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PI3 kinase signalling blocks Foxp3 expression
by sequestering Foxo factors

Matthias Merkenschlager and Harald von Boehmer

Expression of the requlatory T (T reg) cell-associated transcription factor
Foxp3 can be induced by signals from the T cell receptor (TCR), interleukin-2
(IL-2), and transforming growth factor (TGF)-@. These signals are integrated by
a network involving phosphatidylinositol 3 kinase (PI3K), protein kinase B (PKB;
here referred to as Akt), and the mammalian target of rapamycin (mTOR). New
studies show that the Foxo proteins Foxo1 and Foxo3a, which are inactivated
by Akt, drive Foxp3 expression. These studies therefore explain the negative
regulation of Foxp3 by PI3K signaling, and add Foxo proteins to the growing
list of nuclear factors capable of modulating Foxp3 expression.

The immune system affords protection
from environmental pathogens, but this
service comes at a price: uncontrolled
responses can damage the host by caus-
ing immune pathology, and responses to
self-antigens can result in autoimmunity.
T reg cells are therefore essential for a
balanced immune system. The fork-
head—winged helix transcription factor
Foxp3 coordinates the T reg cell gene
expression program, and its absence
causes death by lymphoproliferation and
multiorgan autoimmunity in humans
with immunodysregulation, polyendo-
crinopathy, and enteropathy X-linked
syndrome and in Foxp3-deficient mice
(Brunkow et al., 2001; Fontenot et al.,
2003; Khattri et al., 2003).
Intrathymically induced T reg (it-
Treg) cells are thought to arise by a two-
step process, in which TCR signaling
induces competence for Foxp3 expres-
sion and the expression of the high-
affinity IL-2 receptor-a chain (CD25).
IL-2, or other cytokines that activate
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STATS, then induce Foxp3 expression
(Burchill etal., 2008; Lio and Hsieh,
2008; Wirnsberger etal., 2009). The
contributions of TGF- to itTreg cell
differentiation (Liu etal., 2008) and
to the maintenance of functional T reg
cells in peripheral lymphoid organs
(Marie et al., 2005; Li et al., 2006; Pesu
et al., 2008) remain to be fully elucidated.
Runx transcription factors are involved
in the induction and in the maintenance
of Foxp3 expression (Bruno et al., 2009;
Kitoh et al., 2009; Klunker et al., 2009;
Rudra etal,, 2009), and microRINAs
contribute to both the development
(Cobb et al., 2006) and the maintenance
of T reg cells (Chong et al., 2008; Liston
et al., 2008; Zhou et al., 2008).
Extrathymically induced T reg
(etTreg) cells can be formed in periph-
eral lymphoid organs (Apostolou and
von Boehmer, 2004; Kretschmer et al.,
2005; Curotto de Lafaille and Lafaille,
2009). Although the physiological
importance of etTreg cells is much
less certain than that of itTreg cells,
etTreg cells have been intensely studied
because they can easily be generated
in vitro and bear therapeutic promise.
Major inducers of Foxp3 expression in
peripheral T cells in vitro include TCR
signaling in the presence of TGF-f
(Chen etal., 2003), the downstream
TGF-f signal transducers Smad2 and
Smad3, and retinoic acid (Benson et al.,
2007; Coombes et al.,, 2007; Mucida
et al., 2007; Sun et al., 2007). Genetic

and pharmacological evidence indicates
that the PI3BK-Akt—-mTOR signaling
network interferes with Foxp3 induction
in vitro, as well as in vivo (Haxhinasto
et al. 2008; Sauer et al., 2008; unpub-
lished data), but the mechanisms that
link PI3BK-Akt-mTOR signaling to
Foxp3 expression have until recently
been unknown.

Conserved noncoding sequences
integrate signals influencing

Foxp3 expression

Like other metazoan genes, the expres-
sion of Foxp3 is regulated by multiple
transcription factors, by chromatin, and
by cis-regulatory elements. TCR acti-
vation induces the binding of transcrip-
tion factors such as NFAT, AP1, CREB,
and ATF to the Foxp3 promoter and
enhancer elements (Kim and Leonard,
2007; Tone et al., 2008). T reg cell
development is impaired in T cells lack-
ing signaling molecules needed for
NF-kB activation (e.g., PKC-0, Bcl10,
CARMAT1, and MALT1), and c-Rel is
a critical NF-kB component in this
context (Isomura etal, 2009; Long
et al,, 2009; Ruan et al.,, 2009; Zheng
et al., 2010).

In addition to the promoter, at least
three conserved noncoding sequence
(CNS) elements contribute to the regu-
lation of the Foxp3 locus (Kim and
Leonard, 2007; Tone etal., 2008;
Huehn et al., 2009; Zheng et al., 2010).
Because the nomenclatures used in these
studies differ, we will refer to these
elements by their position relative to
the Foxp3 transcription start site (TSS;
Fig. 1). Two CNS +2 kb and +4.5 kb

in the 5" untranslated region (referred to
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as CNS2 and 3 in Tone et al., 2008 and
Kim and Leonard, 2007, and as CNS1
and 2 in Zheng et al., 2010). A further
CNS is at +7 kb, just downstream of the
first coding exon (CNS3 in Zheng et al.,
2010). The CNS at +7 kb plays a role in
itTreg and etTreg cells, as its deletion re-
duces the frequency of T reg cells gener-
ated in the thymus and in the periphery
(Zheng etal.,, 2010). In contrast, the
CNS at +2 kb is not required for itTreg
cell differentiation. Consistent with a
role in inducible Foxp3 expression
(Zheng et al., 2010), this CNS contains
binding sites for NFAT, an effector of
TCR signaling, and for SMAD proteins,
which mediate TGF-$ signaling (Kim
and Leonard, 2007; Tone et al., 2008;
Zheng et al., 2010). Finally, the CNS at
+4.5 kb is important for the mainte-
nance, rather than the induction, of
Foxp3 expression (Zheng et al., 2010).
This CNS contains a region rich in CpG
dinucleotides, the targets for mammalian
DNA methylation, and is methylated in
conventional T cells and demethylated
in itTreg cells. Demethylation of this
region by inhibition or genetic deletion
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of methyltransferase enzymes leads to
stable Foxp3 expression (Huehn et al,
2009). Loss of DNA methylation pro-
motes the binding to the CNS at +4.5 kb
of the transcription factors CREB, ATF
(Kim and Leonard, 2007), the NF-kB
component c-Rel (Long et al., 2009),
Runx—Cbfb (Bruno et al., 2009; Rudra
etal,, 2009), and, interestingly, Foxp3
itself. Hence, the CNS at +4.5 kb could
form part of a positive feedback loop,
by which Foxp3 maintains its own expres-
sion (Zheng et al., 2010).

Foxos link PI3K-Akt-mTOR to Foxp3

Efficient Foxp3 induction requires pro-
teins that limit PI3K activity, such as
Cbl-b (Wohlfert et al., 2006) and PTEN
(Sauer et al., 2008). Conversely, consti-
tutive Akt activity interferes with Foxp3
induction (Haxhinasto et al., 2008).
mTORC2 activates Akt by phosphory-
lating it on Ser473, and loss or inhibition
of mMTORC?2 inactivates Akt and con-
sequently promotes Foxp3 induction
(Delgofte et al., 2009). Harada et al. (this
issue) and Ouyang et al. (2010) now
align Foxo1 and Foxo3a in the signaling
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Figure 1. Signals, factors, and regulatory elements that control Foxp3 expression. The figure
shows the 5" part of the mouse Foxp3 locus, as well as signals and factors known to regulate its

expression. Conservation is indicated in blue as a track from the University of California Santa Cruz

Genome Browser (http://genome.ucsc.edu; Rhead et al.,, 2010). Conserved noncoding sequences with
known functions are indicated in red. Black rectangles indicate exons (open for noncoding, filled for
coding). TSS indicates the transcription start site.

pathway connecting PI3K—Akt—=mTOR
to Foxp3.

In agreement with previous work
(Wohlfert etal., 2006), Harada etal
(2010) found that Cbl-b—deficient CD4
T cells expressed less Foxp3 in response
to TGF-B in vitro and in an adoptive
transter model in vivo. Cbl-b deficiency
was thought to impair cellular responses
to TGF-[3 by affecting Smad2 phosphory-
lation (Wohlfert et al., 2006). Surpris-
ingly, Harada et al. (2010) found intact
TGEF- responses in Cbl-b—deficient CD4
T cells. Instead, they analyzed Foxo tran-
scription factors, which have important
functions in the homeostasis of the im-
mune system (Hedrick, 2009). The ac-
tivity of Foxo proteins is regulated at
multiple levels, most strikingly by Akt-
mediated phosphorylation. Phosphoryla-
tion by Akt inactivates Foxo proteins by
excluding them from the nucleus. In this
way, Foxo localization reflects PI3K sig-
naling (Hedrick, 2009). The link to Cbl-b
is previous work showing that Cbl-b
promotes ubiquitinylation of p85, the
regulatory subunit of PI3K, and thereby
affects the activity of Akt (Fang and Liu,
2001). Consistent with increased PI3K—
Akt signaling in Cbl-b—deficient T cells,
Harada etal. (2010) noted increased
phosphorylation of Foxo3a in Cbl-b—
deficient CD4 T cells. Foxo3a-deficient
CD4 T cells showed reduced Foxp3 in-
duction in response to TGF-. In con-
trast, deletion of Foxo3a did not have
any effect on the numbers of Foxp3-
expressing itTreg cells (Harada etal.,
2010), suggesting a preferential involve-
ment of Foxo3a in etTreg cell, as op-
posed to itTreg cell differentiation. This
is consistent with observations showing
that the increased PI3K signaling that re-
sults from the loss of Cbl-b impaired in-
ducible Foxp3 expression, but did not
substantially impact itTreg cell numbers
(Wohlfert et al., 2006). However, both
inducible and itTreg differentiation
were affected by constitutively active
Akt (Haxhinasto et al., 2008).

Ouyang etal. (2010) demonstrate
that the apparently selective require-
ment of Foxo3a for Foxp3 induction in
etTreg cells is caused, at least in part, by
redundancy between Foxo3a and Foxo1.
Consistent with the finding that the loss
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of Foxo3a alone did not affect itTreg
cell development (Harada et al., 2010),
Ouyang et al. (2010) found that even a
single allele of Foxo1 (Foxo1™ ™ Foxo3a™'™)
or Foxo3a (Foxo1™'~ Foxo3a™ ™) was suffi-
cient for normal numbers of itTreg and
etTreg cells. In contrast, complete loss of
Foxol and Foxo3a in the T cell lineage
abrogated inducible Foxp3 expression.
Foxo1™'~Foxo3a~’~ CD4 T cells and
thymocytes failed to up-regulate Foxp3
expression not only in response to activa-
tion in the presence of TGF-3, but also
when subjected to 18 h of TCR signaling
followed by the removal of TCR signal,
an in vitro protocol that may be more
akin to in vivo generation of etTreg
cells (Kretschmer et al., 2005; Polansky
et al., 2008). This treatment results in a
loss of PI3K—-Akt—-mTOR activity and
the de novo expression of Foxp3 in wild-
type cells (Sauer et al., 2008).
Importantly, Ouyang et al. (2010)
found that T cell-specific deletion of
Foxol and Foxo3a also led to lower
numbers of thymic and peripheral T reg
cells at 3 wk of age. This numerical
deficit disappeared by 6 wk of age, but
the T reg cells that were generated were
not normal. Foxol™'~Foxo3a™'~ T reg
cells produced inflammatory cytokines
(interferon-y and IL-17) after activation
and showed impaired regulatory function
in vitro and in vivo. Foxo1~'~Foxo3a™ '~
splenic T reg cells showed normal
expression of Foxp3, but many T reg sig-
nature genes were deregulated (Ouyang
etal,, 2010). It remains to be seen
whether these genes are directly regu-
lated by Foxo factors, or if their expres-
sion is affected by the increased
proliferation of Foxol ' "Foxo3a™ '~
T reg cells (Ouyang et al., 2010).
Harada et al. (2010) identified Foxo
binding motifs in the Foxp3 promoter
region and used chromatin immunopre-
cipitation (ChIP) assays to demonstrate
the binding of Foxo proteins to the
Foxp3 promoter. Ouyang et al. (2010)
found several conserved Foxo consensus
sequences in the Foxp3 locus, and their
ChIP experiments indicate binding to
the promoter and to the CNS region
at +4.5 kb (referred to as CNS3 in their
paper) in T reg cells, but not in con-
ventional T cells. Reporter gene assays
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indicate the functional importance of a
site close to the Foxp3 transcription start
site (Harada et al., 2010; Ouyang et al.,
2010). In light of these data, which sug-
gest a role for Foxo proteins in the regu-
lation of Foxp3, it 1s puzzling that Foxp3
expression was apparently normal in
Foxo1™'"Foxo3a™'™ splenic T reg cells
(Ouyang et al., 2010).

Conclusions

The emerging scenario is that PI3K—
Akt-mTOR signaling prevents the in-
duction, but does not interfere with the
maintenance, of Foxp3 expression via
Foxo factors. It is therefore likely that
with Foxol and Foxo3a, Harada et al.
(2010) and Ouyang et al. (2010) have
identified a molecular link between
PI3BK-Akt—mTOR signaling and Foxp3
induction. Time will tell if there are
other negative regulators of Foxp3
expression downstream of PI3K—Akt—
mTOR signaling.

Given the promise of inducible
Foxp3 expression in the immunotherapy
of autoimmunity and immune pathol-
ogy (Daniel et al., 2009), Foxo factors,
especially the kinases that control their
activity, represent potential drug targets
(Bruno and Merkenschlager, 2008).
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