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Myeloid DC subsets play specialized roles 
in tolerance induction during homeostasis and  
in protective immunity during infection. 
Several recent studies have focused on DCs 
in the dermis, intestines, lung, liver, kid-
ney, and pancreas that express the integrin 
E7 (CD103; Ginhoux, et al., 2009). In 
the dermis, lung, liver, and kidney, these 
cells coexpress the C type lectin langerin, 
and are CD11b low or negative. Dermal 
langerin+CD103+CD11blo-neg DCs have been 
implicated in CD4+ and CD8+ T cell prim-
ing after epicutaneous immunization (Bursch 
et al., 2007; Ginhoux et al., 2007; Shklovskaya 
et al., 2008; Wang et al., 2008; Bedoui et al., 
2009). Pulmonary langerin+CD103+ DCs are 
required for optimal clearance of influenza 
virus (GeurtsvanKessel et al., 2008). The rec-
ognition that the langerin+CD103+ DC sub-
set might be particularly adept at inducing 
certain forms of T cell immunity has stimu-
lated interest in its developmental lineage and 
biological properties.

GM-CSF is a growth factor that promotes 
the differentiation and mobilization of myeloid 
cells in vivo (Hamilton and Anderson, 2004; King  
et al., 2009). It is widely used in vitro to stimu-
late the development of DCs from bone mar-
row precursors (Inaba et al., 1992). Studies with 
GM-CSF–deficient mice and WT mice treated 
with anti–GM-CSF neutralizing antibodies have  
established a nonredundant role of this cyto-
kine in the generation of protective immunity 
against a range of microbes, as well as patho-
logical immunity against self-antigens. Hence, 
GM-CSF/ mice succumb to infection with 
Mycobacteria and Streptococcus and are resistant to 
the induction of experimental autoimmune en-
cephalomyelitis (EAE), collagen-induced arthri-
tis, and autoimmune myocarditis (LeVine et al., 
1999; Cook et al., 2001; McQualter et al., 2001; 
Sonderegger et al., 2008; Szeliga et al., 2008).

In the these studies, GM-CSF deficiency 
was associated with impaired antigen-specific 
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Dendritic cells (DCs) play an important role in CD4+ T helper (Th) cell differentiation and in 
the initiation of both protective and pathogenic immunity. Granulocyte/macrophage  
colony-stimulating factor (GM-CSF) is a DC growth factor critical for the induction of 
experimental autoimmune encephalomyelitis (EAE) and other autoimmune diseases, yet its 
mechanism of action in vivo is not fully defined. We show that GM-CSF is directly required 
for the accumulation of radiosensitive dermal-derived langerin+CD103+ DCs in the skin and 
peripheral lymph nodes under steady-state and inflammatory conditions. Langerin+CD103+ 
DCs stimulated naive myelin-reactive T cells to proliferate and produce IFN- and IL-17. 
They were superior to other DC subsets in inducing expression of T-bet and promoting Th1 
cell differentiation. Ablation of this subset in vivo conferred resistance to EAE. The current 
report reveals a previously unidentified role for GM-CSF in DC ontogeny and identifies 
langerin+CD103+ DCs as an important subset in CD4+ T cell–mediated autoimmune disease.
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phenotype of Langerhans cells (Fig. 1 B; Bursch et al., 2007).  
There were no differences between WT and GM-CSF/ 
mice in the frequency of dermal langerinCD11b+ DCs 
(not depicted). Based on these results, we concluded that 
GM-CSF/ mice are selectively deficient in the langerin+
CD103+CD11bneg/lo subset of dermal DCs.

Immunofluorescent staining of ear skin sections corrobo
rated our flow cytometric data. Langerin+ cells were readily 
identified in the dermis of both WT and GM-CSF/ mice. 
However, GM-CSF/ dermis only contained langerin+ 
CD103 cells, whereas doubly labeled langerin+CD103+ cells 
were present in WT dermis (Fig. 1 C). As expected, epider-
mal Langerhans cells in both groups failed to stain with the 
anti-CD103 antibody.

Langerhans cells and langerin+CD103+ dermal DCs  
migrate to draining lymph nodes after skin sensitization 
(Bursch et al., 2007). To assess the impact of GM-CSF on 
the DC composition of inflamed lymph nodes, we painted the 
ears of WT and GM-CSF/ mice with tetramethyl rhoda-
mine isothiocyanate (TRITC). At serial time points, draining 
auricular lymph node cells were analyzed for the accumula-
tion of TRITC+langerin+ DCs (our gating strategy is shown 
in Fig. S1). TRITC+langerin+CD103+ cells appeared in the 
auricular lymph nodes of WT mice within 24 h after prim-
ing, peaked at 48 h, and slowly declined thereafter (Fig. 1 E, 
left; and not depicted). In contrast, TRITC+langerin+CD103+ 
DCs failed to accumulate in the auricular lymph nodes of 
GM-CSF/ mice beyond baseline levels. We detected 
TRITC+langerin+CD103 cells in the draining lymph nodes 
of GM-CSF/ mice within 48 h, although at slightly lower 
frequencies than in their WT counterparts (Fig. 1 E, right). 
TRITC+langerin+ DCs were not detected in the nondrain-
ing lymph nodes of either WT or GM-CSF/ mice at any 
time point (unpublished data). Collectively, these observa-
tions indicate that GM-CSF is specifically required for the 
accumulation of langerin+CD103+CD11bneg/lo DCs and/or 
their precursors in the dermis during homeostasis. After 
skin sensitization, these cells migrate to draining lymph 
nodes, retaining their cell surface phenotype.

GM-CSF is required for the accumulation  
of langerin+CD103+ DCs in the cutaneous lymph nodes  
after subcutaneous immunization and during homeostasis
Previous studies have indicated a role for DCs in the differen-
tiation of Th1 and Th17 effector cells and in the pathogenesis 
of autoimmune disease (Macatonia et al., 1995; Banchereau 
and Steinman, 1998). We and others have previously found 
that GM-CSF/ mice on a C57BL/6 background are resis-
tant to EAE induced by immunization with an immuno-
dominant MOG peptide (MOG35-55) in CFA (McQualter et al., 
2001; King et al., 2009). C57BL/6 c

/ mice are also resis-
tant to disease induction (Fig. S2 A). Consistent with previous 
reports, draining lymph node cells from MOG-immunized 
GM-CSF/ and c

/ mice contained lower frequencies of 
antigen-specific IFN- and IL-17 producers than WT con-
trols (Fig. S2 B; McQualter et al., 2001).

CD4+ T cell responses (McQualter et al., 2001; Sonderegger  
et al., 2008). For example, GM-CSF/ mice actively immu-
nized with an encephalitogenic peptide of myelin oligoden-
drocyte glycoprotein (MOG35-55) mount relatively meager 
antigen-specific IL-2 and IFN- recall responses (McQualter 
et al., 2001). Because GM-CSF primarily acts on myeloid cells, 
it has been widely assumed that such T cell defects are an 
indirect consequence of abnormalities in the development of 
APCs, and DCs in particular. (Rosas et al., 2007) .

Historically, GM-CSF was thought to be dispensable for 
steady-state DC differentiation (Vremec et al., 1997). How-
ever, two recent studies have demonstrated that GM-CSF 
supports the accumulation of CD11c+CD103+CD11b+ DCs 
in the lamina propria in the absence of conspicuous infection 
(Bogunovic et al., 2009; Varol et al., 2009). We questioned 
whether GM-CSF/ and c

/ (deficient in the common  
subunit of the GM-CSF, IL-3, and IL-5 receptors) mice also 
have subtle defects in cutaneous DC subsets that were over-
looked in past papers. Furthermore, in the earlier studies, 
mice were examined under homoeostatic conditions (Vremec 
et al., 1997); hence, the role of GM-CSF in de novo differ-
entiation of DCs during inflammation was not addressed.

In this paper, we show that GM-CSF/ and c
/ mice 

selectively lack a subset of radiosensitive migratory dermal 
DCs that coexpress langerin and CD103. Depletion of radio-
sensitive langerin-expressing DCs suppressed IFN- and  
IL-17 responses in vivo and conferred resistance to EAE. 
Collectively, our data suggest that GM-CSF–dependent 
langerin+CD103+ dermal DCs promote CD4+ effector  
Th cell differentiation and play a defining role in a classical 
model of autoimmune pathogenesis.

RESULTS AND DISCUSSION
Seeding of the dermis by langerin+CD103+ DCs  
is GM-CSF dependent
To investigate the role of GM-CSF in the accumulation 
of DCs in the skin, we analyzed MHCII+ cells in the epi-
dermis and dermis of WT and GM-CSF/ mice by flow 
cytometry. Three types of DCs have been identified in 
the skin of immunocompetent mice (Bursch et al., 2007; 
Ginhoux et al., 2007; Poulin et al., 2007). Langerhans cells 
(langerin+CD103CD11b+) originate in the epidermis and 
migrate to the cutaneous lymph nodes both during homeo-
stasis and inflammation. DCs that reside in the dermis include 
langerinCD103CD11b+ and langerin+CD103+CD11blo sub-
sets, the respective roles of which remain to be elucidated in 
detail. We found that a small percentage (5%) of MHCII+  
cells harvested from the dermis of WT mice express langerin 
(Fig. 1 A). Approximately half of these langerin+ cells were  
CD103CD11bhi, likely representing migrating Langerhans 
cells, and half were CD103+CD11bneg/lo (Fig. 1 A). Although 
MHCII+ dermal cells from GM-CSF/ mice also contained 
a langerin+ population, it was predominantly composed of  
CD103CD11bhi DCs (Fig. 1 A). In contrast, epidermal MHCII+ 
cells in both WT and GM-CSF/ mice were uniformly  
langerin+CD103CD11bhi, consistent with the cell-surface  
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CD8lo/ (Fig. 2 D), and expressed the maturation markers 
CD40, CD86, and DEC-205 (Fig. S3 A), consistent with 
the phenotype of CD103+ dermal DCs as reported by other 
investigators (Bursch et al., 2007; Ginhoux et al., 2007; Poulin 
et al., 2007; Allenspach et al., 2008; Shklovskaya et al., 2008; 
Wang et al., 2008; Bedoui et al., 2009; Ginhoux et al., 2009). 
In CD45 congenic bone marrow chimeras, langerin+CD103+ 
lymph node DCs were exclusively donor derived, indicat-
ing that they are radiosensitive and rapidly replaced by he-
matopoietic precursors (Fig. 2 E). This characteristic is also 
consistent with previous descriptions of CD103+ dermal DCs 
and distinguishes them from conventional langerin+CD103 
Langerhans cells, which are radioresistant and GM-CSF in-
dependent (Fig. 2 E; and Fig. S3, B and C; Merad et al., 
2002; Bursch et al., 2007). The frequency and number of 

Next, we performed flow cytometry on draining lymph 
node cells from MOG-immunized WT, GM-CSF/, and 
c

/ mice to determine whether reduced IFN- and  
IL-17 responses correlate with a paucity of langerin+CD103+ 
DCs. The frequencies and absolute numbers of total CD11c+ 
MHCII+ DCs were comparable across the three groups on 
day 7 after immunization, a time point when MOG-specific 
cytokine responses had clearly diverged between the knock-
out and WT mice (Fig. 2, A and B; Fig. S2 B; and not 
depicted). In addition, there were no significant differences 
in CD8+ DCs, which predominantly expressed intermedi-
ate to low levels of MHCII (Fig. 2, A and C). However, both 
groups of knockout mice were deficient in CD11c+CD103+ 
lymph node cells (Fig. 2, A and C). The CD11c+CD103+ lymph 
node cells in immunized WT mice were langerin+CD11bint/lo 

Figure 1.  Langerin+CD103+MHCIIhi dermal DCs are GM-CSF dependent. (A) FACS analysis of dermal mononuclear cells from naive WT and 
GM-CSF/ mice. Dot plots are gated on total MHCII+ (left) or langerin+MHCII+ cells (right). (B) Epidermal mononuclear cells from naive WT and  
GM-CSF/ mice. Histograms are gated on MHCII+ cells. Shaded histograms indicate isotype control staining. Dot plots (right) are gated on langerin+ 
epidermal cells. (C) Immunofluorescent staining for langerin (green) and CD103 (red) in ear skin sections from WT and GM-CSF/ mice. The epider-
mis lies above the dermis in each image. (D) CD45.2 expression on CD11b+CD103MHCII+ (left) and CD11bCD103+MHCII+ (right) dermal cells from 
mixed bone marrow chimeric mice reconstituted with a 1:1 mixture of CD45.2c

/ and CD45.1 WT bone marrow cells. (E) Percentage of TRITC+ cells 
among the langerin+CD11c+CD103+ (left) and CD103 (right) subsets of auricular lymph node cells in WT and GM-CSF/ mice on days 2, 4, and 7 
after ear painting (*, P < 0.05; error bars represent SEM). All data shown are representative of two to four experiments with at least three mice per 
group. Percentages are shown in A, B, and D. Bars, 10 µm.
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by injecting lethally irradiated CD45.1+ 
hosts with a combination of bone marrow 
cells from CD45.1+c

+/+ and CD45.2+c
/ 

donors at a 1:1 ratio. Bone marrow chimeras 
constructed with a mixture of CD45.1+c

+/+ 
and CD45.2+c

+/+ donors were used as a 
control. After reconstitution, cutaneous lymph 
node cells were harvested and flow cyto-
metric analysis was performed to determine 
the contribution of each donor source to vari-
ous DC subsets.

The vast majority of langerin+CD103+ 
DCs were derived from c

+/+ precursors 
(Fig. 3, C and D). In contrast, c

+/+ and 
c

/ genotypes were equally represented 
among all other radiosensitive DC subsets 
investigated (Fig. 3 D). A similar require-
ment for GM-CSF signaling was observed in 
CD103+, but not CD103, DCs from der-
mal cell preparations (Fig. 1 D). These data 
demonstrate that the requirement of GM-

CSF signaling for the accumulation of langerin+CD103+ DCs 
in the dermis and skin-draining lymph nodes is cell intrinsic.

Deletion of radiosensitive langerin+ DCs in vivo inhibits  
Th1/Th17 responses and confers resistance to EAE
Recently, transgenic mice were created that express the human 
diphtheria toxin receptor (DTR) downstream of the langerin 
promoter (langerin-DTR mice; Kissenpfennig et al., 2005). To 
directly assess the functional role of langerin+CD11bCD103+ 
cells in the development of encephalitogenic Th1 and Th17 
cells, we generated bone marrow chimeras in which lethally 
irradiated CD45.1+ hosts were reconstituted with bone marrow 
from CD45.2+ langerin-DTR mice. Administration of DT to 
these mice eliminates radiosensitive langerin+CD103+ dermal 

MHCIIhiCD103+ DCs were reduced in cutaneous lymph 
nodes from naive as well as immunized c

/ and GM-CSF/ 
mice, indicating that GM-CSF is required for their accu-
mulation under both homeostatic and inflammatory condi-
tions (Fig. 3, A and B).

GM-CSF stimulates langerin+CD103+ DCs to accumulate  
in cutaneous lymph nodes by a direct pathway
The GM-CSF receptor is expressed on a wide range of he-
matopoietic cell types (Rosas et al., 2007). Therefore, GM-
CSF could induce the accumulation of langerin+CD103+ 
DCs in the dermis and skin-draining lymph nodes by either a 
direct or indirect pathway. To distinguish between those 
possibilities, we constructed mixed bone marrow chimeras 

Figure 2.  Langerin+CD103+MHCIIhi DCs require 
GM-CSF signaling to accumulate in the periph-
eral lymph nodes of MOG-immunized mice.  
(A) Percentages of CD11c+ subsets in draining lymph 
nodes of WT, GM-CSF/, or c

/ mice on day 7 
after immunization with MOG/CFA. Histograms are 
based on the gates illustrated in the dot plots (left). 
(far right) Dot plots are gated on all CD11c+MHCII+ 
cells. (B and C) Absolute number of total 
CD11c+MHCII+ cells (B) and DC subsets (C) in drain-
ing lymph nodes on day 7 after immunization with 
MOG/CFA (*, P < 0.05; n.s., not statistically signifi-
cant; error bars represent SD). (D) Cell-surface pro-
files of CD103+ and CD103MHCIIhi lymph node DCs 
from MOG-immunized WT mice. Shaded histograms 
indicate background staining. (E) CD45.2 expression 
on langerin+ DC subsets in cutaneous lymph nodes 
of CD45.2+→CD45.1+ bone marrow chimeras. Per-
centages are shown in D and E. Data are represen-
tative of three independent experiments with three 
or more mice per group.
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exogenous MOG peptide (Fig. 5 A). All DC subsets induced 
2D2 expansion after they were pulsed with MOG35-55.

CD103+MHCIIhi DCs stimulated naive 2D2 cells to  
secrete significantly greater quantities of IFN- than they did 
upon culture with CD103MHCIIhi DCs (Fig. 5 B). In fact, 
CD103+MHCIIhi DCs elicited IFN- levels comparable to 
those induced by unfractionated lymph node DCs. Consis-
tent with this finding, the Th1 transcription factor T-bet was 
expressed at higher levels in 2D2 cultures containing CD103+ 
DCs than those containing CD103 DCs (Fig. 5 C; Szabo 
et al., 2000). In contrast, CD103 and CD103+ DC subsets 
induced comparable IL-17 and GM-CSF production (Fig. 5 B 
and not depicted). Furthermore, expression of the Th17 tran-
scription factor RORt did not differ significantly between 
cultures (Fig. 5 C; Ivanov et al., 2006).

The data in Fig. 4 and Fig. 5 indicate that langerin+CD103+ 
DCs play a nonredundant role in Th1 cell differentiation after 
subcutaneous immunization. The mechanism by which they 
induce Th1 responses remains to be elucidated. Although 
langerin+CD103+ cells are the major source of IL-12p40 
among DCs in the draining lymph nodes of MOG-immunized 
mice (Fig. S4), we were unable to detect IL-12p70 hetero
dimer in supernatants of CD103+ dermal DC cultures, irre-
spective of the activating stimulus (not depicted). It is possible 
that our assays were not sensitive enough to detect crucial 
quantities of IL-12p70 released at the immunological synapse.  
Alternatively, langerin+CD103+ DCs could promote Th1 cell 
differentiation by an IL-12p70–independent pathway (for  
example, via CD70–CD27 interactions; Soares et al., 2007).

DCs while sparing radioresistant Langerhans cells (Fig. 4 A 
and not depicted).

Chimeric mice were actively immunized with MOG35-55 
in CFA the day after systemic injection of DT or vehicle. 
DT-treated chimeras experienced a relatively delayed and 
milder course of EAE (Fig. 4 B, left). In contrast, administra-
tion of DT had no significant effect on the course of EAE in 
WT mice (Fig. 4 B, right). Increased resistance of DT-treated 
chimeric mice to EAE was associated with a significant  
reduction in the number of MOG-specific IFN-– and  
IL-17–producing lymph node cells by comparison to chi-
meric mice pretreated with vehicle alone or WT mice 
pretreated with DT (Fig. 4 C).

Langerin+CD103+ DCs acquire myelin antigens in vivo  
and promote Th cell differentiation
These results suggest that langerin+CD103+ cells are particu-
larly efficient APCs for the generation of encephalitogenic  
T cells. Therefore, we compared their professional antigen-
presenting capabilities to those of other cutaneous lymph 
node DC subsets in vitro. Lymph node cells were harvested 
from WT mice 20 h after immunization with MOG35-55 in 
CFA, and CD11c+ cells were sorted into four subsets based 
on CD103 and MHCII expression (Fig. 3 A). Each subset 
was cultured with naive CD4+ T cells that bear a transgenic 
TCR specific for MOG35-55 (2D2 cells) with or without  
exogenous MOG peptide. CD103+ and CD103MHCIIhi, 
but not MHCIIint/lo, DCs stimulated the proliferation of 
CFSE-labeled 2D2 cells directly ex vivo in the absence of 

Figure 3.  Functional GM-CSF receptor expression is necessary for accumulation of langerin+CD103+MHCIIhi DCs in the cutaneous lymph 
nodes during homeostasis. (A) CD103 and MHCII expression on DCs in lymph nodes from unimmunized WT, c

/, and GM-CSF/ mice, gating 
on CD11c+MHCII+ cells. (B) Total number of DC subsets in cutaneous lymph nodes of naive mice (*, P < 0.05; **, P < 0.01; error bars represent SEM). 
(C) CD45.1/2 expression on langerin+CD103+MHCIIhi lymph node DCs in unimmunized mixed bone marrow chimeric mice. Irradiated CD45.1+ WT hosts 
were reconstituted with a 1:1 mixture of either CD45.2+ WT and CD45.1+ WT cells (left) or CD45.2+c

/ and CD45.1+ WT cells (right). Percentages are 
shown in A and C. (D) Percentage of cells derived from WT versus c

/ donors within CD11c+ lymph node DC subsets from mixed bone marrow chimeras 
(error bars represent SEM). All data in A–D are representative of three separate experiments with at least three mice per group.
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of IL-6 and IL-23 by splenic CD11c+ DCs (Sonderegger 
et al., 2008). No analysis was done to determine which DC 
subsets were the source of those proinflammatory cytokines. 
Although we found that CD103+ dermal DCs produce 
large quantities of IL-6 and IL-23 after CD40 or Toll-like 
receptor signaling (unpublished data), it is possible that a 
distinct DC subset, also dependent on GM-CSF, is the major 
source of these cytokines in vivo. We are currently inves-
tigating the role of different APCs in producing IL-23 and 
polarizing Th17 responses in WT mice with EAE.

Our observation that GM-CSF/ and c/ mice have a 
selective deficiency in langerin+CD103+CD11blo DCs while 
still possessing CD103CD11b+ DCs supports a growing 
body of evidence that the former cells diverge from other 
DC subsets early in ontogeny (Bursch et al., 2007; Ginhoux  
et al., 2007; Poulin et al., 2007; Bogunovic et al., 2009; 
Nagao et al., 2009). In addition to constitutive expression of 
CD103, langerin+ dermal DCs are sensitive to radiation 
injury (indicating the potential for rapid renewal), lack ex-
pression of epithelial cell adhesion molecule and Dectin-1, 
and are TGF- independent (Bursch et al., 2007; Ginhoux  

CD103+ DCs appeared to be less critical for the generation 
of Th17 cells. They were no better than MHCIIhiCD103 
DCs at inducing either RORt or IL-17 expression in 2D2 
cells (Fig. 5, B and C). In vivo depletion of langerin+CD103+ 
DCs in MOG-immunized mice had a modest impact on an-
tigen-specific IL-17 production (Fig. 4 C). Nevertheless, this 
partial reduction in the autoreactive Th17 response, along 
with elimination of the Th1 response, was sufficient to sup-
press, though not prevent, clinical EAE. We have recently 
demonstrated that myelin-specific Th1 and Th17 cells are 
independently capable of inducing EAE, although they use 
distinct proinflammatory pathways to do so (Kroenke et al., 
2008). The data presented in this paper reinforce the concept 
that multiple pathways can promote initiation of EAE and 
underscore the complex nature of this disease.

MOG-specific IL-17 responses were more profoundly 
compromised in GM-CSF–deficient than langerin+CD103+ 
DC–depleted mice (Fig. 4 C and Fig. S2). This suggests that 
GM-CSF promotes Th17 cell differentiation by pathways 
that do not involve CD103+ dermal DCs. In an animal model 
of autoimmune myocarditis, GM-CSF enhanced secretion 

Figure 4.  Radiosensitive langerin+CD103+ DCs promote encephalitogenic Th1/Th17 responses and induction of EAE. (A, top) Langerin- 
DTR→WT chimeric mice were treated with vehicle (left) or DT (right) for 2 d before analysis of cutaneous lymph node cells by flow cytometry. Dot plots 
are gated on CD11c+MHCII+ cells. (bottom) Gating on langerin+MHCIIhi lymph node cells from MOG-immunized chimeric mice. Percentages are shown. 
(B) Clinical course of EAE in chimeric mice injected with DT or vehicle alone. Data shown are combined from two separate experiments with five or more 
mice per group (*, P < 0.05; **, P < 0.002; N.S., not statistically significant; error bars represent SEM). (C) ELISPOT analysis of draining lymph nodes 6 d 
after immunization of DT-treated chimeric or WT mice and vehicle-treated chimeric mice (*, P < 0.05; **, P < 0.01; error bars represent SEM). Data are 
representative of two independent experiments with five mice per group.
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tance of CD103+ DCs in these tissues for the 
local generation of Th1/Th17 responses and the 
development of autoimmune disease provoked 
by autoantigenic challenge outside of the skin.

The resistance of GM-CSF/ and c/ 
mice to EAE is more complete than that of 
langerin+CD103+ DC–depleted mice (Fig. 4 
and Fig. S2). This suggests that GM-CSF–
driven accumulation of langerin+CD103+ 
DCs in the dermis and cutaneous lymph 
nodes reflects only one of several mechanisms 
by which that cytokine contributes to EAE 
pathogenesis. In fact, we recently reported 
that GM-CSF is important for the mobili-
zation of inflammatory monocytes, which 
eventually give rise to central nervous system 
(CNS)–infiltrating DCs, from the bone mar-
row immediately before EAE exacerbations 
(King et al., 2009). GM-CSF could also stim-
ulate mature myeloid cells within the CNS to 
up-regulate MHCII and co-stimulatory mol-

ecules, and stimulate immature myeloid cells to differenti-
ate into macrophages and DCs in situ (Ponomarev et al., 
2007; Mausberg et al., 2009). Finally, it is possible that GM-
CSF supports the development and/or survival of an alter-
nate population of APCs (distinct from langerin+CD103+  
dermal cells), located in the CNS or another noncutaneous 
tissue, that is important in EAE pathogenesis. In summary, our 
report defines a previously unidentified role for GM-CSF in 
DC differentiation and/or development in vivo and sug-
gests that growth factors such as GM-CSF are putative tar-
gets for treatment of organ-specific autoimmune disease.

MATERIALS AND METHODS
Mice. WT and CD45.1 congenic C57BL/6 mice were purchased from the Na-
tional Cancer Institute–Frederick. C57BL/6-Tg(Tcra2D2,Tcrb2D2)1Kuch/
J mice (transgenic for the TCR V3.2 and V11 chains reactive to MOG35–55), 
commonly known as 2D2 mice, were a gift from V. Kuchroo (Harvard 

et al., 2007; Poulin et al., 2007; Nagao et al., 2009). Unlike 
langerin dermal DCs, they are CD11blow (Bursch et al., 
2007). GM-CSF is not compulsory for CD103 expression  
because lymph nodes in GM-CSF/ and c

/ mice contain  
a subset of langerinCD103+MHCint DCs at a frequency 
comparable to WT mice. Furthermore, incubation of 
langerin+CD103 lymph node or dermal cells from GM-
CSF/ mice with recombinant GM-CSF does not induce 
surface CD103 expression (unpublished data). Collectively, 
these data indicate that the langerin+CD103+ phenotype 
marks a distinct lineage of migratory DCs rather than a tran-
sitory activation state. In addition to the dermis and cuta
neous lymph nodes, langerin+CD103+CD11blo/ DCs have 
been identified in the lung, liver, kidney, thymus, and mesen-
teric lymph nodes (Valladeau et al., 2002; Bursch et al., 2007; 
Chang et al., 2008). Future studies will address the impor-

Figure 5.  CD103+MHCIIhi DCs prime naive myelin-
specific T cells and induce Th effector cell differen-
tiation. (A) DC subsets sorted from cutaneous lymph 
nodes of WT mice 20 h after immunization with  
MOG/CFA were cultured with purified, CFSE-stained 
CD45.1+CD4+ 2D2 T cells in the absence or presence of 
MOG peptide. Anti–I-Ab antibodies were added to some 
wells. Plots are gated on CD45.1+ T cells. Percentages are 
shown. Data are representative of four independent ex-
periments. (B) Sorted naive 2D2 T cells were cultured 
with sorted lymph node DC subsets or unfractionated 
lymph node DCs in the presence of MOG peptide for 4 d. 
Cells were restimulated with anti-CD3/-CD28 for 48 h for 
detection of IFN- or IL-17 in supernatants by ELISA 
(error bars represent SEM). (C) Cells were prepared as 
described in B but harvested after 96 h of primary  
culture for real-time RT-PCR analysis. Data shown in  
B and C are representative of three separate experiments.
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for 48 h, and restimulated with platebound anti-CD3 (0.5 µg/ml) and anti-
CD28 (0.5 µg/ml). After 48 h, culture supernatants were collected for IFN- 
and IL-17 quantification.

Immunofluorescence. Whole ears were flash frozen in isopentane (Sigma-
Aldrich). 8-µm cryostat sections were collected on poly–l-lysine–coated 
slides, rehydrated in PBS, and incubated with anti–mouse langerin (clone 
L31; eBioscience) and biotin anti–mouse CD103 antibodies, followed by 
anti–rat–Alexa Fluor 488 and streptavidin–Alexa Fluor 594 (Invitrogen). 
The original magnification was 40×.

Real-time RT-PCR. Cells were homogenized in TRIzol reagent (Invitro-
gen). RNA was isolated and cDNA was synthesized using a reverse transcrip-
tion kit (Quantitect; QIAGEN). Primers and probes were purchased from 
Applied Biosystems. Samples were analyzed on a PCR machine (iCycler; 
Bio-Rad Laboratories). All data were normalized to GAPDH and expressed 
as fold induction over naive.

ELISA and ELISPOT analysis. Cytokines in 48-h supernatants obtained 
from T cell–DC cultures were quantified using a sandwich ELISA technique 
based on noncompeting pairs of antibodies. Capture and detection mAbs 
were obtained from BD. ELISPOT analysis was performed after whole 
lymph node cells were cultured for 36 h at 2.5–4 × 105 cells/well.

Statistical analysis. The unpaired Student’s t test was used for statistical 
comparisons. P < 0.05 was considered statistically significant.

Online supplemental material. Fig. S1 illustrates the gates used to de-
tect TRITC+langerin+ DCs in draining lymph nodes of mice after ear paint-
ing. Fig. S2 shows that GM-CSF/ and c/ mice are resistant to EAE 
and have impaired MOG-specific Th1/Th17 responses. Fig. S3 A shows the 
cell surface phenotype of CD103+ and CD103MHCIIhi lymph node DCs 
in MOG-immunized mice. Fig. S3 (B and C) shows that langerin+CD103 
DCs (Langerhans cells) are present in the cutaneous lymph nodes of GM-
CSF/ mice. Fig. S4 shows that CD103MHCIIhi DCs are a major source 
of IL-12p40 in the draining lymph nodes of MOG-immunized mice. Online  
supplemental material is available at http://www.jem.org/cgi/content/full/ 
jem.20091844/DC1.

We thank B. Moore for assistance with bone marrow chimera generation;  
T. Dickendesher for assistance with immunohistochemistry; A.M. Des Lauriers and 
M. Pihalja for flow cytometry expertise; Dr. K. Hogquist for thoughtful discussion 
and for providing the langerin-DTR bone marrow for chimera generation; and  
Drs. L. Wang and B. Igyarto for technical assistance and expertise.

This work was supported by grants from the National Multiple Sclerosis 
Society (RG 3866-A-3 and CA 1037A1) and the National Institutes of Health 
(NS047687-01A1).

The authors have no conflicting financial interests.

Submitted: 24 August 2009
Accepted: 12 March 2010

REFERENCES
Allenspach, E.J., M.P. Lemos, P.M. Porrett, L.A. Turka, and T.M. 

Laufer. 2008. Migratory and lymphoid-resident dendritic cells coop-
erate to efficiently prime naive CD4 T cells. Immunity. 29:795–806. 
doi:10.1016/j.immuni.2008.08.013

Banchereau, J., and R.M. Steinman. 1998. Dendritic cells and the control 
of immunity. Nature. 392:245–252. doi:10.1038/32588

Bedoui, S., P.G. Whitney, J. Waithman, L. Eidsmo, L. Wakim, I. Caminschi, 
R.S. Allan, M. Wojtasiak, K. Shortman, F.R. Carbone, et al. 2009. 
Cross-presentation of viral and self antigens by skin-derived CD103+ 
dendritic cells. Nat. Immunol. 10:488–495. doi:10.1038/ni.1724

Bettelli, E., M. Pagany, H.L. Weiner, C. Linington, R.A. Sobel, and V.K. 
Kuchroo. 2003. Myelin oligodendrocyte glycoprotein–specific T cell 
receptor transgenic mice develop spontaneous autoimmune optic neuri-
tis. J. Exp. Med. 197:1073–1081. doi:10.1084/jem.20021603

Medical School, Boston, MA; Bettelli et al., 2003). 2D2 mice were back-
crossed to CD45.1 congenic C57BL/6 mice in our facility. OT-II mice 
were purchased from the Jackson Laboratory. GM-CSF/ and c

/ mice 
were gifts of B. Trapnell (Cincinnati Children’s Hospital Medical Center, 
Cincinnati, OH) and L. Robb (Walter and Eliza Hall Institute of Medical 
Research, Melbourne, Australia), respectively. Animals were housed under 
specific pathogen–free conditions. All experiments were performed under 
protocols approved by the University of Rochester Committee on Animal 
Resources and the University of Michigan Committee on Animal Use and 
Care of Animals.

Antibodies and flow cytometry. Fluorochrome-conjugated antibodies 
to CD11c, I-Ab, CD11b, CD8, CD4, CD80, CD86, CD40, CD45.1, 
CD45.2, and CD103, and biotinylated antibodies to langerin, were pur-
chased from eBioscience. Streptavidin-PerCP and streptavidin–PE-Cy7 were 
obtained from BD and eBioscience, respectively. For detection of intracellu-
lar IL-12p40, cells were cultured for 4 h in 10% serum with 10 µg/ml 
brefeldin A. Cells were then fixed in 4% paraformaldehyde for 20 min and 
permeabilized with 0.5% saponin (Sigma-Aldrich). Data were collected on a 
flow cytometer (FACSCanto II; BD) and analyzed with FlowJo software 
(Tree Star, Inc.).

Induction and evaluation of EAE. Mice were immunized with 100 µg 
MOG35–55 (MEVGWYRSPFSRVVHLYRNGK; Biosynthesis) in CFA  
(5 mg/ml of heat-killed Mycobacterium tuberculosis H37Ra; vol/vol) by s.c. 
injection at four sites over the flanks. Bordetella pertussis toxin (List Biological 
Laboratories, Inc.) was injected i.p. (300 ng/mouse) on days 0 and 2. Mice 
were observed for signs of EAE on a daily basis and graded on a standard 
scale, as previously described (Carlson et al., 2008).

TRITC painting. Stock TRITC (10% in DMSO; Invitrogen) was diluted 
10-fold in a 1:1 mixture of acetone/dibutylphthalate. 10 µl of TRITC 
solution was applied to the dorsal and ventral sides of each ear.

Preparation of epidermal and dermal cell suspensions. The epidermis 
was separated from ear skin by digestion with collagenase/dispase (Roche) 
for 1 h at 37°C. Epidermal and dermal tissue was minced into small pieces 
and digested in 1.84 mg/ml Blendzyme Liberase III (Roche) and collagenase 
IV (Worthington), respectively, for 30 min at 37°C. 100 mM EDTA was 
added and tissue was processed into a single-cell suspension by repeated  
pipetting. Cells were then passed through a 70-µm cell strainer, washed, 
and stained for flow cytometric analysis.

Generation of bone marrow chimeras. 5 × 106 C57BL/6 WT, 
CD45.1+ WT, and CD45.2+c

/ or CD45.2+ langerin-DTR bone mar-
row cells (provided by K. Hogquist, University of Minnesota, Minneapolis, 
MN) were injected into the tail veins of lethally irradiated (1,250 rad split 
into two doses) CD45.1+ congenic hosts. In all cases, the reconstitution ef-
ficiency of circulating CD11b+ cells at 6 wk after irradiation exceeded 95%. 
Langerhans cells were systemically depleted in langerin-DTR chimeras by 
i.p. injection of 1 µg DT (List Biological Laboratories, Inc.) on days 2 
and 1 before immunization.

DC subset sorting and in vitro stimulation. Cutaneous lymph nodes 
were incubated with collagenase type IV (Sigma-Aldrich) and DNase 
(Worthington) for 45 min at 37°C, followed by CD11c+ cell enrichment by 
MACS (Miltenyi Biotec). CD11c+ cells were sorted into four subsets based 
on MHCII and CD103 expression (Fig. 2 B) using a FACSAria (BD). 2D2 
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