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Pediatric leukemias possess unique biological 
features. They are characterized by the presence 
of tumor-specific chromosomal translocations 
that entail the generation of oncogenic fusion 
genes (Pui et al., 2008). These chromosome 
translocations contribute to the molecular patho-
genesis of childhood leukemia, and many are 
well characterized, defining the different sub-
types of childhood leukemia (Wiemels et al., 
2009). There is compelling evidence that several 
of the common chromosome translocations (i.e., 
MLL-AF4, TEL-AML1, and AML1-ETO) that 
are seen in pediatric leukemia often originate 
prenatally in utero during embryonic/fetal 

development (Ford et al., 1993; Greaves and 
Wiemels, 2003; Bueno et al., 2009).

The cellular origin of translocations within 
the stem cell hierarchy of the hematopoietic sys-
tem is difficult to ascertain, particularly as the 
functional impact of the translocation and re-
sulting clonal expansion can occur downstream 
of the origin of the translocation (Greaves and 
Wiemels, 2003). Stem cells are the main target 
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MLL-AF4 fusion is a hallmark genetic abnormality in infant B-acute lymphoblastic leuke-
mia (B-ALL) known to arise in utero. The cellular origin of leukemic fusion genes during 
human development is difficult to ascertain. The bone marrow (BM) microenvironment 
plays an important role in the pathogenesis of several hematological malignances. BM 
mesenchymal stem cells (BM-MSC) from 38 children diagnosed with cytogenetically differ-
ent acute leukemias were screened for leukemic fusion genes. Fusion genes were absent in 
BM-MSCs of childhood leukemias carrying TEL-AML1, BCR-ABL, AML1-ETO, MLL-AF9, 
MLL-AF10, MLL-ENL or hyperdiploidy. However, MLL-AF4 was detected and expressed in 
BM-MSCs from all cases of MLL-AF4+ B-ALL. Unlike leukemic blasts, MLL-AF4+ BM-MSCs 
did not display monoclonal Ig gene rearrangements. Endogenous or ectopic expression of 
MLL-AF4 exerted no effect on MSC culture homeostasis. These findings suggest that MSCs 
may be in part tumor-related, highlighting an unrecognized role of the BM milieu on the 
pathogenesis of MLL-AF4+ B-ALL. MLL-AF4 itself is not sufficient for MSC transformation 
and the expression of MLL-AF4 in MSCs is compatible with a mesenchymal phenotype, 
suggesting a differential impact in the hematopoietic system and mesenchyme. The absence 
of monoclonal rearrangements in MLL-AF4+ BM-MSCs precludes the possibility of cellular 
plasticity or de-differentiation of B-ALL blasts and suggests that MLL-AF4 might arise in a 
population of prehematopoietic precursors.

© 2009 Menendez et al.  This article is distributed under the terms of an Attribu-
tion–Noncommercial–Share Alike–No Mirror Sites license for the first six months 
after the publication date (see http://www.jem.org/misc/terms.shtml). After six 
months it is available under a Creative Commons License (Attribution–Noncom-
mercial–Share Alike 3.0 Unported license, as described at http://creativecommons 
.org/licenses/by-nc-sa/3.0/).
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is compatible with a mesenchymal phenotype. Our data sug-
gest a differential impact of MLL-AF4 in the hematopoietic 
system and mesenchyme.

RESULTS
Establishment of BM-MSC cultures from children  
with different acute leukemias
MSC cultures were successfully established and expanded 
from the BM of 38 children diagnosed with distinct subtypes 
of childhood acute leukemia defined by specific chromo-
somal abnormalities. Table I depicts how leukemic patients 
were grouped according to specific cytogenetic abnormalities. 
BM-MSCs displayed typical fibroblastoid morphology (Fig. 1 A) 
and immunophenotype (Fig. 1 B). MSC cultures were con
sistently devoid of contaminating hematopoietic cells, being 
negative for CD45, CD34, HLA-DR, CD19, and CD14, 
but express common MSC markers, including CD90, CD73, 
CD105, CD166, and CD106 (Fig. 1 B). To further charac-
terize MSCs from pediatric acute leukemias, adipogenic and 
osteoblastic differentiation assays were performed as suggested 
(Dominici et al., 2006; Fig. 1 C). Osteoblastic and adipo-
genic differentiation was achieved with a similar efficiency 
than those of normal BM-MSCs (Fig. S1). Thus, MSCs de-
rived from a variety of pediatric leukemic BM samples seem 
to be phenotypically and functionally similar to those from 
healthy donors.

MLL-AF4 is present and expressed in BM-MSCs  
from infants with MLL-AF4+ B-ALL
We determined by fluorescence in situ hybridization (FISH), 
whether BM-MSCs from cytogenetically different subtypes 
of pediatric acute leukemias share the specific genetic  
aberrations present in the leukemic blasts. The corresponding 
leukemic fusion gene could never be detected in BM-
MSCs from childhood acute leukemias carrying TEL-AML1, 
BCR-ABL, AML1-ETO, MLL-AF9, MLL-AF10, or MLL-
ENL fusions or hyperdiploidy (Table I and Fig. 2 A). In con-
trast, MLL-AF4 was detected in 6.8 ± 1.7% of BM-MSCs 
from all the cases of MLL-AF4+ infant B-ALL (Table I and 
Fig. 2 A).

We next examined whether MLL-AF4+ BM-MSCs ex-
press the MLL-AF4 transcript. MLL-AF4 was expressed in 
MLL-AF4–carrying BM-MSCs and in the leukemic blasts as 
assessed by real-time RT-PCR (Fig. 2 B), indicating that 
among the cytogenetically distinct pediatric acute leukemias, 
the leukemia-specific fusion gene is only present and expressed 
in the stroma microenvironment from infants with the aggres-
sive MLL-AF4+ pro–B-ALL.

V(D)JH monoclonal rearrangements were present  
in MLL-AF4+ leukemic blast cells, but absent in BM-MSCs 
from infants with MLL-AF4+ B-ALL
Monoclonal Ig gene rearrangements were performed to ex-
clude contamination of the MSC cultures by leukemic cells 
and to rule out de-differentiation of ALL blasts into MSCs. 
Using PCR, gene scanning, and sequencing, we characterized 

for oncogenic events (McCulloch, 1983; Reya et al., 2001). 
Stem cells are essential for embryogenesis, and their vulnera-
bility to cancer development might be seen as an evolution-
ary trade-off for their unique properties (Weissman, 2000). 
Furthermore, many cell signaling pathways and transcription 
factors essential for normal embryonic development are also 
master regulators involved in cancer onset and progression, 
supporting a strong link between embryonic/fetal develop-
ment and cancer (Clark et al., 2007; Deshpande and Buske, 
2007; Dreesen and Brivanlou, 2007; Bueno et al., 2007, 
2009; Grigoryan et al., 2008; Jiang and Hui, 2008; Laird  
et al., 2008).

The cellular organization and relationships among pre-
cursors that initiate embryonic angiogenesis and hematopoi-
esis in the human have been characterized (Wang et al., 2004; 
Menendez et al., 2004). A bipotent primitive hemangioblast 
derived from human embryonic stem cells is uniquely re-
sponsible for endothelial and hematopoietic development 
(Wang et al., 2004; Menendez et al., 2004). The detection of 
the BCR/ABL oncogene and lymphoma-specific genetic 
aberrations in endothelial cells from chronic myelogenous 
lymphoma and B cell lymphoma patients suggests that endo-
thelial cells may be part of the neoplastic clone (Gunsilius 
et al., 2000; Streubel et al., 2004; Fang et al., 2005), and that 
hemangioblasts rather than hematopoietic stem cells (HSCs) 
appear to be target cells for the first oncogenic hit, which 
could occur during the first steps of embryonic stem cell 
differentiation and/or in hemangioblasts persisting in adults 
(Prindull, 2005).

The existence during development of mesendodermal 
progenitors that are multipotent precursors common for the 
vasculature and for a variety of mesoderm-derived tissues has 
long been suggested (Waller et al., 1995; Minasi et al., 2002; 
Cossu and Bianco, 2003; Tada et al., 2005; Bakre et al., 
2007). Furthermore, the BM hematopoietic microenvironment 
plays a role in the pathogenesis of a variety of hematological 
malignances, including acute leukemia, multiple myeloma, lym-
phomas, or myelodysplastic syndrome (Streubel et al., 2004; 
Blau et al., 2007; Corre et al., 2007; Walkley et al., 2007; 
Lopez-Villar et al., 2009). Mesenchymal stem cells (MSCs) 
are key components of the BM milieu, and many efforts are 
being undertaken to assess their role in several hematopoietic 
tumors (García-Castro et al., 2008).

During in utero development, leukemic fusion genes may 
arise in a population of mesodermal prehematopoietic pre-
cursors that would give rise throughout development to a 
variety of mesoderm-derived tissues, including HSCs and 
MSCs. However, the question of whether BM-MSCs from 
childhood leukemia harbor leukemia-specific fusion genes 
has not been addressed.

Here, fusion genes were not detected in BM-MSCs from 
any subtype of childhood leukemia, but in infant MLL-AF4+ 
B-acute lymphoblastic leukemia (B-ALL) MLL-AF4 was de-
tected and expressed in BM-MSCs from all patients studied. 
MLL-AF4+ BM-MSCs displayed no monoclonal Ig gene re-
arrangements. Expression of MLL-AF4 in normal BM-MSCs 
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Fig. 3 C). Fig. S3 displays the electropherograms confirming 
products sequences.

Once such rearrangements were characterized in the 
MLL-AF4+ leukemic blasts, we searched for their presence 
in the MLL-AF4+ MSCs from BM from the same infants 
with MLL-AF4+ B-ALL (Fig. 3, A–C, 1). For this purpose, 
we tested dilutions of the MLL-AF4+ leukemic blast cells in 
normal MSCs by using conventional PCR amplifications 
with consensus primers of VH, DH, and JH segments (van 
Dongen et al., 2003). In both cases, the most sensitive PCR 

the presence of monoclonal rearrangements of the heavy 
chain of Ig genes in genomic DNA from MLL-AF4+ leukemic 
blast cells from the available cases. As expected, they displayed 
at least one monoclonal V(D)JH rearrangement identifiable by 
PCR and gene scanning. Patient A had one incomplete 
monoclonal DJH (DH2*2-JH5*02; Fig. 3 A). Patient B had 
two identifiable monoclonal rearrangements, one complete 
VDJH (VH6-1*01/IGHD2-2*01/IGHJ4*03; not depicted) 
and one incomplete DJH (DH1-26-JH1; Fig. 3 B). Patient C had 
one incomplete monoclonal DJH rearrangement (DH3-9/JH4.2; 

Table I.  Presence of leukemic fusion genes (and hyperdiploidy) in BM-MSCs from a cohort of infants/children with 
cytogenetically distinct acute leukemia

Patient ID Diagnosis Cytogenetics 
(fusion gene)

Age 
(months)

Fusion gene in MSCa Positive cases in each diagnostic 
group

1 Pre–B-ALL t(12;21) TEL-AML1 30 NO
2 Pre–B-ALL t(12;21) TEL-AML1 24 NO
3 Pre–B-ALL t(12;21) TEL-AML1 36 NO
4 Pre–B-ALL t(12;21) TEL-AML1 42 NO
5 Pre–B-ALL t(12;21) TEL-AML1 70 NO
6 Pre–B-ALL t(12;21) TEL-AML1 84 NO 0/12 (0%)
7 Pre–B-ALL t(12;21) TEL-AML1 42 NO
8 Pre–B-ALL t(12;21) TEL-AML1 96 NO
9 Pre–B-ALL t(12;21) TEL-AML1 60 NO
10 Pre–B-ALL t(12;21) TEL-AML1 48 NO
11 Pre–B-ALL t(12;21) TEL-AML1 30 NO
12 Pre–B-ALL t(12;21) TEL-AML1 54 NO
13 M2-AML t(8;21) AML1-ETO 144 NO 0/1 (0%)
14 Pre–B-ALL t(9;22) BCR-ABL 72 NO
15 Pre–B-ALL t(9;22) BCR-ABL 48 NO
16 Pre–B-ALL t(9;22) BCR-ABL 60 NO 0/5 (0%)
17 Pre–B-ALL t(9;22) BCR-ABL 72 NO
18 Pre–B-ALL t(9;22) BCR-ABL 72 NO
19 T-ALL Hyperdiploid 30 NO
20 Pre–B-ALL Hyperdiploid 48 NO
21 Pre–B-ALL Hyperdiploid 24 NO
22 Pre–B-ALL Hyperdiploid 36 NO
23 Pre–B-ALL Hyperdiploid 36 NO 0/10 (0%)
24 Pre–B-ALL Hyperdiploid 48 NO
25 Pre–B-ALL Hyperdiploid 142 NO
26 Pre–B-ALL Hyperdiploid 24 NO
27 Pre–B-ALL Hyperdiploid 60 NO
28 Pre–B-ALL Hyperdiploid 18 NO
29 Pro–B-ALL t(4;11) MLL-AF4 6 YES (4%)
30 Pro–B-ALL t(4;11) MLL-AF4 11 YES (7%) 4/4 (100%)
31 Pro–B-ALL t(4;11) MLL-AF4 6 YES (7%)
32 Pro–B-ALL t(4;11) MLL-AF4 4 YES (8%)
33 M5-AML t(9;11) MLL-AF9 180 NO
34 M5-AML t(9;11) MLL-AF9 12 NO
35 M2-AML t(9;11) MLL-AF9 7 NO 0/6 (0%)
36 M5-AML t(10;11) MLL-AF10 15 NO
37 Pre–B-ALL t(11;19) MLL-ENL 7 NO
38 AML t(11;19) MLL-ENL 9 NO

aNumber in parentheses represents percentage of MSCs.
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genes in germline configuration such as normal BM-MSCs 
(López-Pérez et al., 2000, 2001). However, when this sen-
sitive methodology was used in DNA from MLL-AF4+  
BM-MSCs, the amplification of the monoclonal PCR 
product was always negative. Collectively, whereas mono-
clonal Ig gene rearrangements were consistently detected in 
MLL-AF4+ leukemic blasts, no monoclonal rearrangements 

approach was provided by DJH rearrangements. The mono-
clonal patterns of both monoclonal amplifications were al-
ways identifiable in MLL-AF4+ leukemic blast cell dilutions 
with normal MSCs with a sensitivity of 102-103 (Fig. 3), 
sensitivity which is considered the usual standard for IgH 
rearrangements (van Dongen et al., 2003), especially when 
the nonleukemic background is composed by cells with Ig 

Figure 1.  Characterization of MSCs derived from childhood leukemia patients. (A) Morphology. (B) FACS analysis of MSC surface markers. Gray 
area indicates the isotype control and the empty area shows specific antibody staining. (C) Adipogenic (oil red staining) and osteogenic (alizarin red staining) 
differentiation potential of MSCs. Data from n = 38 children suffering from acute leukemia. Bars, 100 µm.
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Ectopic expression of MLL-AF4, MLL-AF9, and TEL-AML1 
in BM-MSCs exerts no effect on MSC culture homeostasis
To further explore whether distinct leukemia-associated fusion 
oncogenes exert differential effects in MSC culture homeosta-
sis, the lentiviral ectopic expression of MLL-AF4, MLL-AF9, 
and TEL-AML1 fusions (Fig. 4 A) in normal BM-MSC was 

could be detected in BM-MSCs from any MLL-AF4+  
B-ALL patient, ruling out potential contamination of the 
MSC cultures by leukemic cells and suggesting a close early 
developmental relationship between MSCs and the leuke-
mic blasts rather than plasticity or de-differentiation of  
B-ALL blasts.

Figure 2.  MLL-AF4 fusion gene is present and expressed in BM-MSCs from infants with MLL-AF4+ pro–B-ALL. (A) FISH performed in  
patient-derived MSCs (top row) and leukemic blasts (bottom row; n = 38). Leukemia-specific fusion genes were always observed in the leukemic population. 
Using a split apart probe, MLL rearrangements are identified by the presence of one red signal, one green signal, and one yellow signal (germline). Using 
locus-specific probes, the fusions TEL-AML1, AML1-ETO, and BCR-ABL are determined by the presence of yellow fusion signals (and the derivative chro-
mosome), whereas cells without the translocation have two green (either BCR, TEL, or ETO) and two red signals (either ABL or AML1). The white arrows 
depict the rearranged allele. G-banding karyotyping was performed in the BM-MSCs from children with hyperdiploid (>51 chromosomes) B-ALL (n = 10). 
Bars, 100 µm. (B) Representative RT-Q-PCR experiments performed in duplicate from two patients showing MLL-AF4 transcript expression in MSCs from 
infants with B-ALL MLL-AF4+.
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Figure 3.  V(D)JH monoclonal rearrangements were present in MLL-AF4+ leukemic blast cells but absent in BM-MSCs from infants with 
MLL-AF4+ B-ALL. (A) VDJH monoclonal rearrangements of patient A. (A, 1) DNA from MSCs from the patient. (A, 2) undiluted diagnostic leukemic blast 
sample. (A, 3–6) 10, 6, 1, and 0.1% dilution, respectively, of DNA from diagnostic leukemic blasts into DNA from normal MSCs. The monoclonal rearrangement 
(234 bp; filled blue peak) is detectable in MLL-AF4+ leukemic blast cells, whereas it is absent in MLL-AF4+ MSCs. As it can be seen in A (6), the detection 
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Here, we searched for leukemia-specific fusion genes in 
BM-MSCs from children with cytogenetically different acute 
leukemias. Leukemic fusion genes were not detected in 
BM-MSCs from any subtype of childhood leukemia, but in 
infant MLL-AF4+ B-ALL, where MLL-AF4 was detected 
and expressed in BM-MSCs from all patients studied. Our 
findings suggest that MSCs in infant MLL-AF4+ B-ALL are 
tumor related. MLL-AF4 is known to arise in utero during 
human development, and this infant B-ALL is characterized 
by its dismal prognosis and very short latency; thus a close 
developmental relationship between the MSCs and the leuke-
mic blasts in this subtype of infant B-ALL diagnosed shortly 
after birth is plausible. Whether MLL-AF4 arises in a common 
precursor capable of diverging into blood and mesenchyme 
or it occurs as an independent event in leukemic blasts and in 
the stroma still needs to be elucidated. Of note, it may be 
plausible that the alternative leukemic fusion genes may be 
found in MSCs not only in this subtype of dismal infant 
MLL-AF4+ ALL but also in other children who develop 
mesenchymal cancer (leukemias and sarcomas) in utero.

In line with the plastic behavior of cells during embryonic 
development, MSCs have been reported to have a promiscu-
ous gene expression pattern, being in a standby state in which 
many gene families are expressed at a low level, thereby making 
the cell readily capable of shifting fates (Tremain et al., 2001). 
In all samples analyzed, monoclonal Ig gene rearrangements 
were consistently detected in MLL-AF4+ leukemic blasts but 
could never be detected in MLL-AF4+ BM-MSCs. The ab-
sence of monoclonal rearrangements in MLL-AF4+ BM-MSCs 
rules out the possibility of cellular plasticity or de-differentia-
tion of B-ALL blasts and suggests that MLL-AF4 might arise in 
a potential mesodermal common precursor. Additionally, the 
fact that all MLL-AF4+ MSCs were euploid precludes the 
possibility of cell fusion.

Importantly, MLL-AF4+ MSCs did not seem to have 
proliferative advantage, and ectopic expression of MLL-AF4 
in normal BM-MSCs exerted no effect on MSC culture ho-
meostasis. This indicates that MLL-AF4 expression is com-
patible with a mesenchymal phenotype and that MLL-AF4 
itself is not sufficient for MSC transformation, suggesting the 
potential need for secondary cooperating oncogenic hits and 
a differential impact of MLL-AF4 in the hematopoietic system 
and mesenchyme. The mechanisms by which the BM-MSCs 
in infant B-ALL acquire this leukemia-specific genetic aber-
ration remain to be elucidated. Whether the MLL-AF4 fu-
sion is similar between BM-MSCs and leukemic blasts suggestive 

compared. Lentiviral-mediated transduction efficiency of 
normal BM-MSCs was between 19 and 69% for the different 
fusion genes and was 100% for the GFP control (Fig. 4 B). 
Transgene expression was demonstrated by GFP expression 
(Fig. 4 B), RT-PCR, and Western blot (Fig. 4 C). As expected, 
in contrast to HSCs, germline MLL is not expressed in MSCs 
(unpublished data). Transduced MSC cultures were followed 
up for 62 d, and culture homeostasis was analyzed for the differ-
ent fusion genes. Ectopic expression of the indicated leukemic 
fusion oncogene did not alter the proliferation (Fig. 4 D) and 
cell cycle distribution (Fig. 4 E) of the BM-MSC cultures. Simi-
larly, ectopic expression of the fusion oncogenes had no effect 
on cell death or apoptosis: >90% of the transduced MSCs were 
alive and healthy 9 wk after transduction (Fig. 4 F). Similar to 
normal MSCs, those transduced with fusion oncogenes under-
went senescence by passage 9 (62 d) as assayed by -galactosi-
dase assays (Fig. 4 G). Additionally, MLL-AF4+ BM-MSCs 
lacked expression of CD133, a stem cell marker previously pro-
posed to be induced by MLL-AF4 in leukemic blasts (Thomas 
et al., 2005; Fig. S4). These data indicate that MLL-AF4, MLL-
AF9, and TEL-AML1 expression is compatible with a mesen-
chymal phenotype and does not alter the culture homeostasis.

DISCUSSION
Previous studies have found that the BCR-ABL fusion gene 
and lymphoma-specific genetic aberrations are present in a 
proportion of endothelial cells derived from chronic my-
elogenous lymphoma and lymphoma patients, respectively 
(Gunsilius et al., 2000; Streubel et al., 2004), claiming the 
existence of a bipotent hemangioblastic precursor capable of 
producing endothelial and blood cells. The presence of chro-
mosomal abnormalities on MSCs from hematological malig-
nances is controversial. Recent studies have shown that MSCs 
from multiple myeloma and myelodysplastic syndrome are 
abnormal and display genomic aberrations identified by gene 
expression or CGH-based arrays (Corre et al., 2007; Lopez-
Villar et al., 2009), indicating that the stroma may play a role 
in tumor pathogenesis.

Leukemic fusion genes may arise, during in utero devel-
opment, in a population of mesodermal prehematopoietic 
precursors that would give rise to HSCs and MSCs. BM-MSCs 
from leukemic children are candidate cell targets for fusion 
gene screening because they are ontogenically close to in utero 
development. However, the question of whether BM-MSCs 
from childhood leukemia harbor and express leukemia-specific 
fusion genes has not been addressed.

sensitivity is between 0.1 and 1%. (B) DJH monoclonal rearrangements of patient B. (B, 1) DNA from MSCs from the patient. (B, 2–5) 10, 6, 1, and 0.1% 
dilution, respectively, of DNA from diagnostic leukemic blasts into DNA from normal MSCs. The DJH monoclonal rearrangement (258 bp; filled blue peak) 
is detectable in MLL-AF4+ leukemic blast cells whereas it is absent in MLL-AF4+ MSCs. (C) DJH monoclonal rearrangements of patient C. (C,1) DNA from 
MSCs from the patient. (C, 2) undiluted diagnostic leukemic blast sample. (C, 3–7) 10, 6, 1, 0.1, and 0.01% dilution, respectively, of DNA from diagnostic 
leukemic blasts into DNA from normal MSCs. The DJH monoclonal rearrangement (400 bp; filled blue peak) is detectable in MLL-AF4+ leukemic blast cells 
whereas it is absent in MLL-AF4+ MSCs. As can be seen in C (5 and 6), the detection sensitivity is between 0.1 and 1% for patients A and B and between 
0.01 and 0.1% for patient C. It should be noted that in all patients there is an unspecific amplification peak (empty blue peak) of 342 bp that is used as 
indicator (positive control) of DNA amplification (IgH germline alleles).
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ferent phenotype because the transcript/protein may exert 
differential effects in a cell-dependent manner, perhaps par-
tially explaining the lack of transformation by MLL-AF4 itself 
in BM-MSCs.

of an unequivocal common precursor also remains to be elu-
cidated. It is worth mentioning that even identical fusions 
might give rise to distinct transcripts through alternative 
splicing, whereas identical transcripts might also display dif-

Figure 4.  In vitro effects of ectopic expression of TEL-AML1, MLL-AF4, and MLL-AF9 in the homeostasis of normal BM-MSC cultures.  
(A) Schematic representation of the bicistronic lentivectors used. (B) Phase contrast morphology and GFP expression in lentiviral-transduced normal  
BM-MSCs. Bars, 20 µm. Mock indicates no infection; GFP indicates transduction with an empty vector. Transduction efficiency was measured by flow cytom-
etry as percentage of GFP+ MSCs 3 d after transduction. (C) RT-PCR (top) and Western blot (bottom) showing the expression of the indicated fusion genes 
in transduced MSCs. (D) Growth curves showing similar growth properties among the different MSC cultures (n = 3). (E) Cell cycle distribution of mock and 
fusion gene-expressing MSCs. (F) Annexin V binding assays showing low levels of apoptosis of MSCs regardless of the leukemic fusion gene overexpressed. 
(G) Senescence-associated -galactosidase assays of the indicated MSCs at passage 3 and 9. Experiments were performed twice with identical outcome.
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probes (MLL-T1 and MLL-T2) were used simultaneously. ABL transcript 
was used for normalization (Beillard et al., 2003). Primers and probes se-
quences are described elsewhere (Beillard et al., 2003; Gabert et al., 2003; 
Jansen et al., 2005).The MV4;11 (MLL-AF4+) and THP1 (MLL-AF9+) cell 
lines were used as positive and negative controls, respectively.

Vectors, lentiviral production, and transduction. The following 
dual-promoter fusion gene–expressing lentiviruses were used in this study: 
pRRL-GFP, pRRL-MLLAF4-GFP (Fig. S2), pWPI-MLLAF9-GFP, and 
HR-SINCSGW-TELAML1 (provided by T. Enver, Oxford University, 
Oxford, England, UK; Fig. 4 A). Viral particles pseudotyped with the VSV-G 
protein were generated on 293T cells using a standard calcium-phosphate 
transfection protocol and were concentrated by ultracentrifugation. Normal 
MSCs from healthy donors were infected overnight with concentrated 
viruses. The following day, the viral supernatant was removed and trans-
duced MSCs were washed with MSC media and allowed to expand for up 
to 10 wk.

MSC culture homeostasis analysis. MSC cultures were assessed daily for 
changes in growth rates and morphology. Growth curves were performed by 
assessing the cell number in triplicate MSC cultures. Cell cycle analysis was 
performed by flow cytometry after propidium iodide staining of 70% ethanol-
fixed cells. Apoptotic cells were analyzed by flow cytometry using PE-
Annexin V according to the manufacturer’s instructions (BD). To determine 
senescence-associated -galactosidase activity, MSCs were fixed and incu-
bated overnight with X-gal solution (pH 6.0) as previously described (Wei 
and Sedivy., 1999).

RT-PCR. Total RNA extraction and RT-PCR reactions were done as pre-
viously described (Montes et al., 2009). RT-PCR conditions were as follows: 
cDNA synthesis at 37°C for 2 h, prePCR denaturation at 94°C for 2 min, de-
naturation at 94°C for 30 s, annealing at 60°C for 30 s, and extension at 72°C for  
30 s. for 35 cycles. Primer sequences were as follows: TEL-AML1, 5-ATCATG-
CACCCTCTGATCCT-3 and 5-ACGCCTCGCTCATCTTGCCT-3; 
MLL-AF4, 5-CAGAGCAAACAGAAAAAAGTG-3 and 5-GTTCTG-
GAAGGGACTGTGGA-3; and MLL-AF9, 5-GCACTCTCTCCAAT-
GGCAATA-3 and 5-GCCTTGTCACATTCACCATTC-3.

V(D)JH Ig gene monoclonal rearrangements. Genomic DNA from 
leukemic blasts from infants diagnosed with MLL-AF4+ pro–B ALL was iso-
lated from BM samples at diagnosis using standard methods. Complete 
VDJH and incomplete DJH rearrangements were amplified and identified 
using the BIOMED-2 strategy (van Dongen et al., 2003). For amplification 
of complete VDJH rearrangements, a set of family-specific primers of the 
FR1 and FR2 regions and one JH consensus primer were used in two mul-
tiplexed PCR reactions. Amplification of incomplete DJH rearrangements 
was performed in two different reactions using family-specific primers for 
DH1 to DH6 and DH7 families, respectively, together with the consensus 
JH primer. All reactions were performed in 50 µl mixture containing 50–100 ng 
of DNA and 10 pmoL of each primer. All these amplifications were per-
formed using genomic DNA. The monoclonal nature of the rearrangements 
was confirmed by the identification of single amplification peaks by genes-
canning analysis following described criteria. (López-Pérez et al., 2001; van 
Dongen et al., 2003). All products were sequenced as previously described 
(Gonzalez et al., 2005). PCR products were separated by PAGE and visual-
ized with ethidium bromide. Monoclonal PCR products were purified with 
ExoSap (USB Corp.) and directly sequenced in an ABI 3130 DNA sequence 
analyzer using BigDye Terminators with the v1.1 Cycle Sequencing kit  
(Applied Biosystems; Gonzalez et al., 2005; Fig. S3).

Western blotting. Whole-cell extracts from GFP-MSCs and MLL-AF4-
MSCs were resolved on 6% SDS-PAGE gels and blotted onto nitrocellulose 
membranes (Bio-Rad Laboratories). MLL-AF4 fusion protein (250 KD) was 
detected with the enhanced chemiluminescence detection system (GE Health-
care) using an anti-MLL antibody (1:750 dilution; clone N4.4; Millipore).

MATERIALS AND METHODS
Patients and samples. 38 children diagnosed with cytogenetically different 
ALL or AML were enrolled in this study. Acute leukemias were grouped as 
follows: TEL-AML1+ B-ALL (n = 12), BCR-ABL+ B-ALL (n = 5), AML1-
ETO+ M2-AML (n = 1), hyperdiploid B/T-ALL (n = 10), MLL-AF4+ pro–
B-ALL (n = 4), MLL-AF9+ AML (n = 3), MLL-AF10+ AML (n = 1), and 
MLL-ENL+ B-ALL/AML (n = 2). Table I summarizes the diagnosis, cytoge-
netics, and age for each patient. Median age for each group was as follows: 51 ± 
16 mo for TEL-AML1+, 65 ± 10 mo for BCR-ABL+, 47 ± 35 mo for hy-
perdiploid, 38 ± 61 mo for MLL-rearrangements with a partner different than 
AF4, and 6 ± 3 mo for MLL-AF4+. BM samples were harvested at diagnosis. 
Leukemic blasts were used for routine cytogenetic and molecular diagnostic 
screening, and MSCs were isolated, characterized, and expanded for cytoge-
netic, molecular, and functional studies. This study was approved by the  
Institutional Review Board of Hospital Niño Jesús, and samples were ob-
tained upon informed consent from the parents.

Isolation and expansion of BM-MSCs. Mononuclear cells from BM were 
isolated by centrifugation (400 g, 25 min) using Ficoll-Paque Plus (GE 
Healthcare) density gradient. Mononuclear cells were seeded at a density of 
3 × 104 cells per cm2 in MesenCult medium and MSC-supplements (STEM-
CELL Technologies) and incubated at 37°C in a 5% humidified CO2 atmo-
sphere. After 24 h, nonadherent cells were discarded and fresh medium was 
added. When cell culture achieved >85% of density, adherent cells were tryp-
sinized, washed, and replated at a concentration of 5 × 103 cells per cm2.

Characterization of MSC cultures. The immunophenotype of cultured 
BM-MSCs was analyzed by flow cytometry as previously described (García-
Castro et al., 2008). In brief, 2 × 105 cells were incubated for 30 min with the 
fluorochrome-conjugated monoclonal antibodies CD90, CD73, CD105, 
CD166, CD106, CD45, CD34, HLA-DR, CD19, and CD14 (BD) or their 
respective isotype controls. Next, stained cells were washed in PBS and ana-
lyzed in a FACSCanto II cytometer (BD). CD133 (clone 293C3; Miltenyi Bio-
tec) expression was also analyzed in MSCs overexpressing ectopic MLL-AF4.

MSC differentiation studies were performed by plating the MSCs in 
specific differentiation inductive media for 2 wk, as previously described 
(Rodriguez et al., 2009). For adipogenic differentiation, cells were cul-
tured in Adipogenic MSCs Differentiation BulletKit (Lonza) and differen-
tiated cultures were stained with oil red O (Sigma-Aldrich). For osteogenic 
differentiation, cells were cultured in Osteogenic MSCs Differentiation 
BulletKit (Lonza) and differentiated cultures were stained with alizarin red 
S (Sigma-Aldrich).

FISH and karyotyping. FISH was performed on leukemic blasts and patient-
matching MSCs as described (Bueno et al., 2009; Catalina et al., 2008), 
using commercially available probes (Vysis Inc.). BCR-ABL, TEL-AML1, 
and AML1-ETO fusions were detected using locus-specific LSI Dual Color 
Translocation probes. MLL rearrangements were analyzed using the LSI MLL 
Dual Color Break Apart Rearrangement Probe. At least 500 nuclei were ana-
lyzed. The slides were analyzed in a fluorescence microscope equipped with 
appropriate filters using the ISIS-software (Metasystems).

Aneuploidy was assessed by conventional G-banding as previously de-
scribed (Catalina et al., 2009). Chromosomes were visualized using a modified 
Wright’s staining. At least 20 metaphases were analyzed using a conven-
tional microscope and the IKAROS-software (Metasystems). The MV4;11 
(MLL-AF4+), THP-1 (MLL-AF9+), and REH (TEL-AML1+) cell lines were 
used as positive controls for FISH studies.

Quantitative RT-PCR detection of MLL-AF4 transcript in patient-
derived MSCs. Real-time quantitative RT-PCR was done as previously 
described (Gabert et al., 2003). Primers and Taqman probes for detecting 
specific MLL-AF4 fusion transcripts were synthesized according to Jansen 
et al. (Jansen et al., 2005). In the PCR reaction, two different MLL-anchoring 
forward oligonucleotides (MLL-F1 and MLL-F2), two different AF4- 
anchoring reverse oligonucleotides (AF4-R1 and AF4-R2), and two different 
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