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The extraordinary genetic diversity of 
HIV-1 remains one of the most funda-
mental challenges to AIDS vaccine de-
sign. Globally, the diversity among HIV-1 
subtypes may exceed 35% in the viral 
envelope sequence (1). Within an in-
fected individual, quasispecies diversity 
arises as a result of host and other selec-
tive pressures and can surpass the extent 
of diversity in influenza viruses during 
an outbreak (1). When HIV is transmit-
ted from person to person, however, a 
dramatic evolutionary bottleneck oc-
curs, with 80% of heterosexual infec-
tions apparently initiated by a single 
variant (2). After transmission, mutational 
escape and reversion rapidly shape HIV 
evolution (3, 4). These effects are so 
dramatic, in fact, that they are detect-
able at the population level (5–10). The 
existing global HIV-1 diversity, there-
fore, has arisen as a result of the >50 
million cumulative infections that have 
occurred since the genesis of the epi-
demic (11), via continual cycles of infec-
tion bottlenecks followed by intrahost 
viral evolution.

Determining the exact kinetics and 
dynamics of the duel between host and 
virus in the early stages after infection 
has been a challenge, in part because of 
the difficulty of identifying very early 
cases of HIV transmission and the uncer-
tainty in pinpointing the specific viral 

sequence responsible for establishing in-
fection. CD8+ T cells have long been 
thought to be instrumental in the initial 
decline in plasma viremia (12, 13), but a 
precise definition of the earliest adaptive 
antiviral responses remains elusive in part 
because most immunological studies have 
used reference or consensus rather than 
autologous virus reagents. Although 
methods to identify transmitted HIV env 
sequences have recently been developed 
(14), to date these have not been used to 
define the entire sequence of the trans-
mitted founder virus or to compre
hensively define the earliest immune 
responses to the infecting strain.

In this issue, papers by Salazar- 
Gonzalez et al. (on p. 1273) (15) and 
Goonetilleke et al. (on p. 1253) (16) 
help address these fundamental knowl-
edge gaps through the comprehensive 
virologic and immunological assessment 
of individuals with acute HIV infection. 
In a sense, they have performed the ideal 
experiment. By identifying persons  
before seroconversion, pinpointing the 
transmitted virus, and assessing immune 
responses to that particular variant as it 
evolves, they provide a novel view of 
host and viral dynamics during the earli-
est stages of infection.

Revelations of early infection
The studies by Salazar-Gonzalez et al. 
(15) and Goonetilleke et al. (16) both 
used an optimized version of the sin-
gle-genome amplification (SGA) tech-
nique originally described by Palmer  

et al. (17, 18) to determine the full-length 
transmitted virus sequence and to charac-
terize early intrahost viral evolution. This 
technique has recently become the gold 
standard for the characterization of the 
transmitted founder virus. SGA involves 
extraction of HIV RNA from plasma, 
followed by its full-length in vitro re-
verse transcription into cDNA. The 
cDNA is then endpoint-diluted such 
that <20% of reactions yield an ampli-
con by nested polymerase chain reac-
tion (PCR), which is then sequenced 
directly. Although SGA is considerably 
more costly and labor-intensive than 
traditional molecular cloning approaches, 

it eliminates many of the confounding 
effects that previously complicated the 
identification of the transmitted virus, 
including in vitro PCR recombination, 
Taq-induced nucleotide misincorpora-
tion, PCR template sampling bias, and 
cloning errors.

Using this SGA technique, Salazar-
Gonzalez et al. (15) extend their earlier 
studies of HIV-1 envelope (14) to re-
construct the full-length founder virus 
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By identifying persons prior 
to seroconversion, pinpoint-

ing the transmitted virus, 
and assessing immune re-
sponses to that particular 
variant as it evolves, the 

authors provide a novel view 
of host and viral dynamics 

during the earliest stages of 
infection.

T
h
e 

Jo
u
rn

al
 o

f 
E
xp

er
im

en
ta

l 
M

ed
ic

in
e

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/206/6/1215/1910041/jem
_20091094.pdf by guest on 09 February 2026



1216 SGA REVEALS HIV-1 EVOLUTION | Brumme and Walker

These “personalized” mutations may not 
be frequent enough to reach statistical 
significance in population-based stud-
ies, but they may impact the individu-
al’s disease course as profoundly as the 
selection of known escape variants. In-
deed, Goonetilleke et al. (16) show that 
some of the earliest responses (and escape 
events) arise against novel epitopes whose 
sequences differ to some extent from 
consensus virus sequences. This finding 
underscores the importance of expand-
ing our knowledge of immune escape 
through detailed individual-level studies. 
Ultimately, the integration of macro- 
and microviewpoints will bring us closer 
to designing a vaccine that will address 
the combined challenges of intraindivid-
ual and global HIV sequence diversity.

Caveats and practical considerations
Despite the importance of these studies, 
some caveats merit mention. First, al-
though SGA currently represents the 
gold standard for identifying transmitted 
founder viruses, the technique is still lim-
ited by in vitro errors introduced by re-
verse transcriptase (although not Taq) 
enzymes (18). Its chief drawback, how-
ever, is a practical one: SGA is prohibi-
tively cost- and labor-intensive, and thus 
remains inaccessible to many researchers. 
It is therefore important to stress that, de-
pending on the type of study being un-
dertaken, SGA may not be required. For 
studies seeking a single (consensus) se-
quence per patient, for example, conven-
tional approaches remain appropriate.

Similarly, although the use of pro-
teome-wide autologous 18-mer peptides 
allowed the identification of novel, ul-
tra-early CD8+ T cell responses in these 
studies, the cost of custom full-proteome 
peptide synthesis renders this technique 
impractical as a routine approach. Al-
though consensus/reference peptides 
may underestimate responses by up to 
30% (29), their use has been invaluable 
to our understanding of HIV-specific 
immune responses, and they will remain 
an important instrument in our research 
toolkit until alternative approaches be-
come more accessible. Furthermore, 
even with the use of autologous peptides, 
some responses may still go undetected 

individuals with diverse outcomes, pro-
vides further support that CTLs are im-
portant in establishing the viral set point.

The techniques used in these studies 
allowed the authors to show that the 
well-characterized “immunodominant” 
CD8+ T cell epitopes in HIV-1 (23) may 
not be the earliest targets of the acute 
phase CTL response in all individuals. 
Instead, some of the earliest targets in-
clude novel epitopes not currently fea-
tured in HIV immunology and sequence 
databases (http://www.hiv.lanl.gov) and 
thus would not have been evaluated in 
previous studies, which identified B*57-
TW10 among the earliest known escap-
ing epitopes in studies of large cohorts 
(24, 25). Goonetilleke et al. argue that 
the decline in peak viremia is driven in 
part by the recognition (and subsequent 
escape) of these novel epitopes. The 
classical immunodominant responses, on 
the other hand, seem to arise later and 

may instead be instrumental in maintain-
ing viral set point (16).

The combination of virus sequence 
data and early CD8+ T cell responses also 
provides important insights into immune 
escape. Recently, HLA-restricted CTL 
escape mutations have been mapped at 
the population level (7–9, 26, 27), dem-
onstrating that escape pathways are re-
producible and broadly predictable based 
on host HLA allele expression. These 
population-level studies also indicate that 
HIV-1 is limited, or constrained, in its 
ability to mutate in response to immune 
pressures (28), raising the possibility that 
these constraints could be exploited for 
vaccine design. In addition to these 
known escape pathways, however, each 
individual is also likely to develop atypi-
cal (or possibly unique) mutations in the 
context of their autologous viral se-
quence and CD8+ T cell repertoire. 

sequence in 12 acutely infected individ-
uals identified before full antibody sero-
conversion. The use of SGA allowed the 
unambiguous identification of every nu-
cleotide in >95% of the sequenced ge-
nomes, and full reconstruction of all 
founder viruses, including one case  
of dual-variant transmission (15). The 
founder sequences encoded complete 
open reading frames for all genes. All of 
the resulting virions were replication 
competent and CCR5 tropic. How-
ever, despite the CCR5 tropism, the 
founder viruses were unable to replicate 
in autologous monocyte-derived mac-
rophages, suggesting that HIV-1 repli-
cation in macrophages does not contribute 
substantially to virus production in the 
early stage of infection.

In the companion paper, Goonetilleke 
et al. (16) define longitudinal proteome-
wide T cell responses in three individuals 
using synthetic overlapping 18-mer pep-
tides matched to the transmitted virus and 
genetic variants arising within each indi-
vidual, an approach that has traditionally 
been precluded by cost and sample avail-
ability. Comprehensive analysis across all 
expressed viral proteins revealed that im-
mune escape occurs as early as 25–32 d 
after estimated infection. This is a few 
days earlier than previously reported in 
humans (3), but is consistent with studies 
in nonhuman primate models of SIV in-
fection (19). These new data demonstrate 
that some of the earliest HIV-specific 
CTL responses are directed against previ-
ously uncharacterized epitopes (16). This 
finding may otherwise have been over-
looked if individuals had not been re-
cruited so early, and/or if consensus or 
optimal peptides had been used to screen 
for CD8+ T cell responses.

The study by Goonetilleke et al. also 
provides a novel perspective on the con-
tribution of CTLs to acute-phase viremia 
decline. Previously, this contribution has 
been inferred based on temporal correla-
tions (12, 13), CD8+ T cell depletion 
studies in nonhuman primates (20, 21), 
and epidemiological data (22). Using 
mathematical modeling, Goonetilleke  
et al. (16) suggest that CTLs play a causal 
role in the resolution of acute phase  
viremia. This observation, which will re-
quire confirmation in larger studies of  

These new data demonstrate 
that some of the earliest 

HIV-specific CTL responses 
are directed against pre-
viously uncharacterized 

epitopes.
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licative costs associated with these 
mutations [38–40]) represent key driv-
ers of HIV immune containment in in-
dividuals who successfully control 
viremia. If such potent, ultra-early re-
sponses are critical to establishment of 
the viral set point, this would have pro-
found implications for vaccine design 
and argues strongly for expanded study 
of early responses and their associated 
replicative costs to the virus.

Finally, as the authors acknowledge, 
the documentation of early positive se-
lection events that were not explained 
by escape from CD8+ T cells, neutraliz-
ing antibodies, or reversion does not 
rule out the possibility that innate im-
mune responses (41) may play a critical 
role in early HIV control.

The studies by Salazar-Gonzalez et al. 
(15) and Goonetilleke et al. (16) take  
us a step closer to understanding the ear-
liest events after acute HIV infection, 
and clearly demonstrate that broader 
collaboration on specific cohorts, includ-
ing the incorporation of immunological 
and virologic data, can fuel biomedical 
advances that would otherwise not en-
sue. Such collaboration will clearly be 
needed to solve the puzzle of how HIV 
has, and continues to be, shaped by im-
mune selection. The big challenge that 
remains is how best to exploit this new 
information to bring us closer to the 
generation of an effective vaccine that 
can overcome the enormous challenge 
of HIV evolution and diversity.
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