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BRIEF DEFINITIVE REPORT

    The terminal diff erentiation of eff ector lym-
phocytes after encounter with antigen is a com-
plex and tightly regulated process that ensures 
rapid, but limited, immune responses. Tran-
scription factors play crucial regulatory roles in 
the diff erentiation processes that culminate in 
the formation of eff ector and memory B and 
T cells ( 1, 2 ). 

 The transcriptional repressor B lymphocyte –
 induced maturation protein-1 (Blimp-1) is one 
of the few transcription factors known to be 
crucial for regulating B lymphocyte terminal 
diff erentiation. Blimp-1 is required ( 3 ) and suf-
fi cient ( 4 ) for the formation of fully functional 
antibody-secreting plasma cells and for main-
tenance of long-lived plasma cells in the bone 
marrow ( 5 ). 

 Blimp-1 is a SET domain and a zinc fi nger –
 containing transcriptional repressor encoded by 
the  Prdm-1  gene. Transcriptional repression by 
Blimp-1 is mediated by repressive modifi cations 
in chromatin structure, through recruitment of 
Groucho family transcriptional corepressors, and 
chromatin-modifying enzymes (for review see 
[ 6 ]). In addition to its crucial role in the diff er-
entiation of plasma cells, Blimp-1 has critical 

functions in embryonic development ( 7, 8 ), and 
targeted deletion of the  Prdm1  gene in the mouse 
is embryonically lethal ( 9 ). Blimp-1 is also required 
for terminal diff erentiation of several nonlym-
phoid cell lineages in adult organisms (for re-
view see [ 6 ]). 

 Recently, a role for Blimp-1 in T cell diff  er en-
tiation was demonstrated in two labora tories ( 10, 
11 ). After T cell receptor (TCR) stimulation, 
both CD4 +  and CD8 +  T lymphocytes express 
Blimp-1 mRNA in amounts compara ble to that 
in fully mature plasma cells. Blimp-1 mRNA is 
also expressed at high levels in Foxp3 + CD4 +  reg-
ulatory T cells. Conditional deletion of Blimp-1 
in T cells results in profound alter ations of 
T cell homeostasis and function and culmi-
nates in the spontaneous development of fatal 
colitis ( 10, 11 ). Blimp-1 – defi cient CD4 +  regu-
latory T cells (T reg cells) are partially dysfunc-
tional, as they perform properly in in vitro 
immunosupression assays and in one colitis model 
in vivo ( 11 ), but fail to inhibit chemically induced 
colitis in WT mice ( 10 ). 

 TCR stimulation of Blimp-1 – defi cient CD4 +  
T cells in vitro results in hyperresponsiveness 
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with results from polyclonal stimulation ( 10 ), TCR restimu-
lation 3 d after primary activation also resulted in more IL-2 – 
producing cells in the CKO cultures ( Fig. 1 A ).  CKO cells 
proliferated more robustly, especially when antigen was pro-
vided in lower doses (Fig. S1 A, available at http://www.jem
.org/cgi/content/full/jem.20080526/DC1). Thus, Blimp-1 
attenuates proliferation and the number of IL-2 – producing 
cells upon antigen-specifi c stimulation, and attenuation of 
IL-2 production by Blimp-1 can be observed at the time of 
primary stimulation. 

 IL-2 is known to induce Blimp-1 in B cells ( 4 ), and most 
of the induction of Blimp-1 mRNA and protein upon T 
cell activation has been shown to depend on IL-2 produc-
tion ( 12 ). Consistent with our observation of increased IL-2 
production in Blimp-1 CKO T cells ( Fig. 1 A ) ( 10 ), forced 
expression of Blimp-1 in T cells decreases expression of IL-2 
( 12, 13 ), and IL-2 causes its own down-regulation ( 12, 19 ). Given 
these complicated interactions, we investigated the kinetics 
of Blimp-1 and IL-2 expression in normal T cells, measuring 
steady-state mRNA levels. At days 1 and 2 after stimulation 
of naive CD4 +  T cells in vitro, IL-2 steady-state mRNA is 
more strongly induced than Blimp-1 mRNA. However, by 
day 3, Blimp-1 mRNA increases signifi cantly and IL-2 mRNA 
decreases ( Fig. 1 B ). To study this at the single-cell level, we 
used a mouse in which Blimp-1 mRNA expression is reported 
by EGFP ( 7 ). Total spleen cells were stimulated in vitro and 
analyzed for IL-2 and GFP expression. 1 d after stimulation, 
 < 10% of the CD4 +  T cells expressed GFP, whereas  � 5% of 
cells expressed IL-2. 3 d after stimulation, GFP expression 
increased to 17%, whereas IL-2 expression decreased to  < 3% 
( Fig. 1 C , top right). Restimulation on day 3 resulted in in-
creased expression of both IL-2 protein and Blimp-1 mRNA, 
and addition of IL-2 amplifi ed Blimp-1 expression, while de-
creasing IL-2 production ( Fig. 1 C , bottom). Strikingly, in 
all time points, very few cells were double-positive for GFP 
and Blimp-1. 

 Previous studies show that IL-2 production is tightly regu-
lated ( 20, 21 ), and that even under optimal conditions not all 
T cells in a population will acquire the competence to transcribe 
the  Il2  gene and synthesize IL-2 upon primary stimulation 
( 22 ). The negative correlation between Blimp-1 expression 
and IL-2 production at the single-cell level ( Fig. 1, B and C ), 
along with the observation that more cells make IL-2 when 
Blimp-1 is absent ( Fig. 1 A ), provide evidence that expression 
of Blimp-1 is important in the exclusion of IL-2 production 
upon TCR stimulation. These results confi rm and expand 
previous data ( 10, 12 ), supporting the model that upon T cell 
activation, most induction of Blimp-1 occurs secondary to 
IL-2 production and that the induced Blimp-1 participates in 
a regulatory loop to repress IL-2 expression. 

 Blimp-1 is required for cytokine deprivation – induced cell 

death after activation 

 IL-2 also has important eff ects on T cell apoptosis ( 18 ). After 
T cell activation, IL-2 production decreases, triggering pas-
sive cell death and limiting T cell numbers at the conclusion 

that is revealed by robust proliferation in suboptimal stimu-
latory conditions and increased numbers of IL-2 producers, 
indicating that Blimp-1 is a negative regulator of IL-2 produc-
tion ( 10 ). This idea is also reinforced by two recent observations: 
(a) Blimp-1 and IL-2 expression upon TCR stimulation are 
inversely correlated, and (b) enforced expression of Blimp-1 
in T cells represses IL-2 production upon TCR stimulation 
( 12, 13 ). 

 IL-2 was initially identifi ed as an autocrine cytokine nec-
essary for in vitro expansion of T cells ( 14 ). Subsequent stud-
ies indicated a role for IL-2 in promoting T cell expansion, 
survival, eff ector diff erentiation, and memory cell survival 
via promotion of IL-7R expression ( 15 ). Indeed, the stimula-
tory properties of IL-2 make it a therapeutic target, especially 
in AIDS and cancer, where IL-2 administration promotes 
T cell expansion in vivo ( 15, 16 ). IL-2 has also been shown to 
participate in the contraction of infl ammatory responses, by 
programming activated CD4 +  T cells for apoptosis ( 17, 18 ) and 
promoting the growth and survival of the innate CD4 + FoxP3 + T 
reg cells ( 15 ). Because of these eff ects, IL-2 –  or IL-2R – de-
fi cient mice exhibit a multifaceted autoimmune pheno type char-
acterized by multiorgan infl ammation, absence of T reg cells, 
and accumulation of autoreactive T cells (for review see [ 15 ]). 

 Interestingly, IL-2 represses its own expression in a classical 
negative-feedback loop that functions in a STAT-5 – dependent 
manner ( 19 ). This fi nding, together with the observation that 
IL-2 is a potent inducer of Blimp-1 expression in T cells ( 12 ), 
led to the suggestion that Blimp-1 plays important roles in 
IL-2 autoregulation. 

 We have investigated this hypothesis, and report that Blimp-1 
directly represses the  Il2  gene and indirectly represses  Il2  
by repressing  Fos , which encodes Fos; Fos is a component 
of AP-1, a strong activator of  Il2 . As a consequence of the in-
creased production of IL-2 in the absence of Blimp-1, CD4 +  
T cell proliferate more upon antigen-specifi c stimulation and 
are more resistant to cytokine deprivation – induced cell death. 
Attenuation of IL-2 production by Blimp-1 plays a role in 
an antigen-specific response in vivo. Thus, one important 
function of Blimp-1 in T cells is to attenuate IL-2 produc-
tion upon antigen stimulation, by both direct and indirect 
gene repression. 

  RESULTS AND DISCUSSION  

 Blimp-1 attenuates IL-2 expression in the primary response 

 We have previously reported that lack of Blimp-1 results in 
increased proliferation and IL-2 production after polyclonal 
TCR stimulation ( 10 ). To further understand the mecha-
nisms by which Blimp-1 regulates IL-2 production, we eval-
uated the kinetics of IL-2 production in an antigen-specifi c 
context. Blimp-1 conditional KO (CKO) mice were bred 
to OT2 TCR transgenic mice to generate antigen-specifi c, 
Blimp-1 – suffi  cient (Ctrl) and  – defi cient (CKO) CD4 +  T cells. 
When naive (CD44 low ) OT2 CD4 +  cells were stimulated in 
vitro with APCs and cognate antigen, the percentage of IL-2 – 
producing cells was signifi cantly higher in the CKO than in 
the Ctrl cultures in all time points evaluated. In agreement 
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sence of Blimp-1 was responsible for the increased survival of 
eff ector cells in this assay ( Fig. 2 ). Thus, Blimp-1 – dependent 
repression of IL-2 is important for passive cell death at the con-
clusion of an immune response. 

 Lack of Blimp-1 results in increased IL-2 and Fos mRNA 

 We wished to understand the molecular mechanism by which 
Blimp-1 controls IL-2 production. Although the production 
of IL-2 is regulated transcriptionally and posttranscriptionally 
( 20, 21 ) because Blimp-1 is a transcriptional repressor, it prob-
ably regulates the transcription of the  Il2  gene, either directly 
and/or indirectly. To test this hypothesis, we fi rst analyzed 
steady-state levels of IL-2 mRNA in cells from Ctrl and CKO 
mice. Naive CD4 +  cells from CKO mice had significantly 

of an immune response. Because our data ( Fig. 1 ) implicated 
Blimp-1 in postactivation down-regulation of IL-2, we next 
investigated whether Blimp-1 also plays a role in passive cell 
death after IL-2 withdrawal. 

 Naive CD4 +  T cells from Ctrl or CKO mice were stimu-
lated for 5 d, in optimal conditions, so IL-2 production was 
maximal and Blimp-1 expression was high in the Ctrl cells. 
5 d after stimulation, cells were extensively washed and re-
plated with or without exogenous IL-2. Blimp-1 CKO cells 
survived better in the absence of exogenous IL-2, and there 
were two- to threefold more live cells in CKO cultures com-
pared with Ctrl ( Fig. 2 ).  Addition of IL-2 at the time of re-
plating abrogated the diff erences between Ctrl and CKO 
cells, indicating that the increased IL-2 production in the ab-

  Figure 1.     Expression of Blimp-1 and IL-2.  (A) Production of IL-2 by naive CD4 +  OT2 Blimp-1 – suffi cient (Ctrl) and  – defi cient (CKO) cells stimulated 

with 0.1  � M OVA and APC (determined as described in Materials and methods). Data shown is the percentage of IL-2 – producing cells in the live, CD4 +  cell 

gate. (B) Steady-state Blimp-1 and IL-2 mRNA (determined by quantitative real-time PCR) in naive WT CD4 +  T cells stimulated as described in Materials 

and methods. (C) Few, if any, Blimp-1 – expressing cells produce IL-2. Lymph node and spleen cells from Blimp-1-GFP reporter mice were stimulated (top) 

or restimulated (bottom) and stained for IL-2 and GFP. Plots show GFP and IL-2 in the CD4 +  cells. Specifi city of GFP staining is shown on the top left.   
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cells compared with Ctrl cells (unpublished data). Because a 
direct correlation between Pol II binding and transcription 
has been previously demonstrated for the  Il2  gene ( 26 ), this 
suggested that Blimp-1 directly represses  Il2  transcription. 
To test this hypothesis and identify Blimp-1 response elements, 
we searched the genomic sequence (plus 10 kb upstream and 
10 kb downstream of the transcriptional start site [TSS]) of 
the mouse and human  Il2  genes, looking for Blimp-1 con-
sensus binding sites (CBSs). We found 20 putative CBSs for 
Blimp-1 in the mouse  Il2  gene (Table S1, available at http://
www.jem.org/cgi/content/full/jem.20080526/DC1), and 
8 of these sites ( � 7,252,  � 5,547,  � 4,795,  � 4,765,  � 4,221, 
 � 4,207,  � 3,982, and  � 1,861) were contained in an 8.4-kb 
region upstream of the  Il2  TSS, which has been shown to 
be repressed by Blimp-1 in an in vitro reporter assay ( 12 ). We 
focused our eff orts on these sites fi rst; however, some sites 
were embedded in simple-sequence repeats and we were un-
able to design primers for effi  cient amplifi cation of these re-
gions. Thus, sites  � 3,982,  � 1,861, in the upstream region of 
the gene, and +10,215 and a region containing no Blimp-1 
consensus sequence (+1,556 to +1,713 bp) relative to the TSS 
were investigated. We assayed binding of endogenous Blimp-1 
by ChIP in WT CD4 +  T cells after 6-d stimulation and re-
stimulation in vitro, a condition where Blimp-1 expression is 
high ( 6 ). Out of the 3 Blimp-1 CBSs investigated, only site 
 � 1,861 was enriched for Blimp-1 binding ( Fig. 4 A ).  Sites 
 � 3,982 and +10,215, as well as the irrelevant site, showed 
no signifi cant enrichment ( Fig. 4 A ). Thus, Blimp-1 binds 
specifi cally at the site  � 1,861 of the  Il2  gene. 

 Previous studies showed that an 8.4-kb region of the  Il2  
promoter, containing this site, conferred proper expression in 

higher amounts of steady-state IL-2 mRNA than cells from 
Ctrl mice, before and at later time points after stimulation 
(days 2 and 3), but not earlier ( Fig. 3 A ).  This suggests that 
low levels of Blimp-1 in naive cells ( 10 ) are suffi  cient to re-
press  Il2  before activation. Alternatively, or in addition, the 
repression of  Il2  by Blimp-1 in naive cells could be facilitated 
by the regulatory pathways operating before TCR stimu-
lation, which diff er considerably from the ones in place after 
stimulation ( 21 ). Upon activation of  Il2  by NFAT, members 
of AP-1 family and NF- � B ( 21 ), the relatively low amounts 
of Blimp-1 are apparently overcome, and Blimp-1 cannot re-
press  Il2 . However, as Blimp-1 levels rise, Blimp-1 is once again 
able to repress  Il2  transcription. If higher levels of Blimp-1 
are, indeed, required to contain  Il2  transcription upon TCR 
stimulation, it would also explain why restimulation at day 3 
results in more  Il2  mRNA in Blimp-1 CKO cells, as in these 
circumstances Blimp-1 expression in WT cells is further elevated 
( Fig. 1 C ; unpublished data). Repression of  Il2  by Blimp-1 
is also consistent with the recent observation that enforced 
expression of Blimp-1 represses IL-2 production upon TCR 
stimulation ( 12, 13 ). 

 Fos, a component of the AP-1 family of transcription fac-
tors, is one of the well-known transcriptional activators of the 
 Il2  gene in T cells ( 23, 24 ). Because our previous studies ( 25 ) 
showed that  Fos  is a direct target of Blimp-1 – dependent re-
pression in keratinocytes, we asked if Blimp-1 repressed  Fos  
in T cells. Blimp-1 – defi cient CD4 +  T cells stimulated (as de-
scribed in Materials and methods) showed increased levels of 
Fos steady-state mRNA ( Fig. 3 B ). Thus, Blimp-1 normally 
down-regulates the steady-state mRNA of both  Il2  and its 
activator  Fos . 

 Blimp-1 directly represses the  Il2  and  Fos  genes 

 Preliminary chromatin immunoprecipitation (ChIP) experi-
ments showed increased specifi c binding of Pol II to the tran-
scription initiation site of the  Il2  gene in activated CKO CD4 

  Figure 2.     Attenuation of IL-2 production by Blimp-1 promotes 

susceptibility to IL-2 deprivation – induced cell death.  Control and 

CKO naive CD4 +  T cells were stimulated with plate-bound  � CD3,  � CD28, 

and IL-2 for 5 d (primary stimulation), washed, and replated in medium 

only (left) or in the presence of IL-2 (right). Cell death was determined by 

staining with Annexin V and 7-AAD. Results shown (mean and SEM from 

two independent experiments) are the percentage of Annexin V  �   and 

7-AAD  �   cells.     Figure 3.     Blimp-1 defi ciency results in increased levels of IL-2 

and Fos steady-state mRNA.  Steady-state IL-2 (A) and Fos (B) mRNA in 

naive (day 0) and stimulated CD4 +  T cells from Control and CKO mice. 

In A, the middle graph shows steady-state IL-2 mRNA (normalized to 18 S) 

before and after restimulation. Ratios (CKO/Ctrl) from values in left graphs 

are shown in the right graphs. Results are representative of three to 

fi ve experiments.   
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the eff ects of Fos in regulating proliferation can only be 
 observed when both FosB and Fos are missing (for review 
see [ 30 ]). 

 Lack of Blimp-1 leads to increased IL-2 production in vivo 

 Our data ( Figs. 1 – 2 and 4 ), and that of others ( 12, 19 ), show 
that the transient nature of IL-2 production after T cell acti-
vation depends on induction of Blimp-1 by IL-2 and subse-
quent Blimp-1 – dependent repression of IL-2 production via 
repression of  Il2  and  Fos . To explore the role of Blimp-1 – de-
pendent repression of IL-2 in vivo, we transferred Ctrl and 
CKO CFSE-labeled naive CD4 +  OT2 (CD45.2) into allotype 
congenic recipients (C57BL/6 SJ CD45.1), and then immu-
nized the recipients with dendritic cells pulsed with OVA 
peptide. 5 d later, cells were recovered from lymph nodes of 
recipients and restimulated in vitro, and IL-2 production was 
evaluated in the CD45.2 +  population by intracellular cyto-
kine staining. At this time point, both proliferation and IL-2 
production were more pronounced in the Blimp-1 CKO 
cells ( Fig. 5, A and B ). Approximately twofold more Blimp-1 
CKO cells entered cell cycle compared with the Ctrl cells 
( Fig. 5 A ). In addition, in mice injected with CKO cells, 
 � 40% of the CD45.2 +  cells were producing IL-2, whereas 
16% of the CD45.2 +  cells were IL-2 producers in the mice 
injected with Ctrl cells ( Fig. 5 B ). Therefore, Blimp-1 atten-
uates CD4 +  T cell proliferation and IL-2 production upon 
antigen-specifi c TCR stimulation in vivo ( Fig. 5 ). 

transgenic cells ( 27 ) and forced expression of Blimp-1 decreased 
expression of this transgene ( 12 ). Although another potential 
Blimp-1 CBS is present in the 8.4-kb region (site -3,982), 
this site does not seem to bind Blimp-1 in vivo ( Fig. 5 A ).  
Thus, the  � 1,862-bp site is likely to mediate repression of  Il2  
by Blimp-1, although other currently untested sites in the 8.4-kb 
regulatory region (Table S1) may also contribute. 

 We also evaluated Blimp-1 binding to previously identifi ed 
sites in  Fos  ( 25 ). Sites located at  � 179 and  � 4,990 bp from 
the TSS of mouse  Fos  are enriched for Blimp-1 binding in 
CD4 +  T lymphocytes. These results, together with previous 
results ( Figs. 1 – 3 ), demonstrate that Blimp-1 directly represses 
transcription of  Il2  and the  Il2  activator  Fos . 

 We conclude that Blimp-1 attenuates IL-2 production 
both directly, by repression of the  Il2  gene, and indirectly, by 
repression of  Fos . Nevertheless, the contribution of Fos to 
the overall increase in  Il2  transcription in the CKO cells is 
diffi  cult to determine. Enforced expression of Fos in T cells 
caused elevated IL-2 production ( 28 ); however, deletion of 
Fos alone is insuffi  cient to decrease IL-2 production ( 29 ), and 

  Figure 4.     Blimp-1 binds to the mouse    Il2  and  Fos  genes.  (A) ChIP of 

endogenous Blimp-1 bound in various regions of the  Il2  and  Fos  genes. 

WT purifi ed CD4 +  T cells were stimulated in vitro for 6 d, restimulated 

with PMA and ionomycin for 4 h, and cross-linked for ChIP. Data repre-

sent fold enrichment of  � Blimp-1 antibody over control antibody. Snail3 

is used as a negative control. NR is a region containing no Blimp-1 con-

sensus sequence. Results shown are the mean and SEM from four to fi ve 

different experiments. (B) Representation of the  Il2  and  Fos  mouse genes, 

with the sites shown in A marked. Sites enriched for Blimp-1 binding are 

marked with asterisks. The  � 4,990 site at the  Fos  gene is conserved be-

tween the human and mouse genes. No sites found at the  Il2  gene are 

conserved between mouse and human.   

  Figure 5.     Lack of Blimp-1 results in increased proliferation and IL-2 

production in vivo.  CFSE-labeled naive Ctrl or CKO CD45.2 OT2 CD4 +  

T cells were injected i.v. into CD45.1 congenic WT mice. 2 d later, mice 

were immunized i.v. with antigen-pulsed APCs, and 5 d later, lymph nodes 

were collected and proliferation (A) and IL-2 production (B) were analyzed. 

Data in B are the mean ( ±  SEM) of the percentage of IL-2 – producing cells 

in the CD45-2 +  gate in four different experiments. (C) Schematic repre-

sentation of Blimp-1 participation in IL-2 autoregulation. Induction/acti-

vation of N-FAT, AP-1, and NF- � B upon TCR and CD28 stimulation leads 

to IL-2 transcription. IL-2 acting via STAT-5 leads to Blimp-1 expression. 

Blimp-1 then represses the  Il2  and  Fos  genes, inhibiting IL-2 production.   
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fraction contained  > 90% CD4 +  cells. Naive B6 OT2-TG  Prdm1  F/F  CD4-

Cre +  or  Prdm1  +/+  CD4-Cre +  cells were stimulated in 48-well plates at a 1:1 

ratio with APC (T cell – depleted and mytomycin-treated spleen cells) in a 

total of 5  ×  10 5  cells per well with chicken OVA peptide (OVA 323 – 339; 

BP10-910 H2N-ISQAVHAAHAEINEAGR-OH; New England Peptide) 

for 3 d. IL-2 production was determined after incubation with 10  � g/ml 

Brefeldin A (BFA; Sigma-Aldrich) for the last 2 h of culture. When indicated, 

restimulation was done with 50 ng/ml PMA and 500 ng/ml ionomycin (both 

from Sigma-Aldrich) for 4 h, with BFA added in the last 2 h. IL-2 was de-

tected by intracellular staining in combination with surface CD4 (both anti-

bodies from BD Biosciences). Cells were analyzed in a LSRII fl ow cytometer 

(BD Biosciences). IL-2 staining was evaluated exclusively in the live, CD4 +  

gated lymphocytes. 

 Simultaneous detection of Blimp-1 expression and IL-2 production.  

 To evaluate IL-2 expression in Blimp-1-EGFP reporter cells, total spleen cells 

were stimulated with 1  � g/ml soluble  � CD3 and 0.5  � g/ml  � CD28 (both 

from BioExpress) with or without rHuIL-2 (QIAGEN). GFP expression was 

detected in permeabilized cells using an  � GFP antibody (rabbit  � GFP; Rock-

land Immunochemicals, Inc.) added simultaneously with the  � IL-2 antibody. 

The  � GFP antibody specifi cally stained GFP produced under the stimulation 

of the Blimp-1 transgenic promoter, as no staining was detected in nontrans-

genic cells stimulated and stained in the same way ( Fig. 1 C ). 

 Quantitative real-time PCR.   For detection of Blimp-1, IL-2, and Fos 

mRNAs, naive CD4 +  T cells were stimulated with 5  � g/ml plate-bound 

 � CD3, 2.5  � g/ml  � g/ml  � CD28, and 25 U/ml IL-2 for various time points. 

Total mRNA was isolated using TRIzol reagent (Life Technologies) accord-

ing to the manufacturer ’ s instructions. Reverse transcription was performed 

on equal amounts of RNA for each sample using SuperScript III (Invitrogen). 

SYBR Green incorporation quantitative real-time PCR was performed using 

a FastStart SYBR Green mix (Roche) in the ABI7400 Sequence Detection 

System (Applied Biosystems). Primers used were as follows: IL-2 forward, 

5 � -AGCAGCTGTTGATGGACCTA-3 � ; IL-2 reverse, 5 � -CGCAGAGGT-

CCAAGTTCAT-3 �  (designed using Primer 3 software). Primers for Blimp-1 

and Fos were previously described ( 10, 25 ). 

 ChIP.   ChIP assays were performed as previously described ( 25 ), with few 

modifi cations. Cells were fi xed with 1.1% paraformaldehyde for 10 min at 

room temperature. Sonicated chromatin from 4 – 5  ×  10 7  cells was immuno-

precipitated with 25  � l of either rabbit  � Blimp-1 polyclonal antibody serum 

(clone 267) or preimmune serum as a control. SYBR Green incorporation 

quantitative real-time PCR was performed in DNA recovered from immuno-

precipitation and input samples (primers sequences in Table S2, available 

at http://www.jem.org/cgi/content/full/jem.20080526/DC1). Fold enrich-

ment was calculated dividing the percentage of input values obtained with 

 � Blimp by the one obtained with Ctrl antibody. Analysis of sequence homol-

ogy and identifi cation of putative Blimp-1 consensus sites were performed 

using the ECR browser (http://ecrbrowser.dcode.org) and rVista 2.0 soft-

ware. Genomic sequences were obtained from Ensembl. 

 In vivo immunization.   CFSE-labeled naive B6 OT2-TG  Prdm1  F/F  CD4-

Cre +  or  Prdm1  +/+  CD4-Cre +  cells (CD45-2 + ) (1  ×  10 6 ) were transferred (i.v.) 

to allotype-marked congenic recipients (C57Bl/6 SJ CD45.1). 2 d after cell 

transfer, mice were immunized i.v. with GMCSF-bone marrow – derived 

dendritic cells matured with LPS and IL-4 and pulsed with the cognate pep-

tide (1  � g/ml OVA 334 – 339). 5 d later, lymph nodes were recovered and 

CFSE dilution was evaluated in the CD45.2 +  cells. Alternatively, freshly har-

vested total lymph node cell suspensions were restimulated in vitro with PMA 

and ionomycin (with BFA added in the last 2 h), and IL-2 production was 

evaluated at the single-cell level in the CD45-2 +  population by intracellular 

cytokine staining. 

 Cytokine deprivation cell death assay.   Naive CD4 +  T cells were stimu-

lated (as described in Quantitative real-time PCR) for RNA isolation and 

 Thus, this study demonstrates that Blimp-1 represses IL-2 
production after T cell activation and shows that the molecular 
mechanism responsible depends, at least in part, on Blimp-1 –
 dependent repression of  Il2  and  Fos  transcription. Further-
more, we identify Blimp-1 response elements in these two 
genes. The conclusion that Blimp-1 represses IL-2 transcrip-
tion is supported by several observations: (a) Blimp-1 – express-
ing cells do not express IL-2 protein at detectable levels; (b) 
Blimp-1 mRNA induction correlates with IL-2 mRNA down-
regulation; (c) IL-2 protein and steady-state mRNA are ele-
vated in Blimp-1 – defi cient CD4 +  T cells; and (d) endogenous 
Blimp-1 specifi cally binds to a regulatory region in the  Il2  gene 
in activated primary CD4 +  T cells. 

 This establishes Blimp-1 as an important component in a 
recently described IL-2 autoregulatory loop ( 19 ) that oper-
ates in vivo to control the development and magnitude of 
T cell eff ector responses, and it confi rms and extends the sug-
gestion of Gong and Malek, that Blimp-1 plays an important 
role in IL-2 autoregulation ( 12 ). 

 Interestingly, after activation in vitro, IL-2 production in 
Blimp-1 – defi cient T cells eventually decreases, although more 
slowly than in Blimp-1 – suffi  cient cells ( Fig. 1 and Fig. 3 A ). 
Thus, mechanisms in addition to Blimp-1 are apparently pre-
sent for IL-2 down-regulation. Nonetheless, Blimp-1 is im-
portant physiologically for IL-2 repression because lack of 
Blimp-1 results in increased IL-2 production upon antigen 
immunization in vivo. Increased levels of IL-2 produced by 
CKO cells are associated with increased proliferation both 
in vitro and in vivo (Fig. S1 and  Fig. 5 ), and with increased re-
sistance to cytokine deprivation-induced cell death after acti-
vation in vitro ( Fig. 2 ). Thus, deregulation of IL-2 production 
in the Blimp-1 CKO mice is likely to contribute to the aber-
rant T cell homeostasis and the infl ammatory phenotype ob-
served in these mice. 

  MATERIALS AND METHODS  
 Mice.   C57BL/6 (B6) and B6 CD45.1 congenic mice were purchased from 

The Jackson Laboratory.  Prdm1  fl ox/fl ox  ( 3 ) were backcrossed 10 times with 

B6 mice, and then crossed with B6CD4-Cre mice, which were purchased 

from Taconic, to generate B6  Prdm1  fl ox/fl ox CD4-Cre +  (Blimp-1CKO) and 

 Prdm1  +/+  CD4-Cre +  (Control). For some in vitro experiments, mixed B6  ×  

129  Prdm1  fl ox/fl ox Lck-Cre  Prdm1  +/+ Lck-Cre ( 10 ) were also used. Mice bear-

ing a BAC transgene-encoding membrane-target EGFP (mEGFP) under the 

control of Blimp-1 regulatory elements (Blimp-1 EGFP) ( 7 ) were a gift from 

M. Nussenzweig (The Rockefeller University, New York, NY) and were 

used as a reporter of Blimp-1 mRNA expression. In these mice, EGFP ex-

pression closely recapitulates Blimp-1 mRNA expression ( 7 ). For some 

 experiments, spleen cells from Blimp-1 reporter mice were provided by 

S. Kaech’s laboratory (Yale University, New Haven, CT). All mice were 

maintained in a specifi c pathogen – free animal facility at Columbia University 

and handled in accordance with the institutional guidelines. Animal experi-

ments were approved by the Institutional Animal Care and Use Committee 

at Columbia University. 

 Cell isolation, stimulation, and IL-2 production.   Naive CD4 +  (CD44 lo ) 

cells were sorted using a FACSAria fl uorescent cell sorter (BD Biosciences). 

Routinely, purity of all cell preparation was  > 90%. For Blimp-1 ChiP ex-

periments, naive CD4 +  T cells were purifi ed by negative selection using 

FITC-labeled antibodies and  � FITC magnetic beads. The negatively isolated 
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cultured for 5 d. On day 5, cells were washed extensively in complete RPMI 

medium and replated at the same initial density in the presence (50 U/ml) or 

absence of rHuIL-2. The percentage of live cells (7-AAD  �  /Annexin V  �  ) 

was assessed 1, 2, or 3 d later. 

 Online supplemental material.   Fig. S1 shows that lack of Blimp-1 results 

in increased proliferation upon antigen-specifi c stimulation in vitro. Table S1 

shows the putative Blimp-1 binding sites at the  Il2  gene. Table S2 lists the 

primers used for Blimp-1 ChIP at the  Il2  gene. The online version of this article 

is available at http://www.jem.org/cgi/content/full/jem.20080526/DC1. 
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