normalized signal.

The second step was between-chip normalization. Once the data were
corrected for dye and GC bias as described in the first step, quantile normal-
ization was used to correct for between sample variations. The resulting data-
set was referred to as normalized data and was used for further investigations.

Identification of methylation sites across the genome. A variant of the
ACME algorithm (Scacheri et al., 2006) was used to identify peak regions.
This algorithm depends on three user-specified tuning parameters: window
size (w), signal threshold (s), and p-value threshold (p). Any probes in the
data that are above threshold (s) are considered positive probes.

Enrichment p-value is computed using hyper geometric distribution
by looking at observed number of positive probes (probes with signal > )
within a sliding window of size w centered on each probe as follows:

=2 J02)C)

where N denotes total number of probes, K denotes total number of
probes with signal > s (signal threshold defaults to 10th percentile), n denotes
number of probes inside the sliding window of size w (defaults to 500), and
x denotes number of probes inside the sliding window with signal > s.

Next, the binding sites are identified as runs of positive enrichment
p-values, i.e., below threshold (default is p(x) < p). Each positive run of this
sequence is considered to be a binding site. We do not correct the enrichment
p-values for multiple comparisons, as they are only used as a means of finding
regions of interest in the genome rather than a strict statistical significance
level. The MIRA-chip data described in this paper have been deposited at
the GEO database (GSE22884).

5-Aza-C and etoposide treatment

Cells were suspended at a density of 0.2 X 10° cell/ml and grown in normal
culture media for 24 h. Cells were treated by addition of 0.1 or 1 pM 5-Sza-C
(Sigma-Aldrich) for 24-72 h. For etoposide treatment in Raji, cells were
treated with either 5 pM etoposide (Sigma-Aldrich) or equal volume of
DMSO as vehicle control for 24 h. To analyze Bcl6 and phosphorylated
H2A.X protein level, cells were harvested and lysed in 1 M Tris, pH 6.8,
with 8 M urea and 1% SDS for SDS-PAGE. Western blotting was per-
formed using anti-Bel6 (Santa Cruz Biotechnology, Inc.; sc-858), anti—y-
H2AX (Millipore; 05-636), and anti-actin (Millipore; MAB1501).
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ChIP assay

For histone modifications and RNA Polymerase II, 107 cells were treated with
1% formaldehyde in PBS and incubated 10 min at room temperature. For
CTCEF, cells were incubated 15 min at room temperature. In all cases, cross-
linking was terminated by addition of glycine. The cells were spun down and
rinsed in ice-cold PBS three times. The cell lysates were sonicated using a
Bioruptor (Diagenode) to generate 300-500 bp (histone modification map-
ping, RNA polymerase II) or 500—4,000-bp DNA fragments (CTCF map-
ping) for immunoprecipitation. The following antibodies were used for ChIP:
total H3 (Millipore), acetylated H3 (Millipore), trimethyl K4 (Millipore),
CTCEF (Bethyl Laboratories, Inc.), RNA polymerase II (Santa Cruz Biotech-
nology, Inc.), trimethyl K36 (Abcam), dimethyl K79 (Abcam), and trimethyl
K79 (Abcam). Primer sets used for ChIP experiments are listed in Table S1.

DNase | hypersensitivity

Nuclei were extracted from 2 X 10% cells using a sucrose pad and divided into
600-ug DNA aliquots. CaCl, and MgCl, were added to the aliquots in a final
concentration of 1 mM. The samples were treated with the following amounts
of DNase I: 0, 0.025, 0.05, 0.1, and 0.2 pg for 9 min at 37°C. The DNase I
digestion was stopped by using 300 pl of the stop solution (20 mM Tris,
pH 7.5, 0.6 M NaCl, 10 mM EDTA, 1% SDS, and 500 pg/ml proteinase K)
at 55°C over night. The digested DNA was phenol/chloroform extracted and
precipitated with isopropanol. DNA pellet was dissolved in water and was
digested with the Southern blot reference enzyme. 20 pg of digested DNA
per lane was transferred to the Hybond-N* membrane (GE Healthcare).
Blots were probed with the appropriate a-[*?P]dCTP-labeled PCR product.
The primer sequences used for generating the probes are listed in Table S1.

shRNA-mediated depletion of CTCF

pLKO.1-shCTCF (TRCN0000014551) and pLKO.1 empty lentiviral vectors
were purchased from Thermo Fisher Scientific. Lentivirus was packaged in
293T cells by transfecting lentiviral vector along with psPAX2 and pMD2.G
plasmids. Supernatant from transfected 293 T cultures containing lentiviral parti-
cles were collected at 48 and 72 h after transfection. Lentivirus supernatant was
added to H929 culture for infection in the presence of 8 pg/ml polybrene
(Sigma-Aldrich). After 48 h of culture, lentiviral-infected H929 cells were se-
lected with puromyein (1 pg/ml) for an additional 3 d. Dead cells were excluded
from analyses by FACS sorting of cells that do not stain positively with propid-
ium iodide. To evaluate CTCF protein level in shCTCF knockdown cells,
shCTCF or empty lentiviral vectors were transfected into 293T cells for 3 d.
Cells were harvested and lysed with 1 M Tris, pH 6.8, with 8 M urea and 1%
SDS for SDS-PAGE. Western blot was performed using anti-CTCF (Bethyl
Laboratories, Inc.; A300-544A) and anti-actin (Millipore; MAB1501).

Analysis of primary tumor samples

Cryopreserved lymphoma and myeloma samples were obtained from the
Department of Pathology and the Hematology Tissue Acquisition and Bank-
ing Service at the Winship Cancer Institute at Emory University supported
by the Georgia Cancer Coalition. This study was approved by the Emory
University Institutional Review Board Biomedical Committee.

Genomic DNA and total RNA were copurified using the DNA/RNA
Isolation kit (QIAGEN). First-strand cDNA synthesis and quantitative RT-
PCR of BCL6 were performed as described in RNA analysis. The expres-
sion level of BCL6 was normalized to GAPDH housekeeping gene level
and is represented as a percentage to the expression level of Raji. To ana-
lyze DNA methylation at the BCL6 locus, genomic DNA from tumor
samples were bisulfite treated using the EZ DNA Methylation Gold kit
(Zymo Research). After 25 cycles of PCR, amplified products were re-
solved on an agarose gel and transferred onto Hybond-N* membrane (GE
Healthcare) for Southern blot analysis as described above. PCR product
amplified from bisulfite-treated Raji DNA was radiolabeled and used as
probe for Southern blot hybridization. The ImageQuant software was used
to quantify the intensities of the DNA bands. Comparison of relative DNA
methylation levels in lymphomas and myelomas was performed by calculating
the ratio of MSP/USP band intensity from each individual tumor sample.
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Primers used for MSP/USP analyses are listed in Table S1. Analysis of BCL6
translocation status was performed according to the method described
by Lossos et al. (2003).

Isolation of tonsillar B cells

Fresh human tonsil was obtained from the Emory University Pathology ser-
vice. Appropriate institutional (IRB) approvals were obtained. Primary GC
B cells and plasma cells were purified as previously described (Cattoretti
et al., 2006) with modifications. Tonsil specimens were processed into single
cell suspension in PBS, followed by mononuclear cell isolation using a
Ficoll-Hypaque gradient. Tonsillar mononuclear cells were washed twice with
PBS and resuspended in PBS with 2% FBS and 0.02% NaN;. T cells were
depleted by incubating sample with purified mouse anti-human CD4 (clone
OKT4; eBioscience) and anti-CD8 (clone OKTS8; eBioscience) antibodies,
followed by sheep anti-mouse IgG Dynal beads (Invitrogen). CD4* and
CD8" T cells were then removed by magnetic separation. T cell-depleted
tonsillar mononuclear cells were subsequently stained with the following
monoclonal antibodies for FACS purification: PE-IgD (BD), PECy7-CD38
(clone HIT2; eBioscience), and Pacific blue—CD20 (clone 2H7; eBiosci-
ence). Cell sortings were performed using a FACSVantage (BD) with Digital
Option. GC B cells were defined as CD20"CD38*IgD ™ cells, and plasma
cells were defined as CD20°CD38"IgD ™ cells.

Online supplemental material

Fig. S1 shows BCL6 mRINA transcript analysis in cell lines and validation
of MIRA-chip data by PCR.. Fig. S2 shows effects of 5-Aza-C treatment in
BCL6 expressions in cell lines. Fig. S3 shows additional DNase I hypersen-
sitivity sites identified at 3" end of BCL6. Fig. S4 shows depletion of CTCF
protein in shCTCF transfected cells and predicted CTCF binding sites within
BCL6 locus. Fig. S5 shows intronic CTCF binding sites at BCL6. Fig. S6
shows DNA methylation analysis at CTCF binding sites and BCL6 trans-
location status in primary lymphoma cells. Fig. S7 shows a possible mecha-
nism of CTCF-mediated transcriptional silencing of BCL6. Table S1 shows
primer sequences used for all experiments. Table S2 shows clinical data for
primary lymphoma samples used in this study. Online supplemental material
is available at http://www . jem.org/cgi/content/full/jem.20100204/DC1.
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