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Variation of surface antigen expression is a mechanism used by microbes to adapt to and
persist within their host habitats. Helicobacter pylori, a persistent bacterial colonizer of the
human stomach, can alter its surface Lewis (Le) antigen expression. We examined H. pylori
colonization in mice to test the hypothesis that host phenotype selects for H. pylori (Le)
phenotypes. When wild-type and Le-expressing transgenic FVB/N mice were challenged
with H. pylori strain HP1, expressing Le* and LeY, we found that bacterial populations recov-
ered after 8 mo from Leb-transgenic, but not wild-type, mice expressed Le®. Changes in Le
phenotype were linked to variation of a putative galactosyltransferase gene (8-(7,3)galT);

mutagenesis and complementation revealed its essential role in type | antigen expression.
These studies indicate that H. pylori evolves to resemble the host's gastric Le phenotype,
and reveal a bacterial genetic locus that is subject to host-driven selection pressure.

For microbes that are obligatory parasites of
outbred host species, an important challenge is
to adapt to each new individual host (Moxon
et al., 1994; Falk et al., 2000; Bayliss et al.,
2004; Blaser and Kirschner, 2007). Such co-
evolved bacteria use multiple strategies, includ-
ing stealth, variation, and antidefense (Monack
et al., 2004; Blaser and Kirschner, 2007). One
mechanism to generate variation is the use of’
contingency genes to change expression of bac-
terial cell-surface structures relevant to the hosts
being colonized (Moxon et al., 1994; Bayliss
et al., 2001; Bayliss et al., 2004).

Humans are polymorphic for the expression
of the fucosylated Lewis (Le) antigens on eryth-
rocytes and in other body compartments, in-
cluding the gastric epithelium (Sakamoto et al.,
1989). Helicobacter pylori, the dominant human
gastric bacteria (Bik et al., 2006; Andersson et al.,
2008), are also polymorphic for expression of
Le antigens (Fig. S1; Wang et al., 2000). Most
strains predominately express LeX and LeY (type
IT antigens), which are major human gastric
antigens (Simoons-Smit et al., 1996), whereas
<5% express Le® and Le® (type I antigens; Wirth
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et al., 1996), which are also expressed in the
stomach (Sakamoto et al., 1989). H. pylori may
vary type II Le expression using a variety of
genetic mechanisms (Appelmelk et al.,, 1998;
Wang et al., 1999; Wirth et al., 2006; Sanabria-
Valentin et al., 2007; Nilsson et al., 2008).

We have hypothesized that H. pylori Le ex-
pression reflects host selection operating on
a population of stochastically varying strains
that have differential fitness in particular hosts
(Webb and Blaser, 2002). Observations in hu-
mans naturally colonized with H. pylori (Wirth
et al., 1997) and in rhesus monkeys experi-
mentally infected with H. pylori (Wirth et al.,
2006) support this hypothesis. However, these
studies are not conclusive, because the human
studies were correlative, and the monkey stud-
ies were an experimental challenge with mul-
tiple strains and a small number of study animals
(Wirth et al., 1997; Wirth et al., 2006).
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Wild-type mice do not express Le® in their stomach. The
creation of transgenic mice that express a human o-1,3/4
fucosyltransterase (accession no. EC 2.4.1.65 from the
IntEnz database, available at http://www.ebi.ac.uk/intenz/
index jsp) in their mucus-producing gastric pit cells led to Leb
expression (Falk et al., 1995; Guruge et al., 1998). The presence
of Leb in the gastric mucosa of these mice and its absence in
their nontransgenic littermates presented an opportunity to
examine whether host phenotype selects for H. pylori pheno-
typic (Le antigen) expression. We hypothesized that among
H. pylori strains introduced into “humanized” LeP-transgenic
mice but not their isogenic LeP-negative (wild-type) litter-
mates, there would be selection for bacterial Le® expression.
In the present study, we verify this hypothesis, and charac-
terize the genetic loci and mechanisms responsible for the

changed H. pylori phenotype.

RESULTS

H. pylori colonization of wild-type and Le°-transgenic
FVB/N mice

Conventionally raised, specific pathogen-free transgenic FVB/
N Le® mice (n = 20) and wild-type littermates (n = 20) were
group housed in microisolator cages, maintained on a standard
chow diet, and challenged at 6 wk of age (Fig. S2) with H. py-
lori strain HP1 (98-964), which expressed both Le* and LeY
but had no detectable Le* or Le® expression. At varying times
after infection, mice of each genotype were sacrificed, the
stomachs were homogenized, and H. pylori was cultured by
serial dilution on selective media. H. pylori colonization could
only be detected in three out of the five mice in each group
after 4 wk but was detected in each mouse at all subsequent
time points (8, 16, and 32 wk; n = 5 animals/group/time
point). There were no significant differences in bacterial den-
sity observed according to mouse genotype at any of the time
points surveyed (Fig. 1). In total, we achieved stable (103
CFU/mouse stomach), long-term (=8 mo) H. pylori coloniza-
tion in both wild-type and Leb-transgenic mice (Fig. 1).

Host-dependent Le antigen expression in mice

We next addressed whether colonization of the wild-type
and LeP-transgenic mice would select for differing H. pylori
Le phenotypes, as determined by Le-specific ELISAs. All
bacterial populations recovered expressed Le* and LeY, and
there were no significant differences in Le* or LeY expres-
sion between sweeps recovered from wild-type or Leb-
transgenic mice in either the early or late isolates (Fig. S3).
None of the isolates recovered from the wild-type or trans-
genic mice before the 8-mo time point expressed Le* or LeP
(n =10 assayed/time point), nor were these epitopes detect-
able in H. pylori sweeps recovered from wild-type mice
8 mo after challenge (Table I). Although the ratio of Le* to
LeY in the H. pylori cells recovered from the 8-mo wild-type
mice was similar to the inoculum strain, their overall ex-
pression was higher. However, in H. pylori sweeps from the
8-mo Leb-transgenic mice, there was expression of Le® in
addition to Le¥ and LeY in four out of the five mice (Table I),
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which was significantly (P = 0.001) different from the wild-
type mice. In addition, overall Le* expression in the bacte-
rial populations isolated from the LeP-transgenic mice was
significantly (P = 0.014) lower than in populations from the
wild-type mice. There was a trend toward higher coloniza-
tion levels in the four mice carrying LeP-positive H. pylori
compared with colonization densities of the five wild-type
mice (P = 0.054). This result could reflect increased adhe-
sion to host-expressed Le® through binding by the bacterial
Leb ligand, BabA (Ilver et al.,, 1998). Although this result
suggests that bacterial LeP expression enhanced colonization
and, thus, may have been positively selected, future studies
will be required to confirm this observation.

Mouse humoral responses to H. pylori challenge

One hypothesis to explain the drop in Le* expression in the
8-mo LeP-transgenic mice is that an increase in anti-Le* anti-
bodies in the transgenic mice selected for cells with reduced
Le* expression, resulting in the emergence of Leb expression,
paralleling phenomena that have been observed previously in
other organisms (Bayliss et al., 2001). To test this hypothesis,
we determined mouse antibody levels against both H. pylori
whole cells and purified H. pylori LPS with distinct Le pheno-
types. ELISAs testing serum responses to 98-964 (HP1)
whole-cell antigen showed that both wild-type and Leb-
transgenic mice progressively developed anti—H. pylori 1gG
responses during the course of the challenge (Fig. S4). No
IgG was detected in the uninfected (control) mice, but an IgG
response appeared during the early infection period (4-8 wk),
rising to the highest levels during late infection (4-8 mo).
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Figure 1. Quantitative H. pylori culture of wild-type and Le®-
transgenic FVB/N mice after experimental challenge with strain
HP1. In this single experimental challenge, CFUs were determined by
homogenization of a segment of the mouse stomach in sterile PBS

(pH 7.4), followed by serial dilution on H. pylori-selective medium. At 4 wk,
H. pylori was not detected in four mice; the means shown are the means
for the H. pylori-positive mice. H. pylori was cultured from the stomachs
of all of the other 36 mice in this study. Each of the 40 mice received

an independent challenge with the stock culture of strain HP1 (n =5
animals/group/time point). There were no significant differences in coloni-
zation levels between transgenic and nontransgenic animals at any of the
time points as determined by a t test.
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There were no significant differences in IgG levels between
the wild-type and LeP-transgenic mice (n = 10 mice/geno-
type/time point). These data confirm that the experimental
H. pylori challenges induced adaptive humoral responses, as
expected. The lack of difference between the groups provides
evidence that unlike in previous studies (Guruge et al., 1998),
the host genotype did not substantially affect the responses to
the heterologous H. pylori antigens.

Next, we tested mouse sera with LPS preparations from
wild-type strain J166 (OD values: Le* = 0 and Le¥ = 3.36)
with strong LeY expression, J166 AfutC (OD values: Le¥ =
2.22 and Le¥ = 0) with strong Le* expression, and J166
AfutA/AfutB (OD values: LeX = 0 and LeY = 0) with neither
Le* nor LeY expression. Thus, we could examine the sero-
logic response to specific Le epitopes. First, we examined
responses to J166 whole-cell antigen, expecting that there
would be robust responses, as observed with 98-964 whole-
cell antigen (Fig. S4). The high antibody levels in 4- and 8-mo
wild-type (OD value = 1.69 + 1.48) and Leb-transgenic
mice (OD value = 1.89 £ 0.98; Table S1) confirmed that
the mice were capable of responding to H. pylori antigens
and showed no significant difference in response according
to mouse genotype.

The responses to the LPS antigens were heterogeneous
(Table S1), with a bimodal distribution, and roughly corre-
lated with those to whole-cell antigen. The responses to LeY
LPS (wild type) and Le” LPS (AfutA/AfutB) were significantly
(P =0.035 and P = 0.011, respectively) higher in the 8-mo
compared with the 4-mo mice, and trended in that direction
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(P = 0.15) for the LeX LPS (AfutC). Response to LPS also ap-
peared to be independent of LPS Le phenotype; mice with
strong anti-LPS responses showed strong responses to LPS of
all three Le phenotypes. There were no significant differ-
ences in anti-LPS responses between wild-type and LeP-
transgenic mice. Finally, we asked whether there was an
association between anti-LPS response and the H. pylori col-
onization density in the mice. Comparing the log;, CFU
(2.43 £ 0.98) of the three mice with the highest anti-Le*
(J166 AfutC LPS) responses (3.49 * 0.7) to the log,, CFU
(2.61 + 0.92) of those with the lowest responses (0.03 *
0.001) showed no significant differences; results were parallel
for the other LPS preparations (unpublished data).

Analysis of babA in mouse-derived H. pylori isolates

One hypothesis to explain why colonization densities were
higher in the LeP-transgenic mice carrying Le®™ H. pylori
could be the increased bacterial adherence to the gastric
epithelia by the H. pylori Le® ligand, BabA. In a previous
challenge of rhesus monkeys (Solnick et al., 2004), a gene
conversion event occurred that replaced a portion of babA
with babB (as demonstrated by a series of PCRs), which re-
sulted in a loss of Le® adhesion. To examine this question, we
first sought to confirm the previous findings (Solnick et al.,
2004) by studying a strain (J166) that successfully colonized
rhesus monkeys and comparing it with a J166-derived strain
recovered from a monkey 10 mo later (98-169) from our
previous monkey challenge studies (Wirth et al., 2006).
Sequence analysis of the band produced by primers 834F and

Table I. Bacterial counts and Le antigen phenotypes of H. pylori gastric sweeps from wild-type and Le°-transgenic FVB/N mice

recovered after 8 mo

Le antigen phenotype®

Source of H. pylori Sweep designation Logqo Le? Leb Lex Lev
CFU/stomach?

Inoculum strain HP1 0 0 0.62 0.65
Wild-type mice 00-4 1.95 0.01 0.01 1.85 1.39
00-6 1.86 0 0.01 2.9 0.51
00-8¢ 2.43 0 0 2.26 1.81
00-10 2.06 0 0 1.94 1.82
00-12 1.78 0 0 1.73 1.92

Mean + SD 2.02 + 0.25 0+0 0+0 2.14 + 0.47 1.49 + 0.58
Leb-transgenic mice 00-14 3.68 0.02 0.57 0.86 1.37
00-16¢ 4.28 0.01 0.15 1.44 1.39
00-18 3.56 0.01 0.46 0.52 1.14
00-20 2.1 0 0.15 1.88 1.83
00-22 0.78 0.01 0 0.19 1.27

Mean + SD 2.88 + 1.42 0.01+0 0.27 + 0.24¢ 0.98 + 0.69¢ 1.4 +0.26

#Bacterial counts (CFUs) were determined by homogenization of one third of the mouse stomach in sterile PBS (pH 7.4), followed by serial dilution on selective medium. The
mean bacterial counts recovered from wild-type and transgenic mice were not significantly different.

Phenotype was determined by standardized ELISA using monoclonal antibodies to Le?, Le®, LeX, or LeY, with values expressed as OD. ELISAs were performed in triplicate wells
for each strain, and the OD values presented represent the mean of three independent experiments. An OD value >0.1, indicated in bold, is considered significant.

Sweeps of H. pylori gastric isolates that were selected as sources for subculture to examine phenotypes of isolated colonies (Fig. 2).

dSignificantly different than for populations isolated from wild-type mice (P = 0.001).
<Significantly different than for populations isolated from wild-type mice (P = 0.014).
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AR6 amplified in 98-169 show that the middle region of
babA was replaced by babB, indicating that gene replacement
had occurred, providing independent confirmation of the
previous findings in monkeys (Fig. S7; Solnick et al., 2004).
On this basis, we turned to the mouse isolates. When we
tested the inoculum strain 98-964 and one isolate each from
the wild-type (03-261) and LeP-transgenic mice (03-270), we
found that the babA allele was intact in all cases (Fig. S7), sup-
porting the hypothesis that there was no selection away from
babA, and that its maintenance is important for mouse colo-
nization, differentiating the findings in monkeys and mice.

Phenotypic diversity of single-colony H. pylori isolates

To analyze the diversity in Le expression within H. pylori
populations recovered from the wild-type and transgenic
mice 8 mo after challenge, single colonies were isolated from
sweeps 00-8 (from a wild-type FVB/N mouse) and 00-16
(from an LeP-transgenic mouse; Fig. S2). The single colonies
isolated from sweep 00-8 only showed expression of Le* and
Lev, with no detectable Le? or LeP expression, confirming re-
sults obtained from the gastric sweeps (unpublished data). In
contrast, 9 out of 11 single colonies isolated from the 00-16
sweep expressed Le* and/or Le® in addition to Le* and LeY
(Fig. 2 A). The phenotypic diversity within the bacterial
populations derived from the gastric sweeps of these mouse
stomachs is similar to that reported in humans (Wirth et al.,
1999; Gonzalez-Valencia et al., 2008). Expression of Le* in
five of the 00-16 single colonies, in addition to Le®, indicates
diminished futC activity in these isolates (Sanabria-Valentin
et al.,, 2007; Nilsson et al., 2008), preventing substrate Le?
from being fucosylated to form LeP (Fig. S1). The ratios of
Le* to LeP and Le* to LeY expression in these single colonies
are strongly correlated (R = 0.89; P < 0.001; Fig. 2 B), indi-
cating that futC is governing the relative expression levels of
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the mono- and difucosylated antigens in tandem for the type
I and IT pathways (Fig. S1). From these studies, three strains
were chosen for further genotypic and phenotypic analysis:
HP1 (98-964, the inoculum strain from which Le® was not
detectable), 00-8B (03-261, a non-Le® expressor isolated
from a wild-type mouse), and 00-16A (03-270, an Le®
expressor isolated from an LeP-transgenic mouse; Table ).

DNA sequence analysis of the Le antigen synthesis genes
Nucleotide sequence analysis was performed to determine
the genetic basis for the phenotypic differences in Le antigen
expression in the selected representative mouse-derived
H. pylori strains. A $-(1,4) galactosyltransferase involved in Le*
and LeY synthesis is encoded by galT (Fig. S1), which does
not contain polynucleotide repeat regions; however, the up-
stream intergenomic region varies in length between strains
(not depicted). Because sequence analysis showed that all
three strains share an identical upstream region (unpublished
data), their different Le antigen phenotypes were not attrib-
uted to galT locus variation.

Sequence analysis of the a-(1,3/4) fucosyltransterase gene
(futA; Fig. S1), which affects both the type I and IT Le synthesis
pathways, showed that all three strains had identical in-frame
futA alleles. Sequence analysis of futB (Fig. S1) revealed exten-
sive intrastrain poly-C tract length variation among the three
strains (Fig. S5), but overall there were no significant differ-
ences between the three strain populations. Thus, differential
activity of the a-(1,3/4) fucosyltransferases in these strains does
not correlate with the Le® phenotypic differences observed but
is consistent with the overall phenotypic variation in Le ex-
pression within the populations of cells, as reflected in the Le
phenotypes of single-colony isolates (Fig. 2 A).

The poly-C tract of futC was cloned and sequenced
for each strain (10 clones/strain) and, as expected, revealed
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Figure 2. Le phenotypes of H. pylori single colonies isolated from wild-type and Le®-transgenic FVB/N mice recovered after 8 mo. (A) 11 colo-
nies, each independently picked, were isolated from H. pylori gastric sweep 00-16, recovered 8 mo after challenge from Leb-transgenic mouse 16 (Table 1),
and studied. Standardized ELISAs, performed three independent times using monoclonal antibodies to Le?, Le®, Le*, or LeY, were performed in triplicate

for each isolate, and the OD values presented from one representative experiment are shown (means + SD). OD values >0.1 are considered significant.

(B) Log,o Le mono- and difucosylated antigen expression ratios of 00-16-derived H. pylori strains (single colonies were picked and expanded for assay).
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extensive intrastrain variation (Sanabria-Valentin et al.,
2007). The primary sequence data suggest that only 2 (61C6
and 70C7) out of 30 intrastrain variants tested would pro-
duce a full-length a-(1,2) fucosyltransferase (Fig. S6 B). Al-
though multiple mechanisms can be present (Wang et al.,
1999), some a-(1,2) fucosyltransferase activity must exist in
strains 98-964, 03-261, and 03-270, because all three pro-
duce LeY and 03-270 also expresses LeP. The distribution of
poly-C tract lengths in LeP-expressing 03-270—derived
clones was significantly (P < 0.01 and P < 0.001) different
from that in clones derived from 98-964 and 03-261, re-
spectively, consistent with enhanced selection for Leb ex-
pression in the LeP-transgenic mice.

Nucleotide sequence analysis of B-(17,3)galT
Sequence analysis of B-(1,3)galT showed that the non-
LeP—expressing strains 98-964 and 03-261 were identical in

A * 20 *
i

399 : [EIGETAGAATGCCARAGE

sequence (Fig. 3 A). Both contain C,, poly-C tracts, whereas
Leb-expressing strain 03-270 has a Cy tract (Fig. 3 B). Based
on the predicted (ATG) start codon of B-(1,3)galT in
sequenced strain J99 (Fig. 3 A; Alm et al., 1999) as the puta-
tive translation start site, all three strains appear to have
an out-of-frame B-(1,3)galT (Fig. 3 D). Thus, primary
sequence data would not be sufficient to explain differences
in Le antigen expression between these strains. However, if
the alternate translation initiation codon (TTG), active in
~9% of H. pylori genes (Alm et al., 1999), is used in these
strains at the same position as the GTG start codon (~8% of
H. pylori genes) of B-(1,3)galT in reference strain 26695
(Fig. 3 A; Tomb et al., 1997), then frame status is deter-
mined by poly-C tract length. Strains 98-964 and 03-261
encode seven [-(1,3)galT heptad repeats versus four in
strain 03-270 (Fig. 3 C); similar changes were observed in a
previous mouse gastric challenge (Salaiin et al., 2005).

HPAGl : ————————————————— hel
98-964 : ATGETAGAATG-----— GA‘TMCCATATTTAGGAGTTCAITTG5T
03-261 TAGAATG-—-—— GAZ THCCATATTTAGGAGTTCA‘I T GRE
03-270 ATGEFTAGAATG-—-—— G. THCCATATTTAGGAGTTCAITTG‘T
26695 § ————m e ETG\INUNSINGT T TATATCATINT CINT TAAAAGAAAGISCAAAGGCGTTTGGA
at ccatatttaggagttcattTGA acaaGTTTATATCAT TC TTAAAAGAAAG CAAAGGCGTTTGGA
B 560 600
399 : IAATCCCRICACAAGAR
HPAGL AATCCCRCACAAGAT
03-261 AATCCCECACAAGAR
03-270 @AATCCCECACAAGAR
98-964 :
26695 : AGACCGAAG.
GA gAA CGCCTATTGAAAA ATGAAGTTA AATCCC CACAAGAt
(: * 780 * 800 * 820 * 840 *
98-964 :
03-261
03-270 GGAAAATACGATGAACTCAC
GGAAAATACGATGAACTCACaggaaaatacgatgaactcacaggaaaatacgatgaactcacaggaaaatacgatgaactcacAG
860 * 880 * 900 * 920 *
98-964 GAAAATACGATGAACTCACAGGAAAATACGATGAACTCACAGGAAAATACGAATCGCTATTGGCAAAAGAGTCAAACATTAAAGA
03-261 GAAAATACGATGAACTCACAGGAAAATACGATGAACTCACAGGAAAATACGAATCGCTATTGGCAAAAGAGTCAAACATTAAAG
03-270 GAAAATACGATGAACTCACAGGAAAATACGATGAACTCACAGGAAAATACGAATCGCTATTGGCAAAAGAGTCAAACATTAAAGA
GAAAATACGATGAACTCACAGGAAAATACGATGAACTCACAGGAAAATACGAATCGCTATTGGCAAAAGAGTCAAACATTAAAGA
21bp 21bp 21bp
D * 20 * 60 * 80
399 MVECQRIPYLGVHLTQVYIISLKESQRRLDTEKL, Q HSDYCY--
HPAGL : -———-- MPYLGVHLTQVYIISLKESQRRLDTEKI) E HSDYCYQEF

*
GRCVEF DARES P
GRCVEF DARES P
T|@NS SEDT SIMMH LYK RINP
IIBNSSFDT SIMHLWYKRINPKARG————— M
GRCVEFQIR3DANS PIHE DIJEKEFVQE LDAQSMLKS DWHSDWCRGE
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Figure 3. Nucleotide sequence alignments of informative 3-(1,3)galT regions in three H. pylori reference strains and in three studied
strains related to mouse infection. (A) For H. pylori reference strains J99, HPAG1, and 26695, and for the mouse-derived H. pylori strains 98-964
(inoculum), 03-261 (recovered from a wild-type mouse), and 03-270 (recovered from an Le®-transgenic mouse), the 5’ regions including the putative
translational initiation codons of B-(7,3)galT are boxed in blue. An alternative TTG start site (boxed in green and present in 8.1% of 26695 ORFs)
aligned with the H. pylori 26695 B-(1,3)galT GTG start site (present in 9.7% of 26695 ORFs). (B) Homocytosine tract region, boxed in orange. (C) 21-bp
repeat region, encoding KYDELTG repeats. (D) Predicted amino acid sequence of the 5’ end of B-(1,3)galT. Compared with strain J99, the H. pylori
strains obtained from these mouse experiments contain a 5-bp deletion resulting in premature termination (red asterisks). The 8-(7,3)galT sequence

for strain 03-261 was identical to strain 98-964 (not depicted).
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Mutagenesis of B-(1,3)galT

Because of these uncertainties, allelic replacement mutagene-
sis was performed to determine whether 3-(1,3)galT is essen-
tial for H. pylori type I Le antigen expression (Fig. S8 B). A
plasmid containing a copy of B-(1,3)galT interrupted by a
nonpolar kanamycin resistance (aphA-3) cassette (p98B13k)
was introduced into test H. pylori strains via natural transfor-
mation (Fig. S8 B), and insertion of the plasmid-encoded se-
quences was confirmed by PCR analysis of chromosomal
DNA from transformed cells. Strains 99-8 and JP26 were in-
cluded as positive controls for Le* and LeP phenotypic expres-
sion, respectively, and strain JP26 was transformed with
pCTBS (Cover et al., 1994) as a positive control for transfor-
mation. Introduction of p98B13k resulted in loss of Le® ex-
pression in strains JP26 and 03-270 (Fig. 4 A), and loss of Le?
expression in strain 99-8 (not depicted). Also as expected, in-
troduction of control plasmid pCTB8 into JP26 had no effect
on Le antigen phenotype (unpublished data). In total, these
studies provide evidence that open reading frame (ORF)
jhp0563 encoding the presumed B-(1,3)galT is essential for
synthesis of type I Le antigens.

Complementation of 8-(1,3)galT null mutants

To determine whether the loss of type I Le antigen expres-
sion was specifically caused by -(1,3)galT inactivation and
not an adventitious event, complementation studies were
performed. To accomplish this, jhp0563 from strain 03-270
was introduced in trans (p70B13comp) into H. pylori strains
in which the native ORF had been interrupted (Fig. S8 C),
and its placement was confirmed by PCR. Introduction of
B-(1,3)galT at the ureA locus resulted in restoration of type I
Le antigen expression in the JP26 and 03-270 B-(1,3)galT
null mutants (Fig. 4 A). Complementation of strain 03-261
led to a low level but new expression of Le®, which had
not been observed in either the wild-type or mutant strains
(Fig. 4 A). However, there was no complementation of Le?
expression in the 99-8 3-(1,3)gal'T null mutant and no de novo
synthesis of Le* or Le® in strain 98-964 (unpublished data).
Collectively, these results provide evidence that B-(1,3)galT
is necessary, but not sufficient, for type I antigen expression.

Sequence analysis of complemented 8-(1,3)galT

Because colonies of H. pylori represent a mixture of cells of
varying genotypes (Appelmelk et al., 1998; Kuipers et al.,
2000; Sanabria-Valentin et al., 2007), especially in reference
to metastable loci such as homopolymeric tracts (Salaiin et al.,
2004; Sanabria-Valentin et al., 2007), we analyzed nucleotide
sequences from the complemented strains. Analysis of the 5’
500 nucleotides of the complemented copy of 8-(1,3)galT re-
vealed sequences identical to 03-270 wild-type 3-(1,3)galT in
all five complemented mutants tested. These results indicate
that sequence variation in the 5’ region is not responsible for
the phenotypic variation observed. However, as determined
by direct PCR sequencing, poly-C tract lengths varied among
the complemented mutant strains. Therefore, Le antigen phe-
notypes were determined by ELISA for 10 single colonies
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isolated from strain 03-270::p98B13k::p70B13comp. The Le®
expression in these strains ranged from the level of 03-270
wild type to no detectable expression (Fig. 4 B). The -
(1,3)gal’T heptad repeat region was identical in length in these
single-colony isolates, indicating that variation in Le® expres-
sion 1s not caused by variation in this region (unpublished
data). To identify the basis of this variation, we examined ge-
nomic DNA from isolate 70C1A with high Le® expression
(Leb = 0.74), from isolate 70C1E with an intermediate Le®
phenotype (Le® = 0.25), and from isolate 70C1F with no de-
tectable LeP expression to PCR amplify the poly-C tract re-
gions (OD values are shown). After cloning the products,
sequence analysis of the recombinant pGEM-T Easy plasmids
revealed extensive B-(1,3)galT poly-C tract length variation
(Fig. 4 C). 4 out of 10 70C1A-based sequences contained C,
poly-C tracts, identical to 03-270 wild type, versus 2 out of
10 from the 70C1E sequences and 0 out 10 from the 70C1F
sequences. The number of clones with a 8-(1,3)gal T C, tract,
identical to the 03-270 poly-C tract, correlated with the level
of Le® expression in each isolate. The 70C1A poly-C tract
lengths (16.2 + 1.48 nucleotides) and the 70C1E poly-C tract
lengths (15.8 * 2.04 nucleotides) were significantly (P <
0.001) longer than those in 70C1F (11.8 + 0.79 nucleotides).
Thus, within populations of H. pylori cells, B-(1,3)galT frame
status as well as homopolymeric tract length vary extensively,
critically affecting LeP expression.

Flow cytometric analysis of H. pylori B-(1,3)galT mutants

To better understand the distribution of Le® phenotypic ex-
pression within a population of H. pylori cells, wild-type
strains and their 8-(1,3)gal T mutants were examined by flow
cytometry. Cells were incubated with an anti-Le® monoclo-
nal antibody and anti—H. pylori polyclonal antibodies as a
positive control. Cells of all three H. pylori strains (98-964,
03-261, and 03-270) were detectable with anti—H. pylori, es-
sentially to the same extent (Fig. 5 B). As expected, when
stained with antibodies directed against LeP, the 03-270 wild-
type strain showed the greatest levels of fluorescence, with a
bimodal distribution, indicating that most but not all cells
were LeP positive (Fig. 5 C). In contrast, also as expected,
the 03-270 B-(1,3)galT mutant showed fluorescence levels
similar to the background level of cells stained with second-
ary antibodies alone (Fig. 5 C). The 03-270 -(1,3)gal T-
complemented mutant was positive for Le®, but the percentage
of Leb-positive cells was lower than in the wild type (Fig. 5, C
and F), indicating that the complementation was partial. The
net mean fluorescence intensity (MFI; region M1) for the
LeP-positive cell populations in the wild-type and comple-
mented strains was similar, indicating that a proportion of the
cells had been fully complemented (Fig. 5 G). Similar flow
cytometry experiments performed on JP26 and 03-261 indi-
cated that the complemented mutant populations were a
mixture of Leb* and Leb™ cells (Fig. 5, D and E). The Leb
positivity in the JP26-complemented cells was significantly
(P < 0.001) lower than in the wild-type strains, confirming
that complementation was partial and less efficient than in
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Figure 4. Le phenotypes and genotypes of H. pylori B-(1,3)galT
mutant and complemented strains. (A) Le phenotypes of B-(1,3)galT
mutant (Mut) and complemented (Comp) strains. Wild-type (WT)
strains were JP26 (Le® expressing), 03-270 (Le°-transgenic mouse iso-
late), and 03-261 (wild-type mouse isolate). Phenotype was determined
via standardized ELISAs using monoclonal antibodies to Le?, Le®, Le*, or
Lev, and expressed as OD values. ELISAs were performed in triplicate for
each strain, and the OD values represent the means of the triplicates.
An OD value >0.1 is considered significant. (B) Le phenotypes of single
colonies derived from H. pylori strain 03-270 B-(1,3)galT-complemented
mutant. 10 independent colonies of the 03-270 B-(1,3)galT-complemented
mutant were picked from a plate streaked for isolation and phenotyped
by ELISA. ELISAs were independently performed three times, and one
representative experiment is presented in A and B. (C) B-(1,3)galT
poly-C tract lengths of isolates 70C1A (Le® = 0.74), 70CCTE (Le® = 0.25),
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strain 03-270 (Fig. 5 F). However, as in strain 03-270, net
MFI levels showed full complementation in a portion of the
population (Fig. 5 G). Collectively, these results paralleled
phenotypes determined by ELISA (Fig. 4 A) and define the
range of Leb phenotypes exhibited by wild-type H. pylori
strains and their 8-(1,3)galT mutants.

DISCUSSION
These studies showed that experimentally challenged wild-
type and LeP-transgenic FVB/N mice can stably maintain
H. pylori gastric colonization for up to 8 mo, regardless of Le
antigen expression, consistent with studies in other mouse
genetic backgrounds (Takata et al., 2002; Lozniewski et al.,
2003). That H. pylori populations expressing Le® were some-
what more efficient than non-LeP expressors in colonizing
LeP-transgenic mice (Table I) may reflect greater host toler-
ance to self-antigens, although future studies are needed to
confirm this observation. This phenomenon also could be at-
tributed to enhanced adhesion of bacterial cells to the gastric
epithelia via BabA binding to host LeP, because unlike in
monkeys (Solnick et al., 2004), babA recovered from the
mice 8 mo after challenge showed intact copies of babA and
no evidence of gene conversion (Fig. S7). The host LebP—
bacterial BabA interaction also could be a target of selection.
Enhanced bacterial Leb expression could result in BabA-
mediated bacterial aggregation, contributing to the higher
colonization densities observed in LeP-transgenic mice; fur-
ther experimentation is required to test this hypothesis.
Selection for LeP expression among H. pylori cells persis-
tently colonizing LeP-positive transgenic but not LeP-negative
wild-type mice is consistent with increased fitness of
H. pylori variants that match the Le phenotype of their host,
extending previous studies in rhesus monkeys (Wirth et al.,
2006) and in some (Wirth et al., 1997) but not all (Taylor et al.,
1998; Heneghan et al., 2000) human studies. One hypothe-
sis to explain the appearance of Le® expression in H. pylori
recovered from the transgenic mice 8 mo after challenge is
the development of an anti-Le® response in these mice,
which is consistent with the lower expression of Le* in the
H. pylori cells recovered from the LeP-transgenic mice after
8 mo. Such a response would provide selection for the ex-
pansion of Le expression variants, a phenomenon that has
been observed previously in Neisseria meningitidis (Bayliss
etal., 2001). To test this hypothesis, we determined levels of
anti-Le antibodies by ELISA using purified LPS with well-
defined Le antigen phenotypes. The results showed a wide
range in responses among the mice, with no correlation
between mouse genotype and antibody response. Further,
antibody responses were independent of both LPS Le phe-
notype and colonization density of the mice. These results

and 70C1F (Le® = 0). The B-(1,3)galT poly-C tract was PCR amplified
and cloned, and 10 independent clones per isolate were chosen for
sequence analysis. The mean poly-C tract length for each strain is
depicted as a horizontal bar.
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provide evidence that serum antibody pressure was not the
driving force behind the emergence of bacterial Le® expres-
sion. However, our observations are limited by a small sam-
ple size and an inability to directly test for anti-Le® and
anti-Le® antibody levels. Future studies are needed to further
investigate this hypothesis.

Sequence analysis showed that selection of LeP-positive
H. pylori variants in the transgenic mice was mediated by phase
variation of 3-(1,3)galT. Solnick et al. (2004) provided evi-
dence that phase variation of babA occurred in vivo, support-
ing the hypothesis that this is a gene regulation mechanism
used by H. pylori to adapt to changing host environments.

Experimental challenge of wild-type mice and gerbils for
up to 5 mo with H. pylori isolates led to no substantial Le

antigen expression diversification (Wirth et al., 1999). Simi-
larly, when wild-type FVB/N and LeP-transgenic mice were
experimentally challenged for 8 or 16 wk, no change in Le
antigen expression was detected (Guruge et al., 1998). One
explanation for those results is that there was no phenotypic
selection, or alternatively, that the H. pylori founding popula-
tions were too small and/or colonization periods too short
for detection of differential fitness (Webb and Blaser, 2002).
That no changes were observed before 8 mo in the present
studies may reflect both the relatively low level of H. pylori
colonization of conventionally raised mice compared with
humans (Atherton et al., 1996) and/or relatively small differ-
ential fitness (Webb and Blaser, 2002) because of bacterial
Leb expression in the LeP-transgenic mice.
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Figure 5. Le® expression by H. pylori wild-type and B-(1,3)galT mutants. H. pylori cells were incubated with mouse anti-Le® IgM and human anti-
H. pylori 1gG and detected with fluorescent secondary (2°) antibodies. Irrelevant staining in the absence of anti-Le® or anti-H. pylori are displayed for cells
incubated with 2° antibodies alone. (A) Dot plot displaying forward and 90° angle scattered laser light intensities of Pl-labeled bacterial cells. Intact bacteria
were selected using region R1. For each sample 20,000 R1-gated events were counted (green, 30% log density; pink, 9% log density; blue, 2.7% log density;
orange, 0.81% log density). (B) Histograms comparing wild-type H. pylori strain 03-270 (WT), B-(1,3)galT null mutant (Mut), and 8-(1,3)galT-complemented
mutant (Comp) bacteria labeled with allophycocyanin-anti-H. pylori. (C-E) Histograms of H. pylori strains 03-270 (C), JP26 (D), and 03-261 (E) labeled with
FITC-anti-Le®. Region M1 denotes the Le®-positive cell populations, as determined by the crossover point between the wild-type and B-(7,3)galT null mu-
tant plots. (F) Net percentage of Le®-positive cells in 8-(1,3)galT mutant strains. Net values were calculated by subtracting the percentage of B-(1,3)galT
null mutant cells in region M1 from the percentage of wild-type and complemented cells in M1. There were significantly (¥, P < 0.001) fewer Le®-positive
cells in the JP26 B-(1,3)galT-complemented mutant cell population than the JP26 wild-type cell population. (G) Net FITC MFI. Values were normalized
based on the number of Le®-positive cells, and net values were calculated as in F (means + SD). C and F represent three independent experiments.
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Sequence analysis of B-(1,3)¢alT in HP1 and its descen-
dants revealed a 5" 5-bp deletion compared with H. pylori
reference strain J99, suggesting either a truncated ORF or
that the annotated 5" ATG is not the initiation codon in
these strains. Because Leb is expressed in strain 03-270, a
more downstream start codon may be used for translation,
translational frameshifting is occurring, or B-(1,3)galT is un-
dergoing recombination with its upstream homologue,
Jhp0562, in some H. pylori cells within the population. TTG
present in some strains at the same position as the 26695
initiation GTG (Fig. 3 A) may be an alternative initiation
codon (Alm et al., 1999), representing another translational
control locus of Le synthesis gene expression.

Our findings indicate that as with H. pylori futA, futB,
and futC, poly-C tract length likely regulates B-(1,3)galT
translation, with C;, in 03-270 critical for Leb expression.
The three strains tested also differed at the B-(1,3)galT hep-
tad repeat region, paralleling observations in another mouse
challenge experiment (Salaiin et al., 2005), potentially ex-
plaining 8-(1,3)galT enzymatic activity variation, paralleling
that shown in futA and futB (Ge et al., 1997; Lin et al., 2006;
Ma et al., 2006; Nilsson et al., 2006).

Although the inoculum strain HP1 expressed Le* and LeY
in relatively equal proportions, the gastric sweeps and single
colonies varied greatly in their Le antigen phenotypes. That
several single colonies isolated from within the LeP-expressing
bacterial populations also expressed Le?, which was not
detected in the parental strain, indicates futC phase variation
among the strains, consistent with the extensive sequence
variation observed (Fig. S6). Diversity in futC sequences in
differing strain backgrounds (Alm et al., 1999; Wang et al.,
1999; Salatin et al., 2004; Salatin et al., 2005; Sanabria-
Valentin et al., 2007) may reflect strain-specific adaptations that
have evolved to facilitate Le expression control, particularly
the tension between mono- and difucosylated forms (Wang
et al., 1999; Rasko et al., 2000; Kang and Blaser, 2006a).

Loss of type I Le antigen expression in a 3-(1,3)galT mu-
tant confirms a previous report (Appelmelk et al., 2000) that
in trans complementation of 8-(1,3)galT restored the type I
pathway phenotype lost in null mutants, and introduced Le®
expression into a strain previously negative for type I antigens
expands on these previous studies. The lower type I pheno-
types in the complemented strains compared with wild type
probably reflects lower 3-(1,3)gal T expression from the het-
erologous ureA promoter than from the wild-type promoter.
Alternatively, the complemented strains are cell populations
mixed in -(1,3)galT frame status because of poly-C tract
phase variation, as was indicated by sequence analysis.

Flow cytometric analysis of Le® phenotypes in wild-type
and mutant H. pylori strains confirmed results determined
by ELISA, providing an alternative phenotyping method.
Although ELISA determines the overall phenotype of a cell
population, flow cytometry determines the phenotype of
each individual H. pylori cell, providing an indication of the
population structure, which is highly advantageous for
studying genetically diverse organisms. The results indicate
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that the descendants of the complemented strain vary in
their Le® phenotype, and as indicated by the sequence data,
generated by phase variation of the metastable poly-C tracts
of B-(1,3)gal T, futA, futB, and futC.

In conclusion, we have developed a tractable animal
model to examine the hypothesis that changes in Le pheno-
types are a mechanism used by H. pylori to adapt to specific
host milieus. Our studies provide evidence that H. pylori can
change Le phenotype to the type I pathway in vivo to match
the Le phenotype of its host, extending previous studies in
humans and rhesus monkeys (Wirth et al., 1997; Wirth et al.,
2006). That the pathway involves phase-variable Le antigen
synthesis genes provides a mechanistic explanation for the
observed phenotypic changes, and can be harnessed to allow
quantitative analysis of the force of selection.

MATERIALS AND METHODS

Animals. Wild-type and LeP-transgenic FVB/N mice breeding pairs were
provided by the Washington University Animal Facility, and were bred and
maintained under specific pathogen-free conditions in microisolators in a bar-
rier facility, as previously described (Falk et al., 1995; Guruge et al., 1998). All
experiments using mice were performed using protocols approved by the
Animal Studies Committee of Washington University. DNA was extracted
from the mouse tails using the QIAamp Tissue Kit (Promega) and used as a
template in two PCR reactions to determine the mouse genotype: one with
primers specific for a-actin (control; gene amplified in all mice), and one with
primers specific for hGH (only present in transgenic animals; Table S2).

Challenge of mice with H. pylori strain HP1. Mice were challenged
with H. pylori strain HP1, isolated from a Peruvian patient with gastritis
(Guruge et al., 1998). Before inoculation, H. pylori strain HP1 was grown for
24 h and harvested in Brucella broth. Cell concentration was adjusted to an OD
of 2 (~v6 X 107 cells) at 550 nm, and 0.4 ml of cell suspension was used to in-
oculate, via orogastric gavage, 20 wild-type FVB/N and 20 LeP-transgenic
FVB/N mice. Orogastric challenge was repeated for three consecutive days.
At 4 wk, 8 wk, 4 mo, and 8 mo, five mice of each genotype were sacrificed
and their stomachs were removed. One third of each stomach was homoge-
nized in 1X PBS (pH 7.4), and undiluted and 1:10 diluted suspensions were
plated on Skirrow’s medium agar plates (BBL Microbiology Systems) and in-
cubated for ~72 h at 37°C and 5% CO,. CFUs were determined for each
gastric sweep and cell populations were harvested; 10-11 single colonies
were picked from each gastric sweep and expanded for further analysis.

Bacterial strains and growth conditions. H. pylori strains used in this
study were routinely grown on Trypticase soy agar/5% sheep blood plates
(BBL Microbiology Systems) or Brucella agar (BA) with 10% newborn calf
serum (NCS) supplemented with the appropriate antibiotic (e.g., vancomy-
cin, kanamycin, or chloramphenicol). H. pylori strains JP26, a wild-type Le®-
positive strain isolated in Japan, and 99-8, an Le*-positive strain, were
included as controls in mutagenesis and complementation experiments.

Determination of Le antigen phenotypes. H. pylori Le antigen pheno-
types were determined by ELISA using monoclonal antibodies to Le?, Le®,
Le¥, or Le¥ (Signet Laboratories, Inc.) and protocols described previously
(Wirth et al., 1996). ODs at 410 nm were determined on a microplate reader
(MRX; Dynatech Laboratories Inc.). Corrected OD values were determined
by averaging the OD values of two or three wells per sample and subtracting
the blank (Escherichia coli strain HB101).

Determination of anti—-H. pylori antibody levels in mice. Levels of
anti—H. pylori antibodies in mouse sera were determined by ELISA, essentially
as previously described (Wirth et al., 1997). Mouse sera were tested against
H. pylori strains 98-964 and J166 whole-cell antigens, as well as the following
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LPS antigens: wild-type strain J166 (Le* = 0; Le¥ = 3.36), J166 AfutA/AfutB
(Lex = 0; Le¥ = 0), and J166 AfutC (LeX = 2.22; Le¥ = 0; a gift of E. Sanabria-
Valentin, New York University School of Medicine, New York, NY).

DNA sequence analysis of Le antigen synthesis genes. Three H. pylori
isolates were chosen for sequence analysis: HP1 (98-964; inoculum strain),
00-8B (03-261; non-Le® expressor, isolated from a wild-type mouse), and
00-16A (03-270; Le® expressor, isolated from an LeP-transgenic mouse). Iso-
lates were grown for 48 h, and harvested in 1ml sterile PBS. Cells were pel-
leted for 5 min at ~4,300 ¢, and the extracts were prepared for genomic
analysis with the Wizard Genomic DNA Purification Kit (Promega).

Genomic DNA recovered from these strains was used as a template for
PCR amplification of the Le antigen synthesis genes using primers specific
for each known gene (Table S2). PCR amplification was verified with
agarose gel electrophoresis, and products were purified using a PCR pu-
rification kit (QIAGEN), quantified, and subjected to sequence analysis
(SeqWright, Inc.). Because of the inherent difficulties of analyzing long homo-
nucleotide repeat regions and regions with a high GC content (Stirling, 2003),
the poly-C tract regions of B-(1,3)galT, futB, and futC were amplified with
primers specific to these regions (Table S2). PCR products underwent direct
sequence analysis or were cloned into pGEM-T Easy (Promega), and recom-
binant plasmids were analyzed by standard sequencing methods (SeqWright,
Inc.) and by using a protocol for GC-rich DNA (GeneWiz).

To further characterize the intrastrain variation in the homonucleotide
regions of futB and futC, the pPGEM-T Easy plasmids containing PCR frag-
ments of these regions were transformed into competent E. coli DH5a
(Invitrogen) and plated on Luria-Bertani agar plates with 50 pm/ml X-gal
(Thermo Fisher Scientific) and 100 um/ml ampicillin. For each strain, 5-10
transformants were selected, and the recombinant plasmids were purified
and subjected to sequence analysis with the universal primers T7F and
SP6R (Promega). To determine the nucleotide sequence of the 5" region
of the complemented copy of B-(1,3)galT, PCR amplification was per-
formed using primers A17476 and jhp0563(+482)R (Table S2), and prod-
ucts were purified and sequenced as described. To determine the length of
the poly-C tract in the complemented mutants, 10 single colonies were
isolated from 03-270::p98B13k::p70B13comp and their Le antigen pheno-
types were determined. Subsequently, the isolates with the highest, lowest,
and intermediate Leb expression provided template genomic DNA for
PCR amplification of the B-(1,3)galT poly-C tract region using primers
jhp0563(+351)F and Gal(1,3)R(+770). PCR products were cloned into
pGEM-T Easy, recombinant plasmids were transformed into E. coli as de-
scribed, recombinant plasmids were purified from 10 single transformants
per strain, and DNA sequence analysis was performed using primers
jhp0563(+351)F and Gal(1,3)R(+770).

Construction of B-(1,3)galT null mutants. To disrupt B8-(1,3)galT,
a knockout plasmid, p98B13k, was constructed. The B-(1,3)galT ORF
was amplified from strain 98-964 (HP1) with primers Jhp0562(+630)F
and Jhp0564(—10)R (Table S2), and the 1.8-kb product was cloned into
pGEM-T Easy. A nonpolar kanamycin resistance cassette (aphA-3) was
amplified from pUCKI18K2 (a gift from H. de Reuse, Institut Pasteur,
Paris, France; Ménard et al., 1993) and inserted into a unique HindIII site
to interrupt B-(1,3)galT. Orientation of the insertion was confirmed by
restriction digestion using EcoRI and EcoR V. Transformation of H. pylori
strains with p98B13k was performed essentially as previously described
(Israel et al., 2000), and transformation with pCTBS8 (Cover et al., 1994)
was included as a positive control. Transformants were selected on BA
plus 10% NCS containing 10 pg/ml vancomycin and 25 pg/ml kanamy-
cin. Confirmation of insertion of the plasmid into the chromosome was
confirmed by PCR using primers Jhp0562(+630)F and Jhp0563(+482)R
(Table S2). The Le antigen phenotypes of all mutants were determined by
ELISA as described.

Complementation of 8-(1,3)gal T null mutants. To restore 3-(1,3)gal T’
activity in H. pylori, a complementation plasmid, p70B13comp, was intro-
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duced into the B-(1,3)galT::aphA-3 strains via natural transformation (Israel
et al., 2000). The complementation plasmid was created using pADC::uvrD
(pHPuD), a plasmid containing the H. pylori ureA/ureB genes interrupted by
a chloramphenicol resistance cassette (Kang and Blaser, 2006b). A copy of
B-(1,3)galT, amplified from strain 03-270 (Le® positive) using primers
B(1,3)compF1 and B(1,3)compR2 (Table S2), was inserted just downstream
of the ureA promoter. Transformants were selected based on chloramphe-
nicol resistance and were rapidly screened for disruption of the ureA/ureB
locus by the urease test. Insertion of B-(1,3)galT into the ureA/ureB locus
was confirmed by PCR using chromosomal DNA from the transformed
strains that had urease-negative, chloramphenicol-resistant phenotypes, and
the Le antigen phenotypes were determined by ELISA. Transformants were
not recovered for any strains tested when p70B13comp was used as donor
DNA, with the exception of JP26. Thus, to increase the efficiency of trans-
formation, first a streptomycin-resistant derivative of 98-964 transformed
with p98B13k and p70B13comp was selected, and after verification of geno-
type, chromosomal DNA from this mutant was used as donor DNA in a
subsequent transformation with the remaining 3-(1,3)galT null mutants.

Immunofluorescent labeling and flow cytometry. For each H. pylori
strain examined by flow cytometry, one plate of cells was harvested and re-
suspended in 1 ml of sterile saline and pelleted at 8,000 krpm for 5 min,
washed, pelleted, and resuspended in 1.2 ml saline. The cell suspension was
then passed through a 40-pm cell strainer (Falcon; BD), and 50-pl aliquots
were pelleted and resuspended in 100 pl 1% Tween 20 in PBS buffer
(pH 7.4) to prevent cell aggregation. Cells were incubated for 30 min with
10 pl of 1:25 diluted anti-Le® monoclonal antibody (mouse IgM) as described,
washed in Tween-PBS buffer to remove unbound antibody, and resus-
pended in buffer. As a positive control, cells were also incubated for 30 min
with 10 pl of 1:25 diluted high titer serum from an H. pylori—positive patient
(Blaser et al., 1995). Cells were washed again, resuspended, and stained for
20 min simultaneously with 10 pl of 20 pg/ml Alexa Fluor 488 goat anti—
mouse IgM ( chain specific) and Alexa Fluor 647 goat anti-human IgG
(human specific; Invitrogen). The cells were washed again and resuspended
in 100 ul of buffer. Then, 400 pl of 1.25% formaldehyde in saline was added,
followed by 5 pl of 0.1 mg/ml propidium iodide (PI). Cells were allowed to
fix overnight at 4°C. As controls, cells were reacted with the secondary anti-
bodies alone. Flow cytometric analyses were performed on a FACSCalibur
(BD). PI fluorescence intensity was used to discriminate cells from inorganic
particulates. Forward scatter and 90° angle scattered laser light intensities
were used to distinguish intact bacteria (R1) from cellular debris (Fig. 5 A).
For each sample, 20,000 R1-gated events were acquired in listmode and
subsequently analyzed using CellQuest Pro software (BD).

Statistical analyses. The Welch two-sample ¢ test and the Mann-Whitney
test were used where appropriate, with P < 0.05 considered significant. Ra-
tios of Le? to Le® expression of 0 for 00-16—derived isolates were adjusted to
0.01 to calculate log,, values in Fig. 2 B.

Online supplemental material. Fig. S1 outlines H. pylori Le antigen
synthesis pathways. Fig. S2 is a schematic of the experimental challenge of
wild-type and LeP-transgenic mice with H. pylori. Fig. S3 shows the Le* and
LeY phenotypes of H. pylori populations recovered 4 wk to 8 mo after chal-
lenge of wild-type and Leb-transgenic mice. Fig. S4 shows serum levels of
anti—H. pylori IgG in mice after challenge with strain HP1 (98-964). Table S1
shows serum levels of anti-LPS antibodies after challenge with strain HP1
(98-964). Fig. S5 shows the variation in futB in clones derived from H. pylori
strain 98-964 and progeny. Fig. S6 shows the variation of futC in clones
derived from H. pylori strain 98-964 and progeny. Fig. S7 shows PCR am-
plification of the babA locus in monkey- and mouse-derived H. pylori iso-
lates. Fig. S8 shows the complementation strategy for 3-(1,3)galT. Table S1
shows serum levels of anti-Le antigen IgG in mice 4 or 8 mo after challenge
with H. pylori strain HP1. Table S2 lists the oligonucleotide primers used
in this study. Online supplemental material is available at http://www jem
.org/cgi/content/full/jem.20090683/DC1.
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