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The Mre11-Rad50-Nbs1 (MRN) complex functions in the repair of DNA double-strand
breaks (DSBs) by homologous recombination (HR) at postreplicative stages of the cell cycle.
During HR, the MRN complex functions directly in the repair of DNA DSBs and in the
initiation of DSB responses through activation of the ataxia telangiectasia-mutated (ATM)
serine-threonine kinase. Whether MRN functions in DNA damage responses before DNA
replication in GO/G1 phase cells has been less clear. In developing G1-phase lymphocytes,
DNA DSBs are generated by the Rag endonuclease and repaired during the assembly of
antigen receptor genes by the process of V(D)J recombination. Mice and humans deficient
in MRN function exhibit lymphoid phenotypes that are suggestive of defects in V(D)J
recombination. We show that during V(D)J recombination, MRN deficiency leads to the
aberrant joining of Rag DSBs and to the accumulation of unrepaired coding ends, thus
establishing a functional role for MRN in the repair of Rag-mediated DNA DSBs. Moreover,
these defects in V(D)J recombination are remarkably similar to those observed in ATM-
deficient lymphocytes, suggesting that ATM and MRN function in the same DNA DSB
response pathways during lymphocyte antigen receptor gene assembly.

DNA double-strand breaks (DSBs) are gener-
ated by genotoxic agents and as intermediates
of several important physiological processes in-
cluding antigen receptor gene assembly in de-
veloping lymphocytes. The cellular response to
DNA DSBs relies on the sensing of these breaks
and the subsequent initiation of effector path-
ways that enforce cell cycle checkpoints, pro-
mote DSB repair, and mediate cell death when
DSBs are not efficiently repaired (1—4). DNA
DSBs generated at stages of the cell cycle after
DNA replication are repaired primarily by ho-
mologous recombination (HR), a process that
uses the sister chromatid as a template for pre-
cise repair (4). DNA DSBs generated before
DNA replication in GO/G1-phase cells are re-
paired primarily through nonhomologous end

B.A. Helmink and A.L. Bredemeyer contributed equally to
this paper.

www.jem.org/cgi/doi/10.1084/jem.20081326

joining (NHE]), which religates broken DNA
ends in a manner that can be imprecise (4). Very
little overlap exists in the protein machinery
that carries out DSB repair by NHE] and HR.
The Mrel1, Rad50, and Nbs1 proteins form
the Mrel1-Rad50-Nbs1 (MRN) complex,
which is thought to function primarily in DNA
DSB responses in cells that have undergone
DNA replication (5, 6). MRN is recruited to
the sites of newly generated DNA DSBs where
it functions to recruit and activate the ataxia tel-
angiectasia-mutated (ATM) serine/threonine
kinase, which is a major initiator of DNA dam-
age responses (7—12). However, ATM may be
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activated in an MRN-independent fashion in response to
some DSBs like those generated at stalled replication forks,
suggesting that the requirement for MRN in initiating DSB
responses may be context dependent (9). MRN also has sev-
eral DNA damage response functions that are downstream of
ATM activation. In this regard, analyses of Nbs1 mutants have
implicated MRN in the regulation of cell cycle checkpoints
and the activation of apoptotic pathways in response to DNA
DSBs (13, 14). Mrel1l has endonuclease and exonuclease ac-
tivities that are important for DNA end processing, and Mre11
dimers may align and bridge two DNA ends during HR -me-
diated DSB repair (5, 6, 15). Rad50 also has DNA binding
activities that may be involved in tethering sister chromatids
during HR (16-20). In response to DSBs, ATM phosphory-
lates Mre11, Rad50, and Nbs1, which could potentially mod-
ulate their functions in DSB responses (21-24). Importantly,
although Mrell, Nbs1, and Rad50 have distinct functions,
these individual components are thought to function only in
the context of the MRN holocomplex.

Whether the MRN complex functions in the response to
and NHE]J-mediated repair of DSBs in G0/G1-phase cells has
been much less clear. DNA end joining by NHE] compo-
nents purified from human cellular extracts was augmented by
MRN in vitro; however, the repair activity of purified Xeno-
pus laevis NHE] components was not affected by the addition
of MRN (25, 26). MRX, the yeast orthologue of MRN,
functions during NHEJ in the budding yeast Saccharomyces
cerevisiae but not in the fission yeast Schizosaccharontyces pombe
(27-29). In mammalian cells, MRN is not recruited to the site
of DSBs generated by the I-scel endonuclease in G1-phase
cells, and MRN does not appear to be required for the NHE]-
mediated repair of these DSBs (30, 31).

DNA DSBs are generated in all developing lymphocytes
during the assembly of the second exon of antigen receptor
genes from component V, J, and, in some cases, D gene seg-
ments (32). This occurs through the process of V(D)] recom-
bination, which is initiated by the Rag-1 and Rag-2 proteins,
which together form an endonuclease, hereafter referred to as
Rag (33, 34). Rag introduces DSBs at the borders of two re-
combining gene segments and their associated Rag recogni-
tion sequences, which are termed recombination signals (R Ss).
The generation of these DSBs is restricted to cells at the G1
phase of the cell cycle as a result of the rapid degradation of
Rag-2 upon entry into S phase (35). DNA cleavage by Rag
leads to the formation of two hairpin-sealed coding ends and
two blunt phosphorylated signal ends. These DNA ends are
processed and joined by the NHE] pathway of DNA DSB
repair into a coding joint and signal joint, respectively (36,
37). The critical dependence of V(D)J recombination on
NHE] is indicated by the severe joining defects in NHE]-
deficient cell lines and the profound immunodeficiency
observed in mice deficient for NHE] factors required for the
repair of Rag-mediated DNA DSBs (36).

Mice with homozygous-null mutations in the Mrell,
Nbs1, or Rad50 genes exhibit early embryonic lethality;
however, mice and humans with hypomorphic Mrell or
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Nbs1 mutations are viable and exhibit mild immunodefi-
ciency, suggesting that the MRIN complex could function in
the response to or repair of Rag-mediated DSBs generated
during V(D)] recombination (9, 38—45). In developing lym-
phocytes, Rag DSBs activate ATM, which initiates a broad
genetic program and functions in the repair of these breaks
(46-53). In this regard, MRN could function in the activa-
tion of ATM in response to Rag-mediated DSBs and also
downstream of ATM 1in the repair of these DSBs. Consistent
with this notion, Nbs1 associates with Rag-mediated DSBs
generated at T cell receptor loci in thymocytes and MRX
function is required for the joining of signal ends generated
by Rag cleavage in yeast (54, 55). However, analyses of V(D)]
recombination of extrachromosomal substrates in mammalian
nonlymphoid cells deficient in MRN have failed to reveal
any significant defects in coding or signal joint formation
(56-58). In this paper, we show that MRN-deficient lym-
phocytes exhibit defects in V(D)] recombination at endoge-
nous antigen receptor loci and chromosomally introduced
recombination substrates. These findings establish a function
for MRN 1in the response to Rag-mediated DSBs generated
in G1-phase lymphocytes.

RESULTS

Generation of Nbs1™m and Mre11ATLD1/ATLDT gap| pre—B cells
‘We have developed an approach for analyzing the response to
and repair of chromosomal Rag-mediated DSBs in v-abl-
transformed pre—B cell lines, which are hereafter referred to as
abl pre—B cells (48-50). Treatment of these cells with the v-abl
kinase inhibitor STI571 leads to G1 cell cycle arrest, induction
of Rag expression, and the generation of Rag DSBs at the en-
dogenous IgL-k locus and at chromosomally introduced ret-
roviral recombination substrates (48-50, 59). In WT G1-phase
abl pre-B cells these DSBs are rapidly repaired, whereas in cells
deficient in specific DNA repair proteins these DSBs can per-
sist unrepaired for substantial periods of time (48-50).

Mice with homozygous-null mutations at the Mre11, Nbs1,
or Rad50 loci exhibit early embryonic lethality, preventing the
generation of abl pre-B cells that are completely deficient of
any of these proteins (9, 43—45). However, mice that express
hypomorphic Nbs1 or Mre11 alleles are viable (9, 38—40). We
generated several abl pre—B cell lines from mice homozygous
for hypomorphic Mrel1 (Mre1147-P%) and Nbs1 (Nbs1") alleles
(38, 40). The Mre114TP1 allele has a gene-targeted point muta-
tion that generates a premature stop codon, resulting in a C-
terminal truncation of the Mrell protein, which mimics a
mutation that causes ataxia-telangiectasia—like disease (40). Ex-
ons 2 and 3 of the Nbs1 allele were replaced with a neomycin
resistance gene generating the Nbs1™ allele, which encodes a
truncated Nbs1 protein (38).

Independently derived WT, Atm~/~, Nbs1"™, and
Mre [ATEPUVATLDT (referred to as Mre1 1474 in figures) abl pre—
B cell lines were transduced with the pMX-INV retroviral
recombination substrate (Fig. 1 a). The RSs in pMX-INV are
oriented such that rearrangement occurs by inversion, with
the coding and signal joints remaining in the chromosome
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(Fig. 1 a). Bulk populations of abl pre-B cells with pMX-
INV integrants were purified by flow cytometric cell sorting
for the expression of human CD4, which is encoded by the
retrovirus (50). Abl pre—B cells with single pMX-INV inte-
grants were isolated by limiting dilution. We analyze pMX-
INV rearrangement both in clones with single pMX-INV
integrants (Fig. 1, b and ¢; and Fig. S1, available at http://
www . jem.org/cgi/content/full/jem.20081326/DC1) and in
original bulk populations (Fig. 1, d and e) of abl pre-B cells
that have pMX-INV integrants at broadly heterogenous ge-
nomic locations (50).

Atypical joining of Rag-mediated DSBs in MRN-deficient
abl pre-B cells

Induction of Rag expression leads to robust pMX-INV rear-
rangement in Nbs1"/":INV and Mre11ATEPI/ATIDLINT abl
pre—B cell clones (Fig. 1, b and ¢; and Fig. S1). Strikingly,
pMX-INV hybrid joints form at high levels in both Nbs1™/m:
INV and Mre 1 1ATLP/ATLDL INTT abl pre—B cell clones (Fig. 1,
b and ¢; and Fig. S1). Hybrid joints are atypical nonproduc-
tive rearrangements formed by the ligation of a signal end
generated at one Rag DSB to the coding end generated at the
other (Fig. 1 a) (60, 61). pMX-INV hybrid joint formation in
Nbs1"/":INV and Mre1 1ATLP1/ATIDL INTT abl pre—B cell clones
occurs at levels approximating those observed in Atm™/":INV
clones (Fig. 1, b and c; and Fig. S1). In contrast, Southern blot
analyses did not reveal pMX-INV hybrid joint formation in
WT able pre—B cell clones (WT:INV Fig. 1, b and ¢; and Fig.
S1). Similar results were observed when analyzing rearrange-
ment in bulk populations of abl pre-B cells with pMX-INV
integrants at numerous heterogenous chromosomal locations
(Fig. 1, d—f; and Fig. S2). As was observed in Afm™’~ abl pre—
B cells, the increase in hybrid joint formation in Nbs1"/" and
Mre [ATEPT/ATLDT bl pre—B cells occurs during rearrange-
ments by inversion but not during rearrangements by deletion

(unpublished data) (50).

Coding joint formation in MRN-deficient abl pre-B cells

To assess the impact of MRN deficiency on coding joint for-
mation, we initially assayed for the accumulation of unre-
paired coding ends in Nbs1™/":INV and Mre{ [ATEP1/ATLDI,
INT abl pre-B cell clones (Fig. 1 ¢ and Fig. S1 b). After Rag
induction, pMX-INV coding ends were readily detected in
all of the Nbs1™™:INV and some of the Mrel1ATEP1I/ATLDI,
INV abl pre—B cell clones analyzed (Fig. 1 ¢ and Fig. S1 b).
Unrepaired coding ends were also observed after Rag induc-
tion in Atm~/":INV abl pre-B cell clones but not in WT:
INV abl pre—B cell clones (Fig. 1 ¢ and Fig. S1 b) (50). Anal-
ysis of rearrangement in bulk populations of abl pre-B cells
was in general agreement with the clonal analyses (Fig. 1, e
and f). In this regard, unrepaired pMX-INV coding ends
were detected after Rag induction in Nbs1"™:INV,
Mre 1 (ATEPVATLDLINT, and Atm™/~:INV abl pre-B cells but
not WT:INV abl pre-B cells (Fig. 1 e). Quantification re-
vealed that Atm™'~:INV abl pre—B cells had the highest level
of coding end accumulation, whereas Mre1 {4TLP1/ATLDT N/
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cells had the lowest level of coding ends (Fig. 1 f). Sequence
analyses of coding joints from WT:INV, Nbs1"/":INV,
Mye 1 ATEPVATLDTINT, and Atm™'~:INV abl pre—B cells re-
vealed that they were all diversified through N- and P-nucle-
otide additions and nucleotide loss (Fig. S3). Notably, several
of the coding joints formed in the Afm™'~:INV abl pre-B
cells exhibited excessive nucleotide loss (>50 bp), and one
coding joint from the Nbs1™/":IN1 abl pre—B cell had incor-
porated a 108-bp DNA fragment from the IgL-k locus (Fig. S3).
Together, these data demonstrate that coding joint formation
is mildly perturbed in Nbs1"":INV and Mre1 {ATEP1/ATLDI,
INT abl pre—B cells but that most of the coding joints formed
in these cells do not exhibit marked alterations in sequence
diversification.

Signal joint formation in MRN-deficient abl pre-B cells

To assess the function of MRN during signal joint formation,
we introduced the pMX-DELY retroviral recombination
substrate into Nbs 1"/ (Nbs1"/": DELY) and Mre 1 14T-P1/ATLD1
(Mre1 1ATLD1ATIDL. DELSY) abl pre-B cells (Fig. 2 a). pMX-
DELY is a derivative of pMX-INV in which one RS has been
inverted so that rearrangement occurs by deletion with the
signal joint remaining in the chromosome (Fig. 2 a) (50). As
was previously observed in Atm™/~:DELY abl pre—B cells, in-
duction of Rag expression in these cells leads to robust pMX-
DELY signal joint formation with no detectable unrepaired
signal ends (Fig. 2 b) (50). In contrast, unrepaired signal ends
were readily detected after Rag induction in Ku70-deficient
abl pre—B cells (Ku70~/~:DELY), as would be expected given
the requirement for Ku70 in signal joint formation (Fig. 2 b).
The majority of pMX-DELY signal joint PCR products am-
plified from Nbs1"/":DELY, Mre11ATLPVATIDL. DELS WT:
DELY, and Atm~/~:DELY abl pre—B cells can be digested
with ApalLl, which is indicative of precise formation (Fig. 2 ¢).
Indeed, sequence analyses confirmed that most of the signal
joints were generated by the precise joining of two signal
ends; however, a small fraction of imprecise joints were pres-
ent in all cells (Fig. 2 ¢ and Fig. S4, available at http://www
Jjem.org/cgi/content/full/jem.20081326/DC1). Together,
these findings demonstrate that the compromised MRIN
function in the Nbs1"™ and Mre 1 1ATEP1/ATLDT ab] pre—B cells
does not lead to substantial quantitative or qualitative defects
in signal joint formation.

ATM activation in response to Rag DSBs in MRN-deficient
abl pre-B cells

To determine whether ATM is activated in response to Rag
DSBs in MR N-deficient abl pre—B cells, we generated several
independently derived Mrel {ATEPT/ATIDT and Nbs1™/™ abl
pre—B cells that are also deficient in Artemis (Mre{ {ATEP1/ATLDI
Artemis™’~ and Nbs1™/™: Artemis~’~ abl pre—B cells, respec-
tively). As we have previously demonstrated, induction of
Rag in Artemis™'~ abl pre-B cells leads to the accumulation of
unrepaired coding ends at the endogenous IglL-k locus as a
result of the function of Artemis in opening hairpin-sealed
DNA ends (Fig. 3 a) (48, 49, 62). These unrepaired coding
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Figure 1. Rearrangement of pMX-INV in Nbs1™m and Mre11ATLD1/ATLDT ab| pre—B cells. (a) Schematic of the pMX-INV retroviral recombination
substrate, rearrangement intermediates, and products. The retroviral packaging signal ({s), GFP complementary DNA, and IRES-human CD4 (I-hCD4)
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ends activate ATM, as indicated by the phosphorylation of
KAP-1 and H2AX and the nuclear translocation of NF-kB in
response to these DSBs in Artemis™/~, but not Atm™/'~:Arte-
mis~/~, abl pre-B cells (Fig. 3 and Fig. 4 c) (48, 63).

The induction of Rag DSBs in Mrel1ATEPI/ATLDL: Ayt
mis™/~ and Nbs1"™: Artemis~’~ abl pre—B cell lines led to ro-
bust but variable levels of KAP-1 phosphorylation (Fig. 4 a
and Fig. S5, available at http://www.jem.org/cgi/content/
full/jem.20081326/DC1). The variability in KAP-1 phos-
phorylation in these cells does not appear to be a result of dif-
ferences in the levels of KAP-1, Nbs1, or Mrel1 protein but
may, in part, reflect differences in the levels of unrepaired cod-
ing ends generated in these cells after Rag induction (Fig. 4 a
and Figs. S5-S7). Importantly, KAP-1 phosphorylation in
Artemis™’~, Mrel 1ATLPVATLDL: Aptoyyis=/= and Nbs1"/": Arte-
mis~’~ abl pre-B cells is nearly completely abrogated by the
Atm inhibitor KU-55933, demonstrating that ATM is acti-
vated by Rag DSBs in all of these cells (Fig. 4 a and Fig. S5).
Moreover, Rag DSBs promote an Atm-dependent phos-
phorylation of H2AX and nuclear translocation of NF-«kB
in Mre1 {ATEPVATLDY: Artemis=/~ and Nbs1™/™: Artemis™'~ abl
pre—B cell lines (Fig. 4, b and c; Fig. S8; and not depicted).
Finally, treatment of Mrel {ATLPVATIDL.INT and Nbs1m/m:
INT abl pre-B cells with KU-55933 results in a significant
increase in the accumulation of unrepaired pMX-INV cod-
ing ends (Fig. 5). Collectively, our findings demonstrate that
ATM is activated by Rag DSBs in Mrel (ATEP1/ATLDT 3nd
Nbs1"/" abl pre-B cells.

Defects in V(D)J recombination in developing MRN-
deficient lymphocytes

We have demonstrated that deficiencies in MRN function
lead to defects in V(D)J recombination in Mre{ [ATEP1/ATLDI
and Nbs1"" abl pre-B cells. To determine whether similar
defects occur in developing MRN-deficient lymphocytes,
we first analyzed thymocyte development in Nbs1"/" mice.
Nbs 1" mice have a mild reduction in total thymocyte num-
ber but a significant reduction in CD4" and CD8* (single
positive) thymocytes (Fig. 6 a) (38). In addition, they have
diminished numbers of preselection af3-TCR—expressing
(TCR-B™ [TCR-B intermediate]) CD4*/CD8* (double posi-
tive [DP]) thymocytes (Fig. 6 b). Defects in thymocyte develop-
ment that are similar in nature but more severe are observed
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in Atm~’~ mice (Fig. 6) (9, 46, 51, 52, 64). The reduction in
TCR-B™" DP thymocytes in Nbs1"/" mice could be a result
of defects in the survival of these cells or in the developmental
transition of thymocytes through this compartment. How-
ever, the reduction in TCR-B" DP thymocytes in Nbs 1"/
mice could also be explained by defects in TCR-a chain
gene assembly as have been observed previously in Atm™/'~
thymocytes (46, 51, 52).

To directly determine whether MRN deficiency leads to
defects in the repair of Rag-mediated DSBs in developing
lymphocytes in vivo, we generated Mrel [ATEP1/ATLDT apd
Nbs1"™ mice homozygous for a modified TCR-« allele,
TCR-a¥ (Mrel1ATLPVATIDL TCR-9’Y and Nbs1"/": TCR-
ad). The TCR-a¥ allele is identical to the TCR-« allele,
except that the 61 Ja gene segments have been replaced by
two closely linked Ja gene segments (Ja61 and Ja56) (65). As
all Va rearrangements must use one of these two Ja gene
segments, accumulation of unrepaired Rag-mediated DSBs
generated at these Ja gene segments can be readily detected
by Southern blotting of genomic DNA from developing
TCR-aY thymocytes (46).

Genomic DNA isolated from WT:TCR-a¥%, Atm™'":
TCRa9J, Nbs 1"/m: TCR-09"J, and Mre1 1ATEPVATIDL TCRa"d
thymocytes was digested with Stul and hybridized to the Cal
probe, which is directed to the TCR-a constant region gene
immediately downstream of the Jo56 gene segment on the
TCR-a9Y allele (Fig. 7, a and b). These analyses revealed many
nongermline-sized hybridizing fragments as a result of diverse
Va to Ja rearrangements in thymocytes from all of these mice
(Fig. 7 b). In addition, the Atm™'~:TCR-a"J, Nbs1"": TCR-
a¥’¥ and Mrel (ATEPI/ATIDL TCRaY"Y thymocytes each have a
distinct 5.9-kb band, which was not present in WT:TCR-a9J
thymocytes, that we have previously demonstrated is generated
by unrepaired Ja56 coding ends (Fig. 7 b) (46). The presence of
unrepaired Ja56 coding ends in Nbs1"/":TCR-a/Y and
Mre1 {ATEPTVATLDTTCR-9Y thymocytes was confirmed by liga-
tion-mediated PCR (unpublished data). Notably, as was ob-
served for pMX-INV coding ends in the abl pre-B cells, the level
of unrepaired Ja56 coding ends was generally lower in the
Nbs1"/": TCR-a9¥ and Mre1 (ATEPVATLDL TCRadY thymo-
cytes, as compared with the Atm™/~:TCR-aJY thymocytes
(Fig. 7 b). Unrepaired Ja56 signal ends do not accumulate at
higher levels in Atm™'~: TCR-aJ, Nbs1"/": TCR-a¥"J, and

cassette are labeled. The viral LTRs (open arrows) and the RSs (open triangles) are shown. The nonrearranged (NR) pMX-INV and pMX-INV coding ends
(CE), coding joint (CJ), and hybrid joint (HJ) are indicated. The relative position of the pA, pB, and pC oligonucleotides, the C4 probe (bar), and EcoRV (E)
and Ncol (N) endonuclease restriction sites are shown, as are the expected sizes of hybridizing fragments. (b and c) Southern blot analysis of EcoRV-Ncol-
digested (b) or EcoRV-digested (c) genomic DNA from WT, Atm=/=, Mre 11ATLDVATLDT (\fre 1144) and Nbs1™™ abl pre-B cell clones containing the pMX-INV
(INV) retroviral recombination substrate that had been treated with STI571 for the indicated time (hours). The abl pre-B cell clones analyzed each have
single pMX-INV integrants and were derived from parental lines as indicated (parental line, clone number). Expected sizes for bands generated by nonre-
arranged pMX-INV (NR), coding joints (CJ), hybrid joints (HJ), and coding ends (CE) are indicated. (d and e) Southern blot analysis of EcoRV-Ncol-digested
(d) or EcoRV-digested (e) genomic DNA from WT (line A70.2), Atm~/~ (line 2F), Mre 11ATLDVATLDT (Mre 1144, line 48.1), and Nbs 1™ (line 737.3) abl pre-B cells
containing the pMX-INV (INV) retroviral recombination substrate that had been treated with STI571 for the indicated time (hours). (f) Quantification of
rearrangement products from blots in d and e. Products are expressed as a percentage of the total fraction of pMX-INV substrates that had initiated V(D)J
recombination (CJ + HJ + CE) to normalize for differences in cleavage efficiency between the cell lines. The data presented are representative of at least
two experiments.
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Mre 1 1ATIPUVATIDL TCR-@9’Y thymocytes as compared with
WT:TCR-a9"J thymocytes (unpublished data) (46).

Like MRN-deficient abl pre—B cells, Mre1 14TLP1/ATLDI
and Nbs1™™ thymocytes also exhibited an increase in hybrid

a pMX-DELS
5 kb

o

E
v Ko -hCD4 |-|J_'>
[ ]
c4

Rag cleavage
2.2kb
'—'

Joiningl SE

4.2 kb

sJ
b  Mre11#4:DELS’ Nbs1™m:DELS' Ku70*:DELS’
0 24 48 72 0 24 48 72 STI571(h)

0 24 48 72

<+ NR
<+ SJ

<+ SE

0.8 kb — | www - -— - = |e SJ

0.5 kb — _— - -
0.3 kb— - _—

:l CPs

Figure 2. Signal joint formation in MRN-deficient abl pre-B cells.
(a) Schematic of the pMX-DEL* retroviral recombination substrate. All com-
ponents of the retrovirus are as indicated in the Fig. 1 legend. The signal end
(SE) and signal joint (SJ) are indicated. (b) Southern blot analysis of EcoRV-
digested genomic DNA from Nbs 17 (line 675.3), Mre 11ATLDIATDT (jine 48.1),
and Ku70~/~ (line 0.2) abl pre-B cells containing the pMX-DEL> (DEL®) ret-
roviral recombination substrate that had been treated with STI571 for the
indicated number of hours). (¢) PCR analysis of pMX-DEL® signal joints gen-
erated in WT.DELY, Atm=/=:DEL¥, Mre 11ATVATLD1:-DE[S) and Nbs 1™m:DELS abl
pre-B cells treated with STI571 for 72 h. PCR was performed using primers
pB and pC (a), and PCR products were either not digested (—) or digested
with Apall (+). Products were visualized by ethidium bromide staining, and
undigested (SJ) and digested (CP) signal joint products are indicated. The
data presented are representative of at least two experiments.
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joint formation during rearrangements that occur by inver-
sion (Fig. 7 ¢). In this regard, we find that hybrid joints in-
volving the V314 gene segment (TCR-P locus) and the V85
gene segment (TCR-8 locus), which both rearrange by in-
version, are increased in Myel JATEDI/ATLDL and  Nhps1m/m
thymocytes as compared with WT thymocytes (Fig. 7 c).
Furthermore, the level of V314 and V85 hybrid joints is sim-
ilar to that observed in Atm™/~ thymocytes (Fig. 7 c). The
increase in hybrid joint formation during rearrangements that
occur by inversion was not restricted to MR N-deficient T
cells as it is also observed during IgL-k locus rearrangements
in Mre1 {ATLPT/ATIDT and Nbs 1"/ B cells (Fig. 7 d). Together,
these findings demonstrate that developing MRN-deficient
lymphocytes exhibit defects in V(D)J recombination similar
to those observed in Atm-deficient lymphocytes, which are
characterized by an accumulation of unrepaired coding ends

a Atm’:
Rag”  Artemis” Artemis*
0 48 96 0 48 96 0 48 96 STI571(h)

3 kb-— <+ GL

2kb— < Jx1 CE
1.5 kb— < Jx2 CE
b Atm™”:

Rag” Artemis” Artemis”
0 48 96 0 48 96 0 48 96 STI571(h)

a-KAP1

(g
-
(=
g

M 1 focus
O 2 foci
O 3-5 foci

i

Rag” Artemis* Atm’:
Artemis™”

p<0.001

..
T

% of cells with yH2AX foci
(42
o
1

Figure 3. Atm activation by Rag DSBs. (a) Southern blot analysis
showing Jk 1 and Jk2 coding ends (CE) generated in Rag2~/~, Artemis~/,
and Artemis~/~Atm~/~ abl pre-B cells treated with STI571 for the indi-
cated times (hours). Sacl- and EcoRlI-digested genomic DNA was hybrid-
ized to the JkllIl probe. The bands corresponding to the IgL-k locus in the
germline configuration (GL) and Jk1 and Jk2 CEs are indicated. (b) West-
ern blot analysis of phospho-KAP-1 (a-p-KAP-1) and KAP-1 (a-KAP-1)
from STI571-treated cells shown in a. (c) Quantification of y-H2AX nu-
clear foci in the cells from a after 24 h of STI571 treatment. Shown is the
percentage of cells containing one, two, or three to five y-H2AX foci. The
total number of cells analyzed for each genotype was 500 and p-values
were calculated using a two-tailed Fisher's Exact test. Note that y-H2AX
foci were not detected in any of the STI571-treated Rag~/~ abl pre-B
cells. The data presented are representative of at least two experiments.
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and an increase in hybrid joint formation during rearrange-
ments by inversion.

DISCUSSION

In this paper, we have demonstrated that the MRN complex
functions in the repair of chromosomal Rag-mediated DNA
DSBs generated during V(D)] recombination in cultured
pre—B cell lines and in developing lymphocytes. This is indi-
cated by the accumulation of unrepaired coding ends and the
increase in aberrant hybrid joint formation during V(D)] re-
combination in lymphocytes expressing hypomorphic Mrel1
or Nbs1 proteins. As these defects are observed in pre—B cells
arrested at the G1 phase of the cell cycle, our findings estab-
lish that MR N can function in the repair of DNA DSBs gen-
erated at prereplicative stages of the cell cycle.

a Nbs1mm;  Mre11~4:
Artemis” Artemis” Artemis”
- + - + - + jAtm
a-p-KAP1
ooKAP1 [ ———
b 1907 H 1 focus
- p<0.001 p<0.001 O 2 foci
[} X
L] [ 3-5 foci
:t< 75
o p<0.001
z ,—j
g 50
2
©
o
%5 25
B
o
- r _- + - +_ iAtm

Nbs1™m:  Mre114A:
Artemis™ Artemis” Artemis™

Atm’: Nbs1mm ; Mre11#4:
Artemis™ Artemis™ Artemis™ Artemis™
5.1 0.1 371 37.3 64.1 61.3 Line

36 0 36 0 36 0 36 0 36 0 36 STI571(h)

W

O T O N ‘LJ Lt b )e=NFY

<+ NFxB

Figure 4. Rag-DSB-mediated Atm activation in MRN-deficient
cells. (a) Western blot analysis for phospho-KAP-1 (c-p-KAP-1) and
KAP-1 (-KAP-1) in Artemis=/~ (line 5.1), Nbs1m/m:Artemis=/~ (line 37.1),
and Mre 17ATDVATLD1 Artemis—/~ (line 64.1) abl pre-B cell lines treated with
STI571 for 96 h and either DMSO (—) or the Atm inhibitor (iAtm) KU-
55933 (+). (b) Percentage of Artemis=/~ (line 5.3), Nbs 1™/™Artemis=/~
(line 37.4), and Mre 11ATLDVATDI Artemis=/~ (line 61.2) abl pre-B cells with
one, two, or three to five nuclear y-H2AX foci after treatment with STI571
for 24 h and either DMSO (—) or the Atm inhibitor (iAtm) KU-55933 (+).
The total number of cells analyzed for each genotype was 500 and p-
values were calculated using a two-tailed Fisher's Exact test. (c) NF-kB
EMSA of nuclear lysates from Artemis=/~, Atm=/~: Artemis~/~, and two
independent Nbs1™m:Artemis~/~ and Mre T1ATLOVATLDT:Artemis=/~ abl pre-B
cell lines treated with STI571 for 36 h. NFY EMSA is shown as a control.
The data presented are representative of at least two experiments.
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wr Atm” Mre11"* Nbs1™™ Mre11~* Nbs1™™
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A70.2-4 2E-26 48.1-1 737.3-6 48.1-3 675.3-2 Clone
0_48 0 _48 0 _48 0 48 0 _48 0 _48 ST;I571 (h)
m
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EcoRV digest - C4 probe

Figure 5. Atm inhibition in MRN-deficient cells leads to increased
coding end accumulation. Southern blot analysis of EcoRV-digested
genomic DNA from WT, Atm~/-, and two Mre 11ATLDIATLDT (jabeled as

Mre 11%4) and Nbs1™m abl pre-B clones containing pMX-INV. Cells were
treated with STI571 for the indicated time (hours) and either DMSO (—) or
the Atm inhibitor (iAtm) KU-55933 (+). Expected sizes for bands gener-
ated by nonrearranged substrate (NR), coding joints (CJ), hybrid joints
(HJ), and coding ends (CE) are indicated. The data presented are represen-
tative of at least two experiments.

The V(D)J recombination defects observed in MR N-defi-
cient lymphocytes are remarkably similar to those observed in
ATM-deficient lymphocytes, suggesting that MRIN and ATM
function in the same pathway during the repair of Rag-medi-
ated DSBs (50). Although the defects in V(D)J recombination

a Number of thymocytes
150 -
[ Atm*
Il Nobs1™m
E 100 |
]
X 50
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s z'a'a'l a
§ 60 o o o
= ¥ o
a 0o
o o
b CD4*CD8* DP thymocytes
WT Nbs1™m Atm”
48 o1 ] 05

v

TCRB

Figure 6. Thymocyte development in Nbs1™™ mice. (a) Number of
thymocytes in Atm=/~ (n = 16) and Nbs1™™ (n = 9) mice at the indicated
stages of development, expressed as a percentage of the number of thy-
mocytes found at each stage in WT Atm*/* (n = 12) and Nbs1+* (n = 3)
littermate controls. Calculations were done using mean numbers of thy-
mocytes from mice of each genotype and propagated error. Error bars
represent SEM. DN (double negative), CD4~-CD8~; DP, CD4*CD8*; SP, sin-
gle positive. (b) Representative flow cytometric analysis of TCR-3 expres-
sion on CD4+CD8* DP thymocytes from WT, Nbs1™™ and Atm~/~ mice.
Numbers indicate percentage of DP cells that are TCR-B™. Results are
representative of the analyses of at least three mice.
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Figure 7. V(D)J recombination defects in MRN-deficient lympho-
cytes in vivo. (a) Schematic of Rag cleavage at the Ja56 gene segment on
the TCR-a* allele. The gene segments are shown as black rectangles, RSs
are open triangles, and the Ca constant region is the gray rectangle. The
Stul restriction sites (S) and the Ca1 probe (black bar) used for analysis are
also shown. (b) Southern blot analysis of TCR-« rearrangement in WT,
Atm~/=, Nbs1™m and Mre 11ATLDIATLDT thymocytes, all on the TCR-ass! back-
ground. The expected sizes for germline TCR-a* allele (¥) and Ja56 coding
ends (Ja56 CE) are indicated. Genomic DNA was digested with Stul and
probed with the Ca1 probe. Hybridization to a Rag-2 probe (PR2) is shown
as a DNA loading control. Results are representative of three experiments.
(c) PCR analysis of V85D8J81 coding joints (V85 CJ), V35D 1 hybrid joints
(V35 HJ), VB 14DBJB2.7 coding joints (VB 14 CJ), and VB 14DB2 hybrid joints
(VB14 HJ) in WT, Atm=/=, Nbs1™m and Mre 11ATLD1ATLDT thymocytes. (d) PCR
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in ATM- and MR N-deficient cells are qualitatively similar, un-
repaired coding ends accumulate at higher levels in Afm ™/~ abl
pre—B cells as compared with Nbs1"/" or Mre1 {ATEPI/ATLDT ]
pre—B cells. This could reflect the activity of a repair pathway
that depends on the activity of ATM but not MRN. Alterna-
tively, the Mre11ATEPT and Nbs1™ hypomorphic proteins could
have residual functions in the repair of Rag-mediated DSBs that
may be modulated by ATM activation. The notion that the
Mrel1ATPT and Nbs1™ hypomorphic proteins have residual
MRN function is supported by the observation that Nbs1"/" or
Mye1 1ATLPUVATLDT mice are viable, whereas mice null for Mre11
or Nbs1 exhibit early embryonic lethality (9, 38—40, 44, 45).

Unrepaired coding ends accumulate at greater levels in
Nbs 1" abl pre-B cells, as compared with Mre{ {4TLD1/ATLD1
abl pre—B cells. This could reflect distinct requirements for
Mrel1 and Nbs1 in the repair of Rag-mediated DSBs. How-
ever, because most of the known functions of Mrel1, Nbs1,
and Rad50 rely on their association in an MRN holocom-
plex, it is likely that the expression of the individual Mrel1 or
Nbs1 hypomorphs have differing effects on global MRN
function. In this regard, it is conceivable that defects in coding
joint formation in Nbs1"/" and Mre [ATEPV/ATLDT 3] pre—B
cells are, in part, a result of diminished Rad50 function.

In contrast to our findings, previous studies of V(D)] re-
combination in fibroblasts from patients that express hypo-
morphic Nbs1 alleles and mouse embryonic fibroblasts that
are deficient in Mrel1 failed to reveal defects in coding joint
formation (56, 58, 66). Importantly, these analyses assessed
the repair of Rag-mediated DSBs generated on extrachro-
mosomal plasmid recombination substrates in nonlymphoid
cells, whereas we analyzed the repair of chromosomal Rag-
mediated DSBs in developing lymphocytes and lymphocyte
cell lines. Notably, analysis of V(D)] recombination on extra-
chromosomal substrates in ATM-deficient fibroblasts also did
not reveal defects in coding joint formation, but these defects
are clearly evident during chromosomal V(D)] recombina-
tion in ATM-deficient lymphocytes (46, 47, 50-52, 67).
Thus, there may be differing requirements for the repair of
Rag-mediated DSBs on extrachromosomal substrates and
those generated in the chromosome. In this regard, ATM
and MRN may function primarily in the repair of chromo-
somal Rag DSBs. Finally, these discrepancies may reflect dif-
ferences in the requirement for MRN and ATM in the repair
of Rag-mediated DSBs in lymphoid and nonlymphoid cells,
as has recently been described for Cernunnos (also called XR cc4-
like factor) (68).

How does MRN function during V(D)] recombination?
ATM phosphorylates a large number of proteins, including all of
the components of the MRN complex, which participate in di-
verse and broadly functional DNA damage response pathways

analysis of Vk6-23 to Jk1 coding joints (Vk6-23 CJ) and hybrids joints
(Vk6-23 HJ) in WT, Atm=/=, Nbs1™m, and Mre 11ATLD1ATLDT splenocytes. The
IL-2 gene PCR is shown as a DNA quantity control. The data presented are
representative of analyses of at least two mice of each genotype.

MRN FUNCTION DURING V(D)J RECOMBINATION | Helmink et al.

920z Arenigad 60 uo 1senb Aq Jpd-9z€ 18002 Wel/z502061/699/€/902Z/4Pd-o1e/wal/Bio sseidny//:dpy wouy pepeojumoq



(2, 21-24). MRN functions to activate ATM, and thus the pri-
mary function of MRN in V(D)J recombination may be to acti-
vate ATM inresponse to Rag-mediated DSBs (10-12). However,
we find that ATM is activated in response to Rag DSBs gener-
ated in Mre1 1ATLPVATEDT and Nbs1™/™ abl pre—B cells, as indi-
cated by the robust ATM-dependent phosphorylation of KAP-1
and H2AX and the nuclear translocation of NF-kB. Thus, the
V(D)] recombination defects in MR N-deficient cells are not a
result of a general inability of Rag DSBs to activate ATM in
these cells. Importantly, although we find that ATM is activated
by Rag-mediated DSBs in Myel {ATEPTV/ATLD! and Nbs1™/" abl
pre—B cells, these cells could have isolated defects in the phos-
phorylation of other specific targets required for the repair of
Rag-mediated DSBs.

In addition to activating ATM, MRN could have down-
stream functions in the repair of Rag-mediated DSBs. In this
regard, ATM promotes coding joint formation by stabilizing
coding ends in postcleavage complexes, and although ATM
could perform this function directly, it likely regulates the activ-
ity of downstream proteins, such as MRN, that could perform
these functions (50). Rad50 has N- and C-terminal Walker A
and B nucleotide binding motifs, respectively, that form a DNA
binding domain upon their intramolecular association (5, 6).
This association leads to the formation of a central Rad50 hook
domain, which can facilitate the tethering of two distinct MRIN-
bound DNA molecules through an intermolecular interaction
between two Rad50 hook domains (16-20). The interaction
between hook domains of Rad50 proteins bound to two cod-
ing ends could stabilize these DNA ends until they are joined.
Moreover, it has recently been shown that Mrel1 dimers pro-
vide an interface that can bridge and juxtapose two broken
DNA ends (15). Thus, it is possible that the MRN complex
functions to stabilize coding ends in postcleavage complexes
through the activities of both Rad50 and Mrel1. This stabiliz-
ing activity could be modulated by the phosphorylation of
Rad50, Mrel1, and/or Nbs1 by ATM in response to Rag-me-
diated DSBs (21-24).

MATERIALS AND METHODS

Mice. Animals were housed in a specific pathogen-free animal facility at
‘Washington University. Animal protocols were approved by the Washing-
ton University Institutional Animal Care and Use Committee. All mice
were analyzed between 4 and 8 wk of age. The Nbs1"/", Mre{ [ATLP1/ATLDL]
Atm=/=, Artemis™'~, TCRa¥"J, and Ku70~/~ mice have been described pre-
viously (38, 40, 65, 69, 70). The Nbs1"™" mice were obtained from Y. Xu
(University of California San Diego, La Jolla, CA). The Mre1 {ATLP1/ATLDI
mice were obtained from J. Petrini (Memorial Sloan Kettering Cancer Insti-
tute, New York, NY).

Flow cytometric analyses and sorting. Flow cytometric analysis of thymo-
cyte development was performed on a FACSCalibur (BD) using FITC-conju-
gated anti-CD8, PE-conjugated anti-CD4, and PE-conjugated anti-TCR-3
chain (all obtained from BD). Cells containing pMX-INV or pMX-DELY
were isolated by FACS (FACSVantage; BD) based on expression of the human
CD4 (hCD#4) and detected using PE-conjugated anti-hCD4 (BD).

Cell lines and culture conditions. Nbs1"" (lines 675.3 and 737.3),
Mre {ATEPVATIDT (line 48.1), WT (line A70.2), Atm~’~ (lines Atm2E and
Atm2F), Ku70~/~ (line 0.2), Artemis~’~ (lines 5.1, 0.1, 5.3, and 2.1), Atm™/":
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Artemis™'~ (line 0.1), Nbs1"/":Artemis—’~ (lines 37.1, 37.2, 37.3, and 37.4),
and Mrel 1ATEPVATIDL: Artemnis=/~ (lines 61.2, 61.3, 64.1, and 64.2) v-abl—
transformed pre—B cells were generated by culturing bone marrow of 3-5-
wk-old mice with the pMSCV v-abl retrovirus as described previously (50).
All cells were generated from mice harboring the Ep-Bcl-2 transgene (71). All
abl pre-B cells (10°/ml) were transduced with retroviral recombination sub-
strates by cocentrifugation at 1,800 rpm for 90 min. Clonal populations of cells
with single pMX-INV integrants were isolated by limiting dilution of WT:
INV (A70.2-2, -4, -5, and -6), Atm™/~:INV (Atm2E-26 and Atm2F-3, -6,
and -11), Mrel (ATLPI/ATLDIINTT (48.1-1, -3, -6, and -7), and Nbs1"/":INV
(675.3-2 and -9 and 737.3—4 and -6) abl pre-B cell lines. Cells were treated
with 3 pM STI571 (Novartis) for the indicated times at 10° cells/ml. KU-
55933 (Sigma-Aldrich) was used at 15 pM.

Southern blot and PCR analyses. Southern blot analyses were performed
on genomic DNA from cells harboring pMX-INV and pMX-DELY using the
indicated restriction enzymes and the C4 probe, as previously described (50).
Southern blot analyses of thymocytes from mice expressing the TCR-a allele
were performed using the Stul restriction enzyme and the Cal probe as re-
ported previously (65). Southern blot analyses for IgL-k locus Jk coding ends
was performed on Sacl- and EcoRI-digested genomic DNA using the JkIII
probe as previously described (48). pMX-INV coding joints were amplified
using the pA and pB oligonucleotides and pMX-DELY signal joints were am-
plified used primers pB and pC oligonucleotides as previously described (50).
V385, VB14, and Vk6-23 coding and hybrid joints and the IL-2 gene were am-
plified by PCR as previously described (50).

Immunofluorescent detection of y-H2AX foci. Nuclear y-H2AX foci
were detected using standard protocols with minor modifications (54, 72, 73).
In brief, cells were cytospun onto poly-L-lysine—coated slides (Sigma-Aldrich),
fixed in 4% paraformaldehyde for 10 min, washed in PBS, permeabilized with
0.15% Triton X-100 in PBS, and blocked in PBS with 2% bovine serum al-
bumin. Cells were incubated in anti y-H2AX antibody (Millipore) at a 1-2-
pg/ml concentration for 3 h at 37°C in a moist chamber, washed with PBS,
and further incubated with anti-mouse FITC conjugate (Vector Laboratories)
for 45 min. After washing with PBS, slides were mounted in Vectashield
mounting medium with DAPI (Vector Laboratories). Foci were observed and
imaged as described previously on a microscope (Axioplan 2; Carl Zeiss, Inc.)
using ISIS imaging software (MetaSystems) (72).

Western blot and EMSA analyses. Western blots were done on whole cell
lysates using antibodies to mouse KAP-1 (GeneTex, Inc.), phosphorylated
KAP-1 (Bethyl Laboratories, Inc.), Mrell (Novus Biologicals), and Nbsl
(Cell Signaling Technology). The secondary reagents were horseradish perox-
idase—conjugated goat anti-mouse IgG (Invitrogen) or donkey anti-rabbit IgG
(GE Healthcare). NF-kB EMSA were run as described previously and were
analyzed with an Infrared Scanner (Odyssey; LI COR Biosciences) (48).

Online supplemental material. Fig. S1 shows Southern blot analyses of pMX-
INV rearrangement on additional abl pre-B cell clones. Fig. S2 shows longer
exposure of the WT:INV and Atni~:INV Southern blot analyses. Fig. S3 shows
sequences of pMX-INV coding joints from WT:INV, Atm/:INV, Mre114/4:
INV, and Nbs1"/":INV abl pre-B cells. Fig. $4 shows sequences of pMX-DELY
signal joints from WT:DELY, Atmr’-:DELY, Mre114/4:DELY, and Nbs1"/": DELY
abl pre—B cells. Fig. S5 shows analysis of KAP-1 phosphorylation carried out as
described in Fig. 4 a on additional Artemis”~, Artemis’:Nbs1™"™, and Artemis”’:
Mre114/4 abl pre—B cell lines. Fig. S6 shows Nbs1 and Mre11 western blot analy-
ses in the different Artemis”~, Artemis”-:Nbs1"/", and Artemis”:Mre114/4 abl pre-B
cells analyzed. Fig. S7 shows Southern blot analyses of IgL-k locus Jk coding ends
after Rag induction in the different Artemis”-, Artemis”’-:Nbs1""", and Artemis”":
Mire114/4 abl pre-B cell lines. Fig. S8 shows EMSA analyses of NF-kB transloca-
tion to the nucleus in the additional Artemis’~, Artemis”’-:Nbs1"" and Artemis”’:
Mre114/4 abl pre—B cells not analyzed in Fig. 4 c. Online supplemental material is
available at http://www jem.org/cgi/content/full/jem.20081326/DC1.
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