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Often described as a network of largely 
homogeneous cells distributed through-
out the body, the dendritic cell (DC) 
system is, in fact, composed of distinct 
subtypes which, like the pieces of a 
puzzle, come in distinct shapes and sizes. 
Medical research laboratories world-
wide have enthusiastically embraced the 
characterization of these subsets using 
mice as the basic experimental model. 
One result has been a wealth of infor-
mation on the specialized roles of differ-
ent subtypes of murine DC in tolerance 
and immunity (Heath and Carbone, 
2009). But how much of this detailed 
information is applicable to the human 
immune system? Until recently, the clin-
ical relevance of the various DC subsets 
had not been apparent. The subtleties 
of the murine DC system seemed 
“Lost in Translation” (Merrill, 1974). 
Four papers in this issue now make prog-
ress toward resolving this problem in 
identifying the human counterpart to 
the mouse cross-presentation specialists, 
CD8+ DCs (Bachem et al., 2010; Crozat 
et al., 2010; Jongbloed et al., 2010; 
Poulin et al., 2010).

What are we looking for?
Some aspects of the human and mouse 
DC systems already appeared to be well 
aligned. The major division into plas-
macytoid and conventional DCs, for ex-
ample, is accepted for both species. Both 
species also have at least one subset of 
migratory, conventional DCs in the 

dermis and a separate subset, known as 
Langerhans cells, in the epidermis. A no-
table discrepancy between the two sys-
tems has been at the level of the resident 
DC populations in lymphoid tissues. 
In the mouse, two functionally distinct 
populations have been recognized, one 
with high surface expression of CD8, 
the other lacking this marker. No human 
DC expressing CD8 had been observed. 
To quote Merrill (1974): “Lost, is it, bur-
ied? One more missing piece? But noth-
ing’s lost. Or else: all is translation, And 
every bit of us lost in it.”

As it turns out, however, CD8 is a 
poor marker of the eponymous mouse 
DC subset, as this molecule has no known 
role in DC development or function (for 
review see Shortman and Heath, 2010). 
Furthermore, an immediate precursor 
of CD8+ DC can be identified in mouse 
blood and lymphoid tissue, and this pre-
cursor expresses all the signatures of 
this population except for CD8. The 
absence of CD8 expression in the human 
DC system is therefore not particularly 
surprising. Fortunately, CD8+ DCs pos-
sess additional features that are not 
strictly unique to this population, but to-
gether provide an accurate description 
of this subset (Table I). First, many other 
surface molecules in addition to CD8 are 
differentially expressed in CD8+ DCs 
(Segura et al., 2010) and several represent 
useful markers for subset discrimina-
tion. Second, the development of CD8+ 
DCs is strictly dependent on expression 
of the transcription factors Batf3 and 
IRF-8 (Schiavoni et al., 2002; Hildner 
et al., 2008). CD8+ DCs are also distinct 
in their expression of TLR3, which is 
not expressed by CD8- DCs. However, 

they express little or no TLR1, TLR6 or 
other TLR2 coreceptors, and also lack 
TLR7 and the cytosolic receptor RIG-I 
(Edwards et al., 2003; Luber et al., 2010; 
Segura et al., 2010). Fourth, DC subsets 
differ in the pattern of cytokines they 
secrete upon activation, and CD8+ DCs 
stand out as the major producers of in-
terleukin (IL)-12 (Reis e Sousa et al., 
1997). Finally, two unique features of 
CD8+ DCs that have attracted consid-
erable attention in recent years are their 
ability to capture dead cells and to cross-
present different forms of exogenous 
antigens on their major histocompat-
ability complex (MHC) class I mole-
cules (for review see Villadangos and 
Schnorrer, 2007).

Where should we be looking?
Armed with this profile, the authors 
of two of the studies in this issue 
sought the equivalent of CD8+ DCs in 
human spleens (Poulin et al., 2010) and 
tonsils (Jongbloed et al., 2010). Their 
choice of organs was not fortuitous. In 
mice, the final development of lymphoid 
organ–resident DCs occurs within the 
organs themselves (Shortman and Naik, 
2007), so these would be the tissues of 
choice for purifying CD8+ DCs. In fact, 
previous studies had suggested the exis-
tence of human CD8+ DCs equivalents 
in thymi and tonsils (Vandenabeele et al.,  
2001; Galibert et al., 2005). Sure enough, 
Poulin et al. (2010) found three DC pop-
ulations in human spleens, only one of 
which expresses Clec9A (DNGR-1), 
Necl2, and IRF8, which are typical 
markers of mouse CD8+ DCs (Table I). 
Examining human tonsils, Jongbloed 
et al. (2010) also found Clec9A+ DCs  
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significantly higher frequency compared 
with blood.

Humanized mouse spleens represent 
the fourth source of human CD141+ DCs 
(Cravens et al., 2005), and this was also 
used by Poulin et al. (2010) for further 
characterization of this subset. 

Similarities and discrepancies
How similar are mouse CD8+ DCs and 
human CD141+ DCs? Two of the new 
studies show that human blood CD141+ 
DCs express the chemokine receptor 
XCR1 (Bachem et al., 2010; Crozat 
et al., 2010), an important finding con-
sidering that CD8+ DCs appear to be the 
only cells in the mouse that express this 
molecule (Dorner et al., 2009). This 
makes XCR1 a promising marker for 
cell identification with one caveat: in 
these studies, the level of XCR1 was 
only assessed by PCR even though its 
differential expression in DC subsets has 
been confirmed using functional assays 
(Dorner et al., 2009; Crozat et al., 2010) 
and membrane proteomics (Segura et al., 
2010). This suggests that staining with 
anti-XCR1 antibodies is not a practical 
option for DC subset discrimination. 
Another similarity between CD141+ 
DCs and CD8+ DCs is that they express 
the transcription factors Batf3 and IRF-8 
(Jongbloed et al., 2010; Poulin et al., 
2010) and lack expression of IRF-4, a 
factor required for development of some 
mouse DC types, but not CD8+ DCs. 

phoid organs, the low frequency of 
CD141+ DCs (1 in 104 PBMCs) makes 
the purification of this population a cum-
bersome and expensive process. An ob-
vious alternative would be to generate 
these cells in culture from earlier hema-
topoietic precursors. After all, it was the 
optimization of culture systems for the 
generation of DCs from bone marrow 
and blood precursors that put DC 
studies within reach of many laborato-
ries and catalyzed the expansion of the 
field (Inaba et al., 1992; Sallusto and 
Lanzavecchia, 1994). One limitation of 
the original granulocyte/macrophage 
colony-stimulating factor (GM-CSF)–
based culture systems is that they generate 
monocyte-derived DCs (Xu et al., 2007), 
a subset distinct from all other DC 
types, including CD8+ DCs (Shortman 
and Naik, 2007). However, the use of 
alternative growth factors, especially Flt3 
ligand, allows for the generation of a 
mouse CD8+ DC equivalent whose only 
discrepancy with CD8+ DCs appears to 
be the expression of CD8 itself (Naik 
et al., 2005). Surely, a similar protocol 
applied to human precursors would pro-
duce human DCs resembling CD8+ DCs? 
Applying this logic, Poulin et al. (2010) 
obtained CD141+Clec9A+ cells after cul-
turing cord blood hematopoietic stem 
cells with medium containing stem cell 
factor, GM-CSF, IL-4, and Flt3L. These 
comprised a low proportion of the cells 
in culture, but were still present at a  

localized in the T cell areas, the sites 
where mouse CD8+ DCs preferentially 
accumulate at steady state. These were 
encouraging findings, but fell short of 
a true characterization of a functional 
equivalent of mouse CD8+ DCs in hu-
mans. The ethical and logistical diffi-
culties inherent to the purification of 
human lymphoid organ DCs have so far 
precluded such characterization, so the 
groups sought human CD8+ DC equiv-
alents from three other potential sources: 
blood, cultures of cord blood stem cells, 
and humanized mice.

That human blood contains several 
types of conventional DCs has been 
known for some time. MacDonald et al. 
(2002) defined four subsets, one of which, 
the CD141 (BDCA3)+ DC, was already 
known to possess mouse CD8+ DC-like 
features, including Clec9A expression 
(Caminschi et al., 2008; Huysamen et al., 
2008; Sancho et al., 2008). Furthermore, 
in a groundbreaking study by Robbins 
et al. (2008), gene chip (meta)analysis 
of the transcriptome of multiple mouse 
and human DC subsets indicated a close 
relationship between mouse CD8+ DCs 
and human blood BDCA3+ DCs. Three 
of the current studies confirmed that 
this population is likely the human equiv-
alent of mouse CD8+ DCs (Bachem 
et al., 2010; Crozat et al., 2010; Jongbloed 
et al., 2010).

Although blood may be a more ac-
cessible source of human DCs than lym-

Table I.  Defining properties of mouse CD8+ DCs and human CD141+ DCs

Property Mouse CD8+ DCs Human CD141+ DCs Human equivalent references

Surface markersa CD8+, CD11blow, CD24hi, CD36+ CD205+ 
CD172a Clec9A+ DCIR2 Necl2+, XCR1+

CD1 CD141+ Clec9A+ Necl2+ XCR1+ Bachem et al., 2010; Crozat et al.,  
2010; Jongbloed et al., 2010; 

Poulin et al., 2010
Developmental transcription 

factors
Batf3+, IRF-8+, IRF-4 Batf3+, IRF-8+, IRF-4 Jongbloed et al., 2010; Poulin  

et al., 2010
Pathogen sensorsa TLR1/low TLR2+ TLR3+ TLR4+ TLR6/low 

TLR7 TLR9+ TLR11/12+ RIG

TLR3+, TLR7, TLR9 Jongbloed et al., 2010; Poulin  
et al., 2010

IL-12 production Yes Yes Jongbloed et al., 2010; Poulin  
et al., 2010

Dead cell uptake Yes Yes Jongbloed et al., 2010; Poulin  
et al., 2010

Antigen cross-presentation Yes Yes Bachem et al., 2010; Crozat et al.,  
2010; Jongbloed et al., 2010; 

Poulin et al., 2010

aOnly markers normally used for CD8+ DC or CD141+ DC subset discrimination are listed. Clec9A is also known as DNGR1. CD172a is also known asSirp . CD141 is also known 
as BDCA 3.
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Was it necessary to add more complexity 
to the description of the DC network 
by defining new subpopulations? To 
quote Merrill’s again, “But hidden here 
is a freak fragment, Of a pattern com-
plex in appearance only.”

Confusing as the DC network may 
appear, the characterization of its com-
ponents reveals how these interlock to 
form a coherent picture. We now know 
much more about one of the hitherto 
hidden pieces of the human DC puzzle 
because its mouse counterpart had al-
ready been carefully examined. Target-
ing antigens to mouse CD8+ DCs is an 
efficient strategy to elicit antitumor 
immunity (Caminschi et al., 2009), and 
the question now is whether similar 
approaches can be developed to harness 
the human DC counterparts. We antici-
pate that the characterization of the  
human DC types that remain hidden will 
help understand how the whole system 
works and will open new opportunities 
to achieve the ultimate translation that 
we all seek: from basic mouse science to 
human clinical outcomes (Steinman and 
Banchereau, 2007).
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CD141+ DCs express TLR3, but not 
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through TLR3 (Jongbloed et al., 2010; 
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vitro (Villadangos and Schnorrer, 2007; 
Villadangos and Young, 2008). CD8+ 
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