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DCs are the most capable APCs in the immune 
system, experts at recognizing and respond-
ing to pathogens and inflammation, and then 
efficiently priming and directing the function 
of T cells (Banchereau and Steinman, 1998; 
Kapsenberg, 2003). Although the importance 
of DCs in orchestration of Th1 immune re-
sponses against viral and bacterial pathogens is 
clear, their activation and function in response 
to Th2-inducing pathogens is less well defined 
(Pearce and MacDonald, 2002; MacDonald 
and Maizels, 2008). Notably, it is evident from 
a large body of work that conventional DCs 
are sufficient for Th2 priming against helminths 
(Perona-Wright et al., 2006; MacDonald and 
Maizels, 2008), pathogens that have evolved 
with their hosts to generate potent “appropri-
ate” Th2 responses (Maizels and Yazdanbakhsh, 
2003). However, it has not yet been shown 
whether they are actually necessary for this 
process. This work, along with parallel stud-
ies into aberrant Th2 response development 
against allergens (Lambrecht and Hammad, 
2009), has established the ability of DCs to 
prime Th2 responses, although the actual mech-
anism of DC Th2 induction is still poorly 

understood (Jankovic et al., 2006; MacDonald 
and Maizels, 2008).

We have addressed the fundamental role of 
CD11c+ DCs in Th2 response initiation in 
vivo using murine infection with the parasitic 
helminth Schistosoma mansoni. This intravascu-
lar trematode is an important cause of chronic 
human disease and a prime example of a hel-
minth that provokes a strong Th2 response in-
tricately linked to the pathology that develops 
in infection of both mice and humans (Pearce 
and MacDonald, 2002; Wynn et al., 2004). In 
addition, studies using S. mansoni have been 
instrumental in revealing the ability of hel-
minths to confer on DCs Th2 inductive ability 
in vitro and after adoptive transfer in vivo 
(Perona-Wright et al., 2006).

Murine DCs are characterized by high-level 
expression of the integrin CD11c, which has 
allowed the development of inducible models 
of depletion in vivo (Bar-On and Jung, 2010). 
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Although dendritic cells (DCs) are adept initiators of CD4+ T cell responses, their funda-
mental importance in this regard in Th2 settings remains to be demonstrated. We have 
used CD11c–diphtheria toxin (DTx) receptor mice to deplete CD11c+ cells during the prim-
ing stage of the CD4+ Th2 response against the parasitic helminth Schistosoma mansoni. 
DTx treatment significantly depleted CD11c+ DCs from all tissues tested, with 70–80% 
efficacy. Even this incomplete depletion resulted in dramatically impaired CD4+ T cell 
production of Th2 cytokines, altering the balance of the immune response and causing a 
shift toward IFN- production. In contrast, basophil depletion using Mar-1 antibody had 
no measurable effect on Th2 induction in this system. These data underline the vital role 
that CD11c+ antigen-presenting cells can play in orchestrating Th2 development against 
helminth infection in vivo, a response that is ordinarily balanced so as to prevent the 
potentially damaging production of inflammatory cytokines.
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Ab–treated animals (90% efficacy; Fig. 1, C and D). Nota-
bly, DTx caused no measurable decrease in basophils and 
Mar-1 caused no measurable decrease in DCs in this system.

To evaluate the impact of CD11c or basophil depletion 
on Th2 initiation, we harvested pLN 7 d after schistosome 
egg injection and cultured the LN cells with S. mansoni–soluble 
egg Ag (SEA). CD11c depletion dramatically impaired pro-
duction of the Th2 cytokines IL-4 and IL-10, coincident 
with increased IFN- secretion (Fig. 1, E and F). In contrast, 
basophil depletion did not significantly alter levels of any cyto
kines measured, and concurrent depletion of basophils and 
CD11c+ cells failed to further reduce the Th2 response re-
maining after CD11c depletion alone (Fig. 1 E).

To specifically gauge the impact of CD11c or basophil 
depletion on CD4+ T cells, we assessed IL-4-eGFP levels in 
pLN CD4+ T cells. In keeping with impaired IL-4 secretion 
after LN cell culture (Fig. 1 E), only CD4+ T cells from 
CD11c-depleted mice displayed significantly reduced eGFP 
expression, with basophil depletion having no obvious effect 
on this, either alone or in combination with DTx administra-
tion (Fig. 1, G and H).

These data suggest that CD11c+ DCs, not basophils, play 
a major role in Th2 induction in response to the potent stim-
ulus provided by S. mansoni eggs. Defective Th2 cytokine 
production was evident despite incomplete depletion (80%), 
with residual DCs likely explaining the minor Th2 response 
remaining after DTx treatment. The data additionally suggest 
that CD11c depletion alters the balance of the immune re-
sponse, causing an increased ratio of IFN- to IL-4, a pattern 
associated with damaging immunopathology during active 
S. mansoni infection (Stadecker et al., 2004). This did not re-
flect a switch from Th2 to Th1, as CD4+ T cell IFN- pro-
duction was also impaired after CD11c depletion (Fig. S1 A), 
and could simply indicate decreased counter-regulation of 
non-CD4+ T cell IFN- when Th2 cytokine production 
(particularly IL-10) is impaired.

The impact of CD11c depletion on Th2 induction during  
S. mansoni infection
Having established that CD11c depletion has a major impact 
on Th2 induction in vivo using the egg injection model, we 
next asked whether this was also the case in the more rele-
vant, but more complex, setting of active S. mansoni infec-
tion. In this well-characterized model, production of the 
Th2-driving egg stage of the parasite starts 28 d after infec-
tion. Until this point, the immune response against develop-
ing worms consists of a low-level mixed Th1/Th2 profile, 
with the eggs being the main trigger for induction of a Th2-
dominated cytokine response (Pearce and MacDonald, 2002). 
Because our intention was to address the role of DCs in Th2 
priming rather than maintenance or regulation, we targeted 
depletion of CD11c+ cells to the earliest possible onset of egg 
production (4 wk after infection).

Daily administration of DTx from day 28 to 39 signifi-
cantly depleted splenic CD11cHiMHCII+ DCs in naive or 
S. mansoni–infected mice (Fig. 2, A and B; 70% efficacy). 

We have used mice that allow long-term depletion of CD11c+ 
DCs (Hochweller et al., 2008) to directly address their im-
portance during CD4+ T cell priming in the chronic Th2  
infection setting induced by S. mansoni. While focusing on 
CD11c+ DCs during Th2 induction in vivo, we have also 
addressed the possible role of basophils in this process, as re-
cent work has suggested that Th2 responses may be initiated 
by these granulocytes rather than by DCs (Perrigoue et al., 
2009; Sokol et al., 2009; Yoshimoto et al., 2009). Although 
IL-4 production by basophils can potentiate Th2 development 
in some settings, a general role for these cells as APCs seems 
unlikely given their questionable ability to process and pres-
ent complex antigens, their relatively low level of expression 
of MHCII and other molecules required for efficient naive  
T cell priming, and the apparently transient nature of their re-
cruitment to lymphoid tissues (Finkelman, 2009; Lambrecht 
and Hammad, 2009; Voehringer, 2009; Paul and Zhu, 2010).

Our results demonstrate for the first time that, after de-
pletion of CD11c+ cells, Th2 responses are severely impaired 
either after S. mansoni egg injection or during active S. man-
soni infection. In contrast, depletion of basophils using Mar-1 
anti-FcR1 antibody (Ab) has no significant effect on the 
Th2 response in this system. This suggests that, in this strong 
Th2 setting, CD11c+ DCs are critical for Th2 induction and 
development and that other CD11c APC types, such as  
basophils, cannot fulfill this role.

RESULTS AND DISCUSSION
To assess the importance of CD11c+ DCs in Th2 priming in 
a relevant infection system, we required a model capable of 
their inducible depletion. We used a recently developed 
BAC transgenic mouse model with the human diphtheria 
toxin (DTx) receptor (DTR) under control of the CD11c 
promoter (CD11c.DOG mice; Hochweller et al., 2008), al-
lowing depletion of CD11c+ DCs by administration of DTx. 
In contrast to previously published CD11c.DTR mice, where 
repeat injections of DTx are lethal after several days unless BM 
chimeras are used (Bar-On and Jung, 2010), CD11c.DOG mice 
allow depletion for up to 11 d without toxicity (Hochweller  
et al., 2008).

The impact of CD11c or basophil depletion on Th2 induction 
in response to S. mansoni eggs
S. mansoni eggs are the major stimulus for Th2 cytokines dur-
ing infection (Pearce and MacDonald, 2002), and their injec-
tion provides a controlled system for Th2 induction in the 
draining LN without the additional complexities of active 
infection. To address the relative importance of CD11c+ 
DCs and basophils for Th2 induction against this challenge, 
we administered DTx or Mar-1 anti-FcR1 Ab, alone or in 
combination, to CD11c.DOG x 4get (IL-4-eGFP) reporter 
mice that were then immunized with S. mansoni eggs.  
CD11cHiMHCII+ DCs were strikingly depleted in the popliteal 
LNs (pLN) of mice receiving DTx (80% efficacy; Fig. 1,  
A and B). Similarly, eGFP+B220CD4CCR3CD117 
basophils (Perona-Wright et al., 2008) were depleted in Mar-1 
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(Fig. 2 C). In contrast to what was seen with the eggs alone 
(Fig. 1 F), this reduced Th2 response did not result in a com-
pensatory increase in IFN- secretion, with this cytokine  
being maintained at a similar level to PBS controls (Fig. 2 D). 
No IL-17 was detected, in keeping with studies suggesting 
that C57BL/6 mice make little of this cytokine in response to 
S. mansoni (Rutitzky et al., 2005).

Thus, in stark contrast to reduced production of Th2 cyto-
kines in both egg injection and infection systems, IFN- secre-
tion after CD11c depletion was not impaired and was instead 
either elevated (egg injection; Fig. 1 F) or remained intact 

DCs from the CD11b+CD8, CD11bCD8+ and CD11cInt

B220IntMHCII+CD11b subsets were all effectively depleted 
(Fig. S2, A–C). CD11c depletion was also measured in the 
spleen by quantitative PCR (qPCR), as well as in the liver 
and gut, the major sites of egg deposition during S. mansoni 
infection (Fig. S2 D).

To explore whether CD11c depletion affected the cyto-
kine balance during infection, we assessed splenocyte re-
sponses after DTx administration. Similar to the egg injection 
model (Fig. 1), production of IL-4, as well as IL-5 and IL-13, 
was significantly reduced in CD11c-depleted infected mice 

Figure 1.  CD11c, not basophil, depletion disrupts Th2 induction in schistosome egg-challenged mice. CD11c.DOG x 4get mice were treated daily 
with PBS (squares) or DTx (triangles) from day  22 to 6. On day 21, 1, and 3 mice were also treated with IgG (black symbols) or Mar-1 (gray symbols).  
On day 0, mice were challenged with S. mansoni eggs or PBS. pLN CD11cHiMHCII+ cell depletion was assessed on day 7 (A and B), and IL-4-eGFP+B220CD4 
CCR3CD117 basophil depletion in the blood on day 4 (C and D), after egg injection. On day 7, pLN cells from naive or egg-injected, PBS (white or black 
bars) or DTx (gray bars), IgG or Mar-1–treated mice were cultured for 72 h with SEA or medium alone. The supernatants were collected, and SEA-specific 
cytokine production (medium alone values subtracted) was assessed by ELISA (E and F). pLN cells were also assessed on day 7 for IL-4-eGFP expression  
(G and H). One of three experiments. Error bars are mean ± SEM of four to seven mice/group.
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pattern observed in bulk splenocyte cultures (Fig. 2 C), purified 
CD4+ T cells displayed severely impaired IL-4, IL-5, IL-10, 
and IL-13 production (Fig. 2 E). This impairment was not re-
stricted to the Th2 cytokines, but also affected CD4+ cell secre-
tion of the Th1 cytokine IFN- (Fig. 2 F and Fig. S1 B), 
suggesting a non-CD4+ T cell source for a proportion of the 
IFN- detected after stimulation of splenocytes from infected 
DTx-treated mice (Fig. 2 D). The identity of the non-CD4+ 
IFN- producers evident after CD11c depletion of egg injected 
or infected mice remains to be determined, but is likely an in-
nate cell type less reliant on DCs for activation than T cells.

To further investigate the ramifications of CD11c de-
pletion on the CD4+ T cell response in infected mice, we 

(infection; Fig. 2 D). The different levels of IFN- observed in 
the two models may be caused by regulatory networks in place 
by week 4 of active infection not being developed in the acute 
egg injection system, or it may be that eggs alone provide a 
more robust stimulus for IFN- than infection. Irrespective of 
this, the cumulative effect in both models was a shift in the cyto-
kine balance from Th2 to IFN-, a profile previously shown 
to result in increased pathology and mortality during murine 
schistosome infection (Stadecker et al., 2004).

To specifically assess the impact of CD11c depletion on 
Th2 cells, splenic CD4+ T cells were purified from infected 
mice and stimulated in medium alone or with SEA in the pres-
ence of irradiated splenocytes from naive mice. Similar to the 

Figure 2.  CD11c depletion compromises Th2 induction and development during schistosome infection. CD11c.DOG mice were treated daily with 
PBS (squares) or DTx (triangles) from day 28 to 39 of S. mansoni infection. Naive (black symbols) and infected (gray symbols) mice were assessed for 
splenic CD11cHiMHCII+ cell depletion on day 40 (A and B) and splenocytes (C and D) from naive or infected PBS (white or black bars)- or DTx (gray bars)-
treated mice, or purified CD4+ T cells and irradiated splenocytes (E and F), were cultured for 72 h with SEA or medium alone. The supernatants were col-
lected, and cytokine production was assessed by ELISA. Splenic CD4+ T cell IL-4 production by naive (black symbols) or infected (gray symbols) mice was 
also assessed by intracellular cytokine staining (G and H). One out of six (A and B), three (C and D), or two (E–H) experiments. Error bars are mean ± SEM 
of four to seven mice/group (B and H) or SEA-specific cytokine production (medium alone values subtracted) by 4 to 7 naive or infected mice/group  
(C and D) or 6 technical replicates for each group of pooled purified CD4+ T cells from infected mice, cultured in medium or SEA (E and F).
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and regulatory T cells in naive or infected mice. The per-
centage of splenic CD4+ or CD8+ T cells was significantly 
reduced in naive or S. mansoni–infected mice after DTx 
treatment (Fig. S4, A and B). This proportional decrease was 
also reflected in effector T cell activation, with a reduced 
proportion of total cells expressing CD4 along with CD25, 
CD69, or CD44 (unpublished data). Importantly, the lower 
Th2 response after DTx treatment was likely not caused by 
increased regulatory T cell activity because these cells were 
also impaired in CD11c-depleted mice, with a reduced pro-
portion of total (not depicted) and gated CD4+ T cells ex-
pressing CD25 and FoxP3, and lower levels of FoxP3 per 
CD4+ cell (Fig. S4 C). Together, this suggests that CD11c 
depletion impairs induction of both effector and regulatory 
CD4+ T cells during the initiation of the response against 
S. mansoni infection.

As well as having a dramatic impact on T cell activa-
tion, CD11c depletion reduced the proportional decrease in 
marginal zone B cells (Fig. S5 A) and increase in follicular  
B cells (Fig. S5 B) seen in infection, while having little ef-
fect on the proportions of total or transitional splenic B cells 
(Fig. S5, C and D). This supports a role for CD11c+ cells 

assessed ex vivo cytokine production by CD4+ T cells, and 
their activation phenotype, by flow cytometry. CD11c 
depletion significantly reduced IL-4 production by splenic 
CD4+ T cells from infected mice (Fig. 2 G and H), with a 
similar result also seen for IL-13 (not depicted). Impaired 
expression of IL-4 mRNA was also evident in spleen tissue 
isolated from infected, DTx-treated mice, as determined 
by qPCR (Fig. S3 A).

Not unlike the pLN after egg injection (Fig. 1), or spleens 
during infection (Fig. 2), DTx treatment significantly depleted 
CD11cHiMHCII+ DCs in the liver, one of the main sites of 
egg exposure during S. mansoni infection (Fig. 3, A and B; 
70% efficacy). Consequently, secretion of IL-4, IL-5, IL-10, 
and IL-13 by cultured liver cells was reduced in CD11c- 
depleted mice (Fig. 3 C), whereas IFN- was not significantly 
affected (Fig. 3 D). IL-4 production ex vivo was also im-
paired in effector CD4+ T cells from livers of infected, DTx-
treated mice, as measured by flow cytometry (Fig. 3, E and F), 
and in liver tissue, as determined by qPCR (Fig. S3 B).  
Similar results were seen for IL-13 (unpublished data).

In addition to dramatically reducing T cell cytokine pro-
duction, CD11c depletion altered proportions of both effector 

Figure 3.  CD11c depletion during schistosome infection impairs the liver Th2 response. CD11c.DOG mice were treated daily with PBS (squares) or 
DTx (triangles) from day 28 to 39 of S. mansoni infection. Naive (black symbols) and infected (gray symbols) mice were assessed for liver CD11cHiMHCII+ 
cell depletion on day 40 (A and B), and liver cells from naive or infected PBS (white or black bars)- or DTx (gray bars)-treated mice cultured for 72 h with 
SEA or medium alone. The supernatants were collected, and cytokine production was assessed by ELISA (C and D). Liver CD4+ T cell IL-4 production by 
naive (black symbols) or infected (gray symbols) mice was also assessed by intracellular cytokine staining (E and F). One of three (A and C–F) experiments, 
or combined data from three experiments (B). Error bars are mean ± SEM of four to seven mice/group, with liver cells combined in groups where cell 
numbers were restrictive.
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cannot exclude a contribution by these cell types in the Th2 
process, a major role during induction is unlikely.

In relation to this, previous work has demonstrated un-
impaired Th2 development in S. mansoni–infected basophil 
(FcR chain)-deficient mice (Jankovic et al., 1998) or in 
Nippostrongylus brasiliensis–infected Mar-1-treated or IL-3 de-
ficient mice (Kim et al., 2010), suggesting that the lack of re-
quirement for basophils that we have observed is neither a 
peculiarity of our laboratory, nor restricted to schistosome 
infection. It is possible that basophils may only be important 
for Th2 development in unusual settings, such as protease-
driven responses, or in the case of helminths that are rela-
tively poor inducers of Th2 immunity (Finkelman, 2009).

Concluding remarks
Our data strongly indicate that CD11c+ DCs are the key ini-
tiators of the CD4+ T cell response to S. mansoni and that 
their depletion results in a strikingly impaired Th2 cytokine 
profile and a shift toward IFN- production by non-CD4+ 
cells. Remarkably, even in the complex setting of schisto-
some infection, this was apparent despite incomplete de
pletion of DCs, suggesting that other APCs are unable to 
substitute for them in the Th2 priming role. It will be inter-
esting to see if CD11c depletion has a similar impact on 
CD4+ T cell effector function at later stages of infection, 
where APCs such as B cells might be expected to take on a 
more dominant role.

Although CD11c depletion had a major effect on Th2 
response induction in both egg injection and infection ex-
periments, it was not completely ablated in either setting. It 
is likely that the low level Th2 response remaining after DTx 
treatment of egg-injected or infected mice will have been 
primed by residual DCs, and could be further enhanced dur-
ing infection by cross-reactive CD4+ T cell responses gen-
erated against larval and adult parasites before the start of 
CD11c depletion.

It is probable that there will be variability in the level of 
requirement for CD11c+ APCs for Th2 induction depend-
ing on the system in study, to reflect the multiplicity of Th2 
environments that can be generated, a consequence of which 
may be equal diversity in inductive processes. However, 
our data support previous studies using similar depletion 
strategies that indicate that CD11c+ cells are important for 
Th2 Ab in allergy (Kool et al., 2008) and for expulsion of  
N. brasiliensis (Ohnmacht et al., 2009). Further, we have  
established that CD11c depletion using the CD11c.DOG 
mice also dramatically reduces Th2 induction against both 
N. brasiliensis and Heligmosomoides polygyrus nematode infec-
tions (unpublished data).

The data presented in this report demonstrate that 
CD11c+ DCs are not redundant during initiation of Th2  
immune responses, supporting the wide literature available 
illustrating the ability of murine or human DCs to prime Th2 
responses against helminth Ag or allergens. Thus DCs, in ad-
dition to being sufficient for Th2 induction in many systems, 
can also be a fundamental requirement for it.

in the coordination of B cell migration from the marginal zone 
to the follicles, likely via their activation of CD4+ Th cells.

In terms of Ab production, and indicative of altered Th2 
development, serum levels of IgE were significantly reduced in 
infected DTx-treated mice (Fig. S5 E). However, IgM, IgG1, 
and IgG2c were not significantly altered (Fig. S5, F–H). This 
suggests that CD11c+ DCs are not critical for IgM or IgG pro-
duction, or could reflect a longer half-life of IgM and IgG ver-
sus IgE in serum, with 11-d depletion not being sufficient to 
see a difference in IgM or IgG profiles. Additionally, the Ab 
response against larvae and adult worms in the 4 wk preceding 
DTx treatment is likely to cross-react against egg Ag.

The impact of CD11c depletion on Th2 induction could 
not be attributed to differences in Ag load or pathology, as 
DTx-treated mice showed no significant alteration in parasi-
taemia (adult worm numbers, or eggs in liver or gut tissue), 
weight loss, splenomegaly, or hepatomegaly (unpublished 
data). At this time point, pathology and granuloma formation 
was minimal in both control and CD11c-depleted mice, as  
fibrotic disease takes several more weeks of egg exposure to 
develop. However, we predict that the eventual outcome of 
impaired Th2 function, reduced regulation, and less restrained 
innate cell IFN- production in DC-depleted infected ani-
mals would be inflammatory pathology later in infection.

We also assessed the impact of CD11c depletion on sev-
eral other innate cell types that could be involved in the Th2 
induction process during schistosome infection. A clear role 
for macrophages in regulation of Th2 immunity has been 
described (Martinez et al., 2009), not least during S. mansoni 
infection (Herbert et al., 2004), but evidence to support an 
important role for macrophages in Th2 priming remains  
to be provided. Similarly, although eosinophils can express 
MHCII, process and present Ag (Spencer and Weller, 2010), 
and are a major innate cell type associated with Th2 settings, 
eosinophil-ablated mice develop expected pathology and in-
tact Th2 responses during S. mansoni infection (Swartz et al., 
2006). Finally, although basophils are transiently recruited to 
the dLN after injection of S. mansoni eggs (Perrigoue et al., 
2009), and may be involved in Th2 promotion during nem-
atode infection or in response to proteases (Perrigoue et al., 
2009; Sokol et al., 2009; Yoshimoto et al., 2009), it is not 
yet clear whether they are a key player in this process 
(Finkelman, 2009; Lambrecht and Hammad, 2009; Voehringer, 
2009; Kim et al., 2010; Paul and Zhu, 2010). In schistoso-
miasis this seems unlikely, given our results showing that  
administration of Mar-1 Ab to deplete FcR1+ cells has no 
significant effect on the Th2 response induced by schisto-
some eggs (Fig. 1).

The proportion of CD11b+F4/80+CD11c/Dim macro-
phages was not reduced, and indeed increased, after DTx 
treatment of CD11c.DOG mice (Fig. S6). Similarly, in  
the infection setting, the proportion of eosinophils (Siglec 
F+Gr1Int) or basophils (CD19Siglec FCD117FcR1+) 
observed in CD11c.DOG mice that had received DTx was 
not adversely affected (Fig. S6), although Th2 cytokines were 
markedly impaired (Fig. 2 and Fig. 3). So, although we  
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up as follows: cells were rested overnight, stimulated with 10 ng/ml PMA and 
1 µg/ml Ionomycin (Sigma-Aldrich) for 2 h, and then stimulated with Golgi 
Stop (BD) for an additional 3 h. After restimulation, intracellular cytokine 
staining was set-up as follows: after 72 h, 10 ng/ml murine rIL-2 (Peprotech) 
was added to pLN cell cultures. After an additional 18 h, cells were stimulated 
with PMA and ionomycin and treated with GolgiStop. After FcR-Block, 
cells were stained with CD4-FITC or CD4-APC/eFluor780, fixed with 1% 
isotonic formaldehyde, permeabilized with BD Perm/Wash buffer (BD), and 
stained with IL-4-APC, IFN--Alexa Fluor 488, or IFN--APC in BD 
Perm/Wash buffer. Identification of intracellular cytokine–positive cells was 
determined using appropriate isotype controls. All Abs for flow cytometry 
were purchased from BD, eBioscience, or BioLegend. Samples were acquired 
using a FACS LSR II or FACSCanto II flow cytometer using BD FACSDiva 
software and analyzed with FlowJo v.8 software (Tree Star, Inc.).

Cytokine and serum Ab analysis. Cytokines and serum antibodies were 
measured by ELISA. Paired capture and detection Abs (produced from hy-
bridomas in-house or purchased from R&D Systems, BD, or eBioscience) 
were used for analysis of murine IL-4, IL-5, IL-10, IL-13, and IFN-. Plates 
(NUNC Maxisorp) were washed with 0.05% Tween 20 in PBS and blocked 
with 10% NCS/PBS. Recombinant cytokine standards (Peprotech or BD) 
were used to determine quantity using a standard curve. Plates were devel-
oped by incubation with 50 µl 1:1,000 HR-peroxidase–labeled streptavidin 
(KPL), and absorbance was read at 450 nm after addition of 100 µl TMB 
substrate solution (Sigma-Aldrich) and 100 µl 0.18 M H2SO4 using a Labora-
tory Systems Multiskan Ascent plate reader. Serum was collected 1 d before 
the end of infection experiments. Total IgE was measured using paired cap-
ture and detection antibodies (BD) and recombinant murine IgE (BD) to 
assess quantity using a standard curve. Plates were blocked, washed, devel-
oped, and read as above. SEA-specific IgG1, IgG2c, and IgM Ab titers were 
determined using endpoint dilutions measured by ELISA. Plates were coated 
with 0.25 µg/well of SEA in 0.1 M, pH 9.6, Carbonate/Bicarbonate buffer, 
washed, and blocked with 1% BSA/PBS. Serum samples were analyzed  
using serial twofold dilutions. SEA-specific isotypes were detected using  
alkaline phosphatase–conjugated goat anti–mouse IgG1, IgG2c, or IgM anti
bodies (SouthernBiotech). Absorbance at 405 nm was determined as above 
after addition of 50 µl PNPP substrate (SouthernBiotech).

Real-time RT-PCR. Total RNA was extracted from spleen, liver, or gut 
(illeal) tissue samples that had been snap frozen individually in 0.5 ml of 
TRIzol reagent (Invitrogen). Samples were defrosted, homogenized using a 
QIAGEN TissueLyser, and total RNA was extracted as per manufacturer 
instructions. cDNA was then generated from individual RNA samples using 
Superscript III Reverse Transcriptase and Oligo (dT) (Invitrogen). Quanti-
tative RT-PCR was performed using a Light Cycler 480 II Real-Time 
PCR machine and software 1.5.0 SP3 (Roche). The relative concentra-
tion of mRNA for the genes of interest was assessed using LightCycler-
DNA master SYBR Green I (Roche) and by comparison to a serially diluted 
standard of pooled cDNA. The mean concentration for each sample was de-
termined from two technical repeats, with mRNA levels for each sample 
normalized to GAPDH to give a value for the gene of interest in arbi-
trary units. Primers used for the detection of gene expression were as  
follows: CD11c, sense 5-ATGGAGCCTCAAGACAGGAC-3, antisense 
5-GGATCTGGGATGCTGAAATC-3; IL-4, sense 5-GAGAGATC
ATCGGCATTTTGA-3, anti-sense 5-TCTGTGGTGTTCTTCGT
TGC-3; GAPDH, sense 5-AATGTGTCCGTCGTGGATCT-3, anti-
sense 5-CCCAGCTCTCCCCATACATA-3.

Statistical analysis. Statistical analyses were performed using GraphPad 
Prism 4 software. Experimental groups were compared by one-way ANOVA 
for the absence of significant variance before collation. Student’s t tests were 
used where necessary to determine if there were any significant differences 
between sample groups. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Online supplemental material. Fig. S1 shows reduced CD4+ T cell IFN- 
production after CD11c depletion of schistosome egg-injected or infected 

MATERIALS AND METHODS
Animals, infections, and immunizations. Experiments were performed 
using CD11c.DOG (Hochweller et al., 2008) x C57BL/6 or CD11c.DOG 
x 4get IL-4-eGFP (Mohrs et al., 2001) F1 mice, which were maintained  
under specific pathogen–free conditions at the University of Edinburgh Animal 
Facilities and used at 8–12 wk of age. Biomphalaria glabrata snails infected 
with S. mansoni were obtained from F. Lewis (Biomedical Research Insti-
tute, Rockville, MD). Experimental mice were infected percutaneously 
with 80 cercariae. S. mansoni eggs were isolated from C57BL/6 mouse 
livers and stored at 80°C. Mice were immunized s.c. in each rear footpad 
with 2,500 eggs in 50 µl PBS. For CD11c depletion, mice were injected i.p. 
daily with 8 ng/g diptheria toxin (Sigma-Aldrich) in PBS or with PBS alone. 
For basophil depletion, mice were injected i.p. on days 1, 1, and 3 with 10 µg 
hamster IgG or anti-FcR1 (Mar-1; eBioscience) Ab. Endotoxin-free 
soluble egg Ag (SEA) from S. mansoni was prepared in-house as previously 
described (MacDonald et al., 2001). All experiments were approved under a 
Project License granted by the Home Office (UK) and conducted in accor-
dance with local guidelines.

Cell isolation and culture. Single-cell suspensions were prepared using 
the following methods. Spleens and LNs were diced and digested at 37°C for 
15 min with 1.75 Wunsch Units/ml Liberase CI (Roche) and 80 Kunitz 
Units/ml DNase I type VI (Sigma-Aldrich) in HBSS (Sigma-Aldrich) con-
taining 50 U/ml penicillin and 50 µg/ml streptomycin (Invitrogen). 100 µl 
0.1 M, pH 7.3, EDTA (Ambion) stop solution per milliliter was then added, 
and the tube was topped off with DME containing 50 U/ml penicillin and 
50 µg/ml streptomycin. The resulting suspension was then passed through a 
70-µm cell strainer to obtain a single-cell suspension. For splenocytes, RBCs 
were lysed and cells counted and resuspended for use. Livers were perfused, 
diced, and digested at 37°C for 30 min using the aforementioned method. 
The digested liver was then passed through a 100-µm cell strainer with the 
aid of a syringe plunger. Leukocytes were separated from other liver cells by 
resuspension in 33% isotonic Percoll (GE Healthcare) and centrifugated at 
700 g. Pelleted cells were resuspended and passed through a 40-µm cell 
strainer to obtain a single-cell suspension and remove S. mansoni eggs. RBCs 
were lysed and cells were counted and resuspended for use. Single-cell sus-
pensions of splenocytes (2 × 106 cell/ml) or LN or liver cells (106 cell/ml) 
were cultured in X-vivo 15 medium (BioWhittaker) containing 2 mM 
L-Glutamine and 50 µM 2-ME (Invitrogen) in 96-well plates at 37°C in a 
humidified atmosphere of 5% CO2 with or without 15 µg/ml SEA. Super-
natants were harvested from the cultures after 72 h. Purified CD4+ T cell 
were restimulated with irradiated splenocytes (1 CD4+ T:10 splenocytes). 
Purifications were performed using Miltenyi Biotec CD4 beads and LS col-
umns according to the manufacturer’s instructions (> 90% purity).

Flow cytometry. After FcR-Block (2.4G2), cell surface markers for several 
different cell populations were analyzed. Staining for CD11c+ subsets was 
performed using the following mAb conjugations: CD11c-APC, MHCII-
PerCP/Cy5.5, B220-APC/eFluor780, CD11b-PE, and CD8-PE/Cy7. In 
pLN and spleen, DCs were defined as CD11cHiMHCII+, and in the liver as 
CD11cHiMHCII+CD11bLo. For egg injection experiments, IL-4-eGFP+  
basophils were identified by exclusion of cells expressing CD4-APC,  
CCR3-PE, CD117-PerCP/Cy5.5, or B220-APC/eFluor780. For infection 
experiments, FcR1-FITC+ basophils were identified after surface stain-
ing to exclude cells expressing Siglec-F-PE, CD19-Alexa Fluor 700 or 
eFluor450, and CD117-PerCP/Cy5.5. Macrophages were identified using 
F4/80-FITC, CD11b-PE, and CD11c-APC, and eosinophils with Siglec-
F-PE and Gr-1-APC. T cells were stained with CD4-APC/eFluor780, 
CD8-PE/Cy7, CD25-PerCP/Cy5.5, and FoxP3-APC. FoxP3 staining 
was performed as per manufacturer instructions (eBioscience). B cells were 
stained with B220-APC/eFluor780, CD21-FITC, and CD23-PE. IL-4-
eGFP was measured on LN cells directly ex vivo, with naive mice expressing 
negligible levels of eGFP (0.5–1.5% of CD4+ T cells). Intracellular cytokine 
production was measured either directly ex vivo or after restimulation. Intra
cellular cytokine staining of splenocytes or liver leukocytes ex vivo was set 
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mice. Fig. S2 details the impact of CD11c depletion on DC subsets during 
infection. Fig. S3 depicts impaired IL-4 mRNA expression in spleens and liv-
ers of infected mice after CD11c depletion. Fig. S4 demonstrates that CD11c 
depletion impacts both effector and FoxP3+ regulatory T cells during infec-
tion. Fig. S5 shows that CD11c depletion during infection alters the propor-
tions of splenic B cells, and reduces serum levels of IgE. Fig. S6 illustrates that 
the proportions of macrophages, eosinophils, and basophils found during in-
fection are not reduced after CD11c depletion. Online supplemental material 
is available at http://www.jem.org/cgi/content/full/jem.20100734/DC1.
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