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    Only an estimated 10% of individuals infected 
with  Mycobacterium tuberculosis  develop clinical 
tuberculosis (TB), whether it is primary TB, 
which is typically an acute systemic disease of 
children, or reactivation TB, which is typically a 
chronic pulmonary disease of adults ( Stewart et al., 
2003 ). It has long been suspected that interindi-
vidual variability in progression from infection 

to clinical TB disease is under tight genetic 
control ( Neel and Schull, 1954 ). Genetic epi-
demiological evidence in support of this view 
includes the large interpopulation variability in 
both in cidence and severity of natural TB disease, 
an equally remarkable interindividual variability 
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 Approximately 20% of persons living in areas hyperendemic for tuberculosis (TB) display 

persistent lack of tuberculin skin test (TST) reactivity and appear to be naturally resistant to 

infection by  Mycobacterium tuberculosis . Among those with a positive response, the inten-

sity of TST reactivity varies greatly. The genetic basis of TST reactivity is not known. We 

report on a genome-wide linkage search for loci that have an impact on TST reactivity, 

which is defi ned either as zero versus nonzero (TST-BINa) or as extent of TST in millimeters 

(TST–quantitative trait locus [QTL]) in a panel of 128 families, including 350 siblings, from 

an area of South Africa hyperendemic for TB. We detected a major locus ( TST1 ) on chromo-

somal region 11p14 (P = 1.4 × 10  � 5 ), which controls TST-BINa, with a lack of responsive-

ness indicating T cell–independent resistance to  M. tuberculosis . We also detected a second 

major locus ( TST2 ) on chromosomal region 5p15 (P < 10  � 5 ), which controls TST-QTL or the 

intensity of T cell–mediated delayed type hypersensitivity (DTH) to tuberculin. Fine mapping 

of this region identifi ed  SLC6A3 , encoding the dopamine transporter DAT1, as a promising 

gene for further studies. Our results pave the way for the understanding of the molecular 

mechanisms involved in resistance to  M. tuberculosis  infection in endemic areas ( TST1 ) and 

for the identifi cation of critical regulators of T cell–dependent DTH to tuberculin ( TST2 ). 

© 2009 Cobat et al. This article is distributed under the terms of an Attribu-
tion–Noncommercial–Share Alike–No Mirror Sites license for the fi rst six months 
after the publication date (see http://www.jem.org/misc/terms.shtml). After six 
months it is available under a Creative Commons License (Attribution–Noncom-
mercial–Share Alike 3.0 Unported license, as described at http://creativecommons
.org/licenses/by-nc-sa/3.0/).
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Interestingly, several genetic epidemiological studies in 
endemic areas have reported high levels of heritability for 
TST, which is considered either as a binary or quantitative 
trait, after  M. tuberculosis  exposure ( Sepulveda et al., 1994 ;  
Jepson et al., 2001 ). For example, there was 92% heritability 
for quantitative TST in household children exposed to an 
adult TB case in Chile ( Sepulveda et al., 1994 ). These obser-
vations suggested an important contribution of host genetic 
factors to resistance to  M. tuberculosis  infection and to the im-
mune reactions underlying TST intensity. 

 However, surprisingly few studies have aimed to dissect 
the underlying genetic variants. A candidate gene study failed 
to identify signifi cant association between quantitative TST 
and IL-1 receptor antagonist ( Wilkinson et al., 1999 ). This 
gene does not appear to be critically involved in TST. 

after the accidental inoculation of babies with  M. tuberculosis , a 
higher incidence risk of the disease in fi rst-degree relatives of 
TB cases as compared with fi rst-degree relatives of unaff ected 
individuals, and a higher concordance rate of TB among iden-
tical twins than among fraternal twins ( Casanova and Abel, 
2002 ). Studies of experimental infection in animal models, in 
the mouse in particular, have provided the fi rst molecular evi-
dence underlying genetic predisposition to TB ( Schurr and 
Kramnik, 2008 ). Subsequent human molecular genetic studies 
have identifi ed candidate genetic risk factors for pulmonary 
TB in adults ( Schurr and Kramnik, 2008 ) and have docu-
mented Mendelian predisposition, IL-12R � 1 defi ciency in 
particular, to disseminated TB in some children ( Alcaïs et al., 
2005 ). Collectively, these studies have provided the long-awaited 
molecular proof of principle for the contribution of human 
genetic factors to TB susceptibility. 

 There is also interindividual variability at the earlier initial 
step of the infectious process, as  � 20% of long-exposed per-
sons appear to be naturally resistant to infection by  M. tuber-
culosis  ( Rieder, 1999 ). This estimate is based on the detection 
of  M. tuberculosis –infected and –noninfected persons by means 
of the tuberculin skin test (TST) or Mantoux. The test measures 
induration of the skin after intradermal inoculation of  M. tu-
berculosis  purifi ed protein derivative (PPD). The TST triggers 
a classical T cell–mediated delayed type hypersensitivity (DTH) 
reaction against mycobacterial antigens ( Vukmanovic-Stejic 
et al., 2006 ). In hyperendemic areas for TB, a complete lack 
of TST reactivity is therefore suggestive of a T cell–independent 
resistance to infection by  M. tuberculosis  ( Rose et al., 1995 ). 

  Table I.  Distribution of families according to the number of 

genotyped siblings with available TST data and the number of 

parents genotyped 

Number of 

parents 

genotyped

Number of sibs per family Total

2 3 4 5 6

0 2 2 0 0 0 4

1 33 23 5 1 0 62

2 22 29 7 3 1 62

Total 57 54 12 4 1 128

 Figure 1.  Distribution of TST according to age among the 350 children used for the linkage analysis before and after adjustment on rel-

evant covariates.  (A) Distribution of TST values among the 350 children used for the linkage analysis. A total of 140 subjects had no measurable reaction 

(red bar) and 210 subjects had TST induration > 0 mm (black bars). (B) Distribution of TST values among the 350 children according to age in years (same 

color coding as in A). Note that the red dots refl ect variable numbers of subjects with TST = 0. Overall, 3, 2, 6, 2, 5, 22, 10, 20, 17, 11, 11, 13, 6, 2, 2, and 3 

subjects had a TST = 0 at the ages of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 19, and 20 yr, respectively. (C) Distribution of the Pearson residuals obtained 

by logistic regression of TST-BINa on age, sex, and previous TB according to age in years. Color coding indicates those subjects with TST = 0 (red) or TST > 0 

(black). As detailed in B, red dots, i.e., subjects with TST = 0, usually represent multiple persons. The two red dot outliers correspond to two subjects with 

previous TB and TST = 0. (D) Distribution of the residuals obtained by Tobit regression of TST-QTL on age, sex, and previous TB according to age in years. 

Color coding indicates those subjects with TST = 0 (red) or TST > 0 (black). As detailed in B, red dots, i.e., subjects with TST = 0, usually represent multiple 

persons. The two red dot outliers correspond to two subjects with previous TB and TST = 0.   
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no TST results in the low reading range (1–5 mm;  Kritzinger 
et al., 2009 ;  Nicol et al., 2009 ; and unpublished data), making 
the TST a sensitive and specifi c test for  M. tuberculosis  infection. 
We took advantage of the unique Western Cape epidemiologi-
cal setting and undertook the fi rst GWL scan for both binary 
(zero vs. nonzero) and quantitative (in millimeters) TST reac-
tivities to decipher the molecular basis of T cell–independent 
resistance to  M. tuberculosis  in endemic areas and the molecular 
basis of T cell–dependent TST intensity. 

 RESULTS AND DISCUSSION 

 The distribution of TST is bimodal 

 We studied 128 informative families (including 186 parents 
and 350 children) comprising two to six children with avail-
able TST induration size readings ( Table I ).  TST reactivity of 
the 350 children is shown in  Fig. 1 A .  Reactivity extended 
from 0 to 43 mm with a median size of 11.15 mm. Mean age 
at the time of TST was 11.5 yr (SD, 4.9 yr) and the sex-ratio 
was 1. As expected as a result of the cumulative exposure to 
 M. tuberculosis  in this high incidence area, age had an impor-
tant impact on TST positivity ( Fig. 1 B ). Closer inspection of 
the extent of TST reactivity showed a clear bimodal distribu-
tion with 140 individuals (40%) having a value of zero and 
210 (60%) having values that approximately followed a nor-
mal distribution centered around 16 mm. Only two children 
had a TST between 1 and 5 mm. Given the age distribution 
of study subjects (i.e., mean age of 11.5 yr), such a high pro-
portion of TST +  individuals is consistent with an annual risk 
of TB infection that is >4% in the study area ( Kritzinger et al., 
2009 ). This TST distribution is strongly suggestive of a gene 
or group of genes having an impact on TST positivity by 

In contrast, a recent study in Ghana showed that an  IL10  haplo-
type associated with low IL-10 production was signifi cantly 
less frequent in PPD-negative controls than in the group of PPD-
positive controls ( Thye et al., 2009 ). A genome-wide linkage 
(GWL) study in an endemic area reported suggestive linkage of 
persistently low TST with chromosome regions 2q21-2q24 
and 5p13-5q22 ( Stein et al., 2008 ). The absence of signifi cant 
linkage peaks in the latter study might be explained by the 
threshold-dependent categorization of the TST phenotype that 
was used to defi ne infection status (as opposed to zero vs. non-
zero) and by the heterogeneous Bacillus Calmette-Guérin 
(BCG) vaccination and/or HIV infection status of the subjects 
enrolled. Better controlled studies exploiting the full range of 
TST reactivity are thus needed because there is considerably 
more information for linkage analysis in quantitative variation 
than there is in any binary trait ( Duggirala et al., 1997 ). 

 To address this question, over the last fi ve years we have 
collected a unique population sample of 128 large nuclear fami-
lies from a hyperendemic suburb of Cape Town, South Africa, 
with an estimated TST-based annual risk of TB infection as 
high as 4%, despite rates of HIV infection <2% in the pediatric 
population ( Kritzinger et al., 2009 ). Out of 22 hyperendemic 
countries, South Africa has the highest TB annual incidence 
rate at 940/100,000, with children constituting up to 39% of 
this case load ( World Health Organization, 2008 ). The Western 
Cape off ers the advantage that detection of TB infection by 
TST in children is not signifi cantly confounded by cross-reac-
tivities to environmental mycobacteria and BCG vaccination, 
as the latter is done at birth, a situation where the impact of the 
BCG vaccination on the TST is known to vanish after 12–18 mo 
( Menzies, 2000 ). Indeed, in this setting there are virtually 

 Figure 2.  Genome-wide model-free linkage analysis of TST-BINa in a panel of 128 families including 350 siblings.  (A) Multipoint LOD score 

(black line; left y-axis) and IC (red line; right y-axis) are plotted along the 22 autosomes. (B) Expanded view of the region with the highest LOD score on 

chromosome 11. The multipoint LOD score (black line), IC at marker positions (red line), and 90% confi dence intervals for the location of the QTL (arrow 

and dashed lines) are given. Left and right y-axes indicate LOD score and IC, respectively. Chromosomal positions are given in megabases (Mb).   
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( Lander and Kruglyak, 1995 ). The 1-LOD confi dence inter-
val for the location of the major locus (corresponding to the 
90% confi dence interval for the location of the QTL under-
lying the linkage peak) spanned from 22.35 to 28.82 Mb ( Fig. 2 , 
bottom). A suggestive linkage signal was also observed on 
chromosomal region 5p15 (LOD score = 2.39, P = 0.0005, 
IC = 90.5%) at the same position as the TST-QTL locus (see 
following paragraph). In addition, fi ve weaker linkage peaks 
with P < 0.01 (i.e., LOD score > 1.17) were observed on 
chromosomal regions 3p24 (LOD score = 1.40, P = 0.0056, 
IC = 96.8%), 4q28 (LOD score = 1.57, P = 0.0036, IC = 
94.7%), 15q26 (LOD score = 1.20, P = 0.0094, IC = 93.4%), 
19q13 (LOD score = 1.83, P = 0.0018, IC = 92.4%), and 
20p13 (LOD score = 1.23, P = 0.0087, IC = 93.9%;  Fig. 2 , 
top). As a substantial proportion of TST = 0 persons are most 
likely resistant to infection with  M. tuberculosis  (see Conclud-
ing remarks), these data therefore point toward the identi-
fication of one major locus ( TST1 ) controlling human 
resistance to  M. tuberculosis . A list of the known genes located 
in the 1-LOD confi dence interval is given in  Table S1 . 

 A major locus for TST intensity maps to chromosome 

region 5p15 

 Results of the TST-QTL linkage analysis are shown in  Fig. 3 .  
A highly signifi cant linkage signal was observed on chromo-
somal region 5p15 with a multipoint LOD score of 4.00 
(P = 9 × 10  � 6 ) at position 2.70 Mb ( TST2 ). Again, this is 
substantially above the commonly accepted threshold for sig-
nifi cance in GWL studies ( Lander and Kruglyak, 1995 ). The 
1-LOD confi dence interval for location of the QTL was small, 
spanning  � 2 Mb from 1.07 Mb to 3.23 Mb ( Fig. 3 , bottom). 

itself and a diff erent gene or set of genes controlling the ex-
tent of TST reactivity. To test this hypothesis, we genotyped 
 � 6,000 single nucleotide polymorphism (SNPs) in all 536 
individuals of the 128 nuclear families and we performed two 
complementary linkage analyses. The fi rst analysis focused on 
the phenotype of positivity by itself, i.e., TST = 0 versus 
TST > 0 (TST-BINa). The second analysis focused on the 
quantitative phenotype of extent of TST reactivity (TST 
quantitative trait locus [QTL]), with a particular emphasis on 
individuals with a TST > 0. Before linkage analysis, the two 
phenotypes were adjusted on age, gender, and previous clini-
cal TB to remove as many environmental or nonspecifi c ge-
netic sources of TST variation as possible. Subsequent linkage 
analyses were therefore performed on the resulting adjusted 
residuals shown in  Fig. 1 C  (TST-BINa) and  Fig. 1 D  (TST-
QTL) that are, by defi nition, quantitative traits. 

 A major locus for TST positivity by itself maps 

to chromosome region 11p14 

 We fi rst searched for genetic factors controlling TST-positive 
response by itself. Results of the TST-BINa linkage analysis 
are shown in  Fig. 2 .  Information content (IC) was very high 
across all autosomes with mean genome-wide information of 
94.4% (from 80.6 to 98.7%). This IC is excellent and corre-
sponds to the level only accomplished at the fi ne-mapping 
stage in microsatellite-based genome scans. Linkage analysis 
of TST-BINa identifi ed a signifi cant linkage signal on chromo-
somal region 11p14 (LOD score = 3.81) at chromosomal 
position 26.37 Mb (IC = 91.15%, P = 1.4 × 10  � 5 ;  Fig. 2 , 
bottom). This level of statistical support exceeds the stringent 
threshold of signifi cance (LOD score = 3.6) for GWL scans 

 Figure 3.  Genome-wide model-free linkage analysis of TST-QTL in a panel of 128 families including 350 siblings.  (A) Multipoint LOD score 

(black line; left y-axis) and IC (red line; right y-axis) are plotted along the 22 autosomes. (B) Expanded view of the region with the highest LOD score on 

chromosome 5. The multipoint LOD score (black line), IC at marker positions (red line), and 90% confi dence intervals for the location of the QTL (arrow 

and dashed lines) are given. Left and right y-axes indicate LOD score and IC, respectively. Chromosomal positions are given in megabases (Mb).   
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control of TST reactivity, with  TST1  controlling TST posi-
tivity by itself and, presumably, T cell–independent innate 
resistance to  M. tuberculosis , and  TST2  controlling the inten-
sity of TST reactivity as a quantitative trait and, presumably, 
the intensity of T cell–mediated DTH to tuberculin. 

 Fine mapping of  TST2  identifi es  SLC6A3  as a promising 

candidate gene 

 Encouraged by the narrow linkage peak, we decided to fi ne 
map the  TST2  locus. Based on the 1-LOD confi dence inter-
val for the location of the underlying QTL for  TST2 , we se-
lected a chromosomal region extending from 1.1 to 3.2 Mb 
on the physical map of chromosome 5 ( Fig. 4 ) for association 
studies of TST-QTL in a familial sample including the 128 
nuclear families used in the linkage study and two additional 
trios (one child and her/his two parents).  This interval con-
tains 13 genes ( NKD2 → C5orf38 ; National Center for Bio-
technology Information build 36 [http://www.ncbi.nlm.nih
.gov]). We genotyped 133 SNPs in the targeted interval, 113 
of which were considered suitable for association analysis ( Fig. 4  
and  Table S2 ). To optimize gene coverage, we used a geno-
centric strategy for SNPs selection. Tag SNPs were identifi ed 
for each known gene including 2 kb of their 5 �  and 3 �  regula-
tory regions. To capture most genetic variation, a very strin-
gent tag-SNP selection scheme was used (r 2  = 0.8 with all 

In addition to this major locus, four weaker linkage peaks 
with P < 0.01 were observed in chromosomal regions 11p14 
(LOD score = 1.47, P = 0.0046, IC = 93.1%), at the same 
position as the TST-BINa locus 10p15 (LOD score = 1.76, 
P = 0.002, IC = 93.3%), 13q21 (LOD score = 1.51, P = 
0.0042, IC = 96%), and 22q11 (LOD score = 1.34, P = 
0.0065, IC = 97%). Therefore, these results support the hy-
pothesis of a second major locus ( TST2 ) on chromosomal 
region 5p15 controlling the intensity of TST reactivity as a 
quantitative trait, i.e., the intensity of T cell–mediated DTH 
to tuberculin. An interesting observation is the mirror eff ect 
between the two previous analyses with a suggestive linkage 
signal on chromosomal region 5p15 in the analysis of TST-
BINa and on chromosomal region 11p14 in the analysis of 
TST-QTL. This is suggestive of some level of redundancy 
between the two phenotypes with the most straightforward 
explanation being individuals coded as 0 in both analytical 
approaches. To further explore this observation, we per-
formed a linkage analysis of TST-QTL among individuals 
with TST > 0 mm only. Despite a dramatic reduction in 
family numbers (68 families comprising 164 children), we 
still found signifi cant evidence of linkage at chromosomal re-
gion 5p15 (LOD score = 2.17, P < 8 × 10  � 4 ). In contrast, the 
linkage signal on 11p14 totally disappeared (LOD score = 
0.14, P = 0.21). These results may refl ect a sequential genetic 

 Figure 4.  Fine mapping of the 90% confi dence interval for the location of  TST2  locus in a panel of 128 families including 350 siblings.  

Evidence for association with TST-QTL of 113 SNPs located in the 90% confi dence linkage interval is given as  � log 10 P and plotted against SNP position 

(blue diamonds). The locations of the 13 genes of this region are provided. Two intervals with no annotated genes (2–2.7 Mb and 2.9–3.2 Mb) are not 

shown (//). The red lines indicate the P = 0.05 and P = 0.01 signifi cance thresholds.   
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tance among exposed persons. Although it is possible that this 
innate resistance can be overcome by extreme exposure pres-
sure, the targeted strengthening of T cell–independent resis-
tance loci in infection susceptible persons off ers an attractive 
avenue of protection from TB disease. The identifi cation of 
the  TST1  locus that belongs to a much larger region than 
 TST2  will follow the strategy successfully applied in leprosy 
( Mira et al., 2004 ;  Alcaïs et al., 2007 ). 

 Our study also provides strong evidence that a major 
QTL ( TST2 ) mapping to chromosome region 5p15 is in-
volved in the control of TST extent in families living in a 
hyperendemic region for TB. Consistent with our results, the 
same region showed some evidence of linkage (P < 0.05) 
with persistently low TST reactivity in a familial sample from 
Uganda ( Stein et al., 2008 ).  TST2  is the fi rst non-MHC 
locus that has an impact on intensity of T cell–mediated DTH 
to tuberculin. This identifi es  TST2  as important immune 
modulator and possible confounder in the numerous studies 
that have aimed at correlating extent of TST with risk for 
future clinical TB disease. A more direct link of  TST2  with risk 
of disease is perhaps provided by the repeated observation of 
the 5p15 region as location of a sarcoidosis susceptibility 
locus ( Iannuzzi et al., 2007 ). Sarcoidosis is characterized by the 
immune paradox of extensive local infl ammation (granuloma 
and cytokine secretion) associated with suppression of the 
immune response to tuberculin ( Miyara et al., 2006 ). Multi-
ple studies have investigated the association between myco-
bacterial antigens and sarcoidosis but no clear consensus has 
emerged ( Iannuzzi et al., 2007 ). Our results suggest that 
human genetics could serendipitously connect the mechanisms 
governing sarcoidosis and T cell–dependent DTH to myco-
bacteria. The only other example of DTH for which response 
regulators have been reported in humans is the Montenegro 
skin test to leishmania antigen ( Jeronimo et al., 2007a , b ). 
However, none of these regulators mapped to the 5p15 (or 
the 11p14) chromosomal region, suggesting that  TST2  
immune regulation involves an element of specifi c antigen 
recognition. Our fi rst genocentric association scan of the  TST2  
interval identifi ed  SLC6A3  as a promising candidate for 
 TST2 . Experimental deletion of this gene in mice resulted in 
their signifi cantly reduced ability to mount a DTH reaction 
against ovalbumin ( Kavelaars et al., 2005 ).  SLC6A3  is related 
to  NRAMP1  (alias  SLC11A1 ), which has previously been 
shown to have a major impact on the extent of the granulo-
matous response to  Mycobacterium leprae  antigen ( Alcaïs et al., 
2000 ). Nevertheless, additional studies will be required to 
fully understand the molecular basis of the  TST2  locus. 

 The gene regions previously reported to play a role in 
clinical TB ( Schurr and Kramnik, 2008 ), including the only 
major TB susceptibility locus on chromosome 8p13 ( El 
Baghdadi et al., 2006 ), do not overlap with the two main 
chromosomal regions identifi ed in this study. For the  TST1  
locus on chromosome 11p14, this is not surprising because 
genetic studies are generally done on TST-positive (i.e., in-
fected) subjects, which precludes identifi cation of infection 
resistance genes. For the  TST2  region on chromosome 5p15, 

tagged SNPs and minor allele frequency > 5%). Because no 
genes have been annotated on chromosomal intervals 2–2.7 Mb 
and 2.9–3.2 Mb, few SNPs were genotyped in these chromo-
somal segments and none were signifi cant. In univariate analy-
sis, nine SNPs (rs4975579, rs6554677, rs1801075, rs250682, 
rs10475030, rs11747565, rs2922061, rs1018120, and rs2232376) 
were signifi cantly associated with TST-QTL at the 0.05 level 
( Fig. 4 ). Analysis of the linkage disequilibrium (LD) patterns 
between these nine SNPs showed no LD, supporting the hy-
pothesis of independent eff ects even though it is likely that 
some of these signals are false positives (unpublished data). 
Out of these nine SNPs, rs250682 located in  SLC6A3  (solute 
carrier family 6 member 3) displayed the strongest association 
with TST-QTL (P = 0.001). Allele G of rs250682 (q = 0.36) 
has a dominant eff ect and is associated with lower values of 
the TST-QTL. To ensure that SNP rs250682 was responsible 
for the observed association, we screened the Yoruba sample 
of the HapMap database (www.hapmap.org) in a region span-
ning 5 Mb around rs250682. Only four SNPs (rs250681, 
rs40358, rs403636, and rs464049) were correlated with an 
r 2  > 0.5 with rs250682. All of these four SNPs are located in 
the  SLC6A3  gene. These results identifi ed  SLCA63  as a 
promising target for further study on the intensity of T cell–
mediated DTH to tuberculin. 

 Concluding remarks 

 We report in this paper that absence of TST reactivity (zero 
induration) has a major human genetic component and that 
the corresponding locus,  TST1 , maps to chromosome region 
11p14. As the risk of developing TB for persons with  M. tu-
berculosis  exposure but TST = 0 was previously shown to be 
extremely small, such TST = 0 persons are most likely not in-
fected with  M. tuberculosis  ( Rose et al., 1995 ;  ATS-CTC-IDSA, 
2000 ). Persons who experience continued high exposure to 
 M. tuberculosis  and display persistent lack of T cell sensitization 
are much more likely to be naturally resistant to infection 
with  M. tuberculosis  than intrinsically defi cient in mounting a 
DTH response. An estimate of infection-resistant persons can 
be obtained from countries where TB is highly endemic. In 
such conditions, where exposure to the tubercle bacillus is in-
tense and sustained,  � 20% of individuals remain TST nega-
tive ( Rieder, 1999 ). In our families, it is not possible to 
distinguish between individuals who have not been exposed 
to  M. tuberculosis  and those who have been exposed but are 
naturally resistant to infection. However, because the lack of 
exposure is diffi  cult to reconcile with a genetic component, 
the most parsimonious explanation of our data is that the 
 TST1  locus refl ects T cell–independent resistance to  M. tuber-
culosis  infection. Consequently, a substantial fraction of TST = 0 
persons in the study families must have been exposed to 
 M. tuberculosis  but, as a result of very eff ective T cell–indepen-
dent responses, those persons were resistant to  M. tuberculosis  
before T cell sensitization could occur. Our fi ndings make it 
likely that being spared from infection with  M. tuberculosis  is 
not simply a matter of lack of exposure but refl ects genetically 
controlled profound diff erences of T cell–independent resis-
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diameter of induration was measured in millimeters using a set of calipers 

calibrated to the nearest 0.5 mm. Two phenotypic defi nitions were used ( Fig. 1 ). 

First, we dichotomized the TST distribution using 0 mm as the threshold to 

study the TST positivity (TST-BINa). Second, we analyzed the extent of the 

TST reactivity as a quantitative trait (TST-QTL) by Tobit regression. 

 Before linkage analysis, TST-BINa and TST-QTL phenotypes were all 

adjusted on previous clinical TB (at least 2 yr preceding the study), sex (male 

or female), and age (in years). Pearson and Tobit residuals were used for link-

age analysis of TST-BINa and TST-QTL, respectively. TST-BINa was ad-

justed by means of logistic regression ( Fig. 1 C ), as implemented in the 

PROC LOGISTIC of the SAS software v9.1 (SAS institute, Cary, NC). 

TST-QTL was adjusted by means of the Tobit censored regression as imple-

mented in the PROC QLIM of the SAS software, with the censoring 

threshold fi xed at 0 ( Fig. 1 D ). Note that because the linkage analysis was 

performed on the residuals generated by the adjustment procedure, both 

phenotypes under study (TST-BINa and TST-QTL) were analyzed as quan-

titative traits. For each phenotype, the best fi tting model for the age eff ect 

was determined among a set of multivariate fractional polynomials (FP) 

models as proposed in ( Royston et al., 1999 ). First (FP1) and second (FP2) 

degree FP models were fi tted with power p (i.e., age to the power p) for FP1 

and p and q for FP2 chosen from  � 2,  � 1,  � 0.5, 0, 0.5, 1, 2, and 3, with 0 

denoting log transformation. Among the 44 possible combinations, the 

model providing the smaller Akaïke Information Criteria was selected. A 

simple FP1 model was retained with power p = 0.5 for TST-BINa, whereas 

a FP2 model was retained for TST-QTL (power p = 1 and q = 2). 

 Genotyping.   High-density genotyping for the linkage study was performed 

at the Centre National de Génotypage (Paris, France) with the linkage IVb 

panel (Illumina), containing >6,000 SNPs. 11 nonpolymorphic SNPs and 79 

SNPs with a call rate <80% were excluded. None of the remaining SNPs 

showed departure from Hardy-Weinberg equilibrium among the founders at 

the 0.001 level. Pairwise LD analysis between adjacent SNPs was performed 

using Haploview software ( Barrett et al., 2005 ) in the 186 parents of our 

sample. In our sample, pairwise LD between adjacent SNPs was very weak, 

with most of SNPs-pairs having an r 2  < 0.1 (mean pairwise r 2  = 0.07). 

 Genotyping for fi ne mapping of  TST2  on chromosome region 5p15 

was performed at the McGill University and Genome Quebec Innovation 

Centre. 133 SNPs spanning the 2.2-Mb targeted interval on chromosome 

region 5p15 (i.e., the 1-LOD confi dence interval for the location of the 

QTLs underlying the linkage peak) were selected on the basis of their loca-

tion within known genes in the interval and on information regarding bin 

structure and allelic frequencies publicly available from the International 

HapMap project (http://www.hapmap.org/). These 133 SNPs were geno-

typed on the high-throughput MassARRAY platform (SEQUENOM, 

Inc.), which uses the iPLEX assay to incorporate mass-modifi ed terminal 

nucleotides in the SBE step, which are then detected by MALDI-TOF MS 

( Griffi  n and Smith, 2000 ). 10 SNPs were excluded because they were non-

polymorphic and 1 SNP was excluded because of a call rate <80%. SNPs 

with a minor allele frequency <5% were also excluded. Finally, two SNPs 

that showed departure from Hardy-Weinberg equilibrium among the found-

ers at the 0.01 level were excluded (Table S1). 

 Internal population structure analysis.   As suggested by  Thompson et al. 

(2006) , we checked for population substructure to minimize genetic hetero-

geneity of the sample before linkage analysis. We performed a principal com-

ponent analysis of the 5,567 autosomal SNPs in the 186 genotyped founders 

of our sample as implemented in the SMARTPCA software ( Patterson et al., 

2006 ). The principle of this method is to determine the major axes of genetic 

variation in the sample and to output each individual’s coordinates along axes 

of variations, without formally clustering individuals into discrete population. 

No population substructure was found in our data but we identifi ed fi ve out-

liers distributed in four families that were excluded from the analysis. 

 Family-based analysis.   We performed quantitative model-free multi-

point linkage analysis on the Pearson residuals of the TST-BINa logistic 

the lack of overlap with TB susceptibility genes is more sur-
prising. However, because  TST2  has a strong impact on TST 
induration size, which is correlated with risk of subsequent 
TB disease, a further study of  TST2  on susceptibility to clini-
cal TB may provide new insights into the mechanism of ad-
vancement from infection to TB disease. HLA class II genes 
are validated TB susceptibility loci, and MHC alleles are 
known from the mouse model to have a strong impact on 
DTH ( Schurr and Kramnik, 2008 ). These observations made 
the chromosome 6 HLA region a prime candidate for loci 
impacting on TST induration size. Yet we failed to observe 
any evidence for a role of HLA genes on TST. That the 
strongest genetic eff ect on tuberculin reactivity is caused by a 
non-HLA locus directly leads to the question of whether this 
or other non-HLA loci will be modulators of vaccine-
induced anti-mycobacterial protective immunity. Although 
the impact of the  TST1  and  TST2  loci on progression from 
infection to TB disease is presently unknown, the two loci 
which control T cell–independent resistance to infection with 
 M. tuberculosis  ( TST1 ) and T cell–dependent intensity of tuber-
culin reactivity ( TST2 ) represent an important expansion in 
our understanding of TB immunity. 

 MATERIALS AND METHODS 
 Subjects and families.   Nuclear families (i.e., parents and off spring) with at 

least two children were enrolled from Ravensmead and Uitsig. Ravensmead/

Uitsig (R/U) is a suburban area of Cape Town, South Africa, with a popula-

tion of 38,656 living in a 3.5-km 2  area. HIV prevalence at the time of family 

enrolment was 5.2% in the overall population and <2% in the pediatric popu-

lation. The population is stable and there are few homeless people or migra-

tory workers. All individuals of the sample belong to the Cape Colored ethnic 

group. There was no requirement for subjects to be household contacts of TB 

cases. However, this area has a notifi cation rate of TB (all cases) of 761/100,000 

and of new bacteriologically confi rmed cases of 313/100,000 ( Verver et al., 

2004 ), which is suggestive of a high level of exposure to  M. tuberculosis . The 

enrolment strategy was to target large households to allow later reconstruc-

tion of nuclear families. In addition, if TST reactivity was known at time of 

enrollment, households that contained both strongly TST-positive and TST-

negative subjects were prioritized for enrollment, as this sampling strategy has 

been shown to be the most powerful for linkage analysis. 

 Subjects who had had clinical TB disease in the 2 yr preceding the study 

were excluded. It is of note that the distribution of TST values among siblings 

of individuals who were excluded because they developed TB in the last two 

years did not diff er from the overall distribution (i.e., 33 vs. 40% of null values 

and mean TST of 15.8 vs. 16 mm). Individuals who were HIV positive, 

pregnant, or using immunomodulatory chemotherapy were also excluded at 

the time of enrolment. BCG vaccination at birth is routine in the study area 

and was therefore not a confounding factor in our study because several stud-

ies have shown that the impact of BCG at birth on the TST vanishes rapidly 

( Menzies, 2000 ). Similarly, all individuals belong to the Cape Colored ethnic 

group, therefore limiting the risk of genetic heterogeneity. Informed consent 

was obtained from all study participants. Protocols involving human subjects 

were approved by the Stellenbosch University Health Research Ethics Com-

mittee (Tygerberg, South Africa), the University of Cape Town (Cape Town, 

South Africa), and the Research Ethics Board at the Research Institute of the 

McGill University Health Centre (Montreal, Canada). 

 Phenotype and covariates.   TSTs were performed by specially trained health 

care providers using the Mantoux method with  M. tuberculosis  PPD RT23 (2 

tuberculin units; Statens Serum Institut, Copenhagen, Denmark). TST reactiv-

ity was read between 48 and 72 h after the skin test was performed and the 
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