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    TNF has a very powerful antitumor activity. 
Therapeutic administration of TNF to tumor-
bearing animals or to human patients, however, 
is greatly limited by its toxicity, which is due to 
its strong proinfl ammatory nature. Indeed, in-
jection of TNF leads to refractory hypoten-
sion, systemic infl ammation, multi-organ failure, 
shock, and death, collectively known as sys-
temic infl ammatory response syndrome (SIRS) 
( 1 ). Only a fundamental understanding of the 
mechanisms, molecules, and cells leading to 
TNF-induced SIRS will allow full exploitation 
of the potent antitumor activity of TNF in spe-
cifi c interventions against cancer. Our previous 
fi ndings demonstrated that manipulation of 
several pathways protects the host against the 
toxicity of TNF without aff ecting its antitumor 
activity ( 2, 3 ). 

 IL-17 belongs to a family of proinfl amma-
tory cytokines ( 4 ). The role of IL-17 in host 
immune defense and in infl ammation has been 
studied extensively in recent years. Numerous 

subtypes of IL-17 – like ligands and IL-17R – like 
receptors have been described. The IL-17 family 
consists so far of six members, IL-17A to IL-17F. 
Their receptors, IL-17R and IL-17RB-E, form 
a family whose ligand specifi city is only par-
tially known ( 4 ). IL-17 is mainly produced by 
a subset of T cells implicated in autoimmune 
infl ammation; these cells, designated Th17 cells, 
arise from a CD4 precurser pool and are dis-
tinct from Th1 or Th2 cells ( 5 – 7 ). Spontane-
ous development of Th17 causes autoimmune 
arthritis ( 8 ). IL-17 – neutralizing antibodies or de-
letion of the gene encoding the IL-17 or IL-17R 
protects animals in models of autoimmune dis-
eases, whereas transfer of Th17 or overexpression 
of IL-17 aggravates the disease ( 6, 9 – 13 ). IL-17 
induces expression of infl ammatory genes, such 
as  il8 , and synergizes with TNF ( 14 ). We in-
vestigated the role of the IL-17 – IL-17R axis 
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 Tumor necrosis factor (TNF) has very potent antitumor activity, but it also provokes a 

systemic infl ammatory response syndrome that leads to shock, organ failure, and death. 

Here, we demonstrate that interleukin (IL)-17, a proinfl ammatory cytokine known to be 

produced mainly by activated T cells, has a critical role in this process. Antiserum against 

IL-17 or deletion of  Il17r  protected mice against a lethal TNF challenge. Serum levels of 

TNF-induced IL-6 and nitric oxide metabolites were signifi cantly reduced in mice defi cient 

in the IL-17R. TNF-induced leukocyte infl ux in the small intestine was reduced, and there 

was no injury to the small intestine. Surprisingly, electron microscopy showed that IL-17 was 

constitutively present in Paneth cells of the crypts. Upon TNF challenge, the intracellular 

pool of IL-17 in these cells was drastically reduced, suggesting rapid release of IL-17 from 

the granules of Paneth cells. Our fi ndings assign a novel role for IL-17 in an acute infl am-

mation and identify Paneth cells as a source of the IL-17 that plays a role in this process. 

These data indicate that innate immune cytokine responses in the local mucosa may par-

ticipate in rapidly amplifying responses to systemic infl ammatory challenges. 
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in a model of TNF-induced lethal shock. We demonstrate 
that inhibition of IL-17 or IL-17R strongly protects against 
TNF-induced gene induction, organ damage, and death. Further-
more, we found that intestinal Paneth cells produce and re-
lease a high level of IL-17 during infl ammation. 

  RESULTS AND DISCUSSION  

 Neutralizing antibodies against IL-17 protect mice against 

a lethal TNF challenge 

 We investigated the role of IL-17 in TNF-induced shock us-
ing neutralizing antibodies. Mice were injected i.v. with 10  μ g 
TNF 2 h after treatment with 100  μ l of a rabbit anti – IL-17 
antiserum. Control mice received an equal volume of rabbit 
preimmune serum. Mortality was monitored for up to 60 h, 
and body temperature was assessed 4 and 6 h after injection. 
In the fi rst experiment, all fi ve control mice died within 24 h 
after challenge, whereas all three mice treated with anti – IL-17 
antiserum survived. Mice pretreated with anti – IL-17 were 
signifi cantly protected against hypothermia (not depicted). In 
the second experiment, signifi cant protection by the anti – IL-17 
serum was again observed ( Fig. 1 A ).  This antiserum specifi -
cally neutralized IL-17(A) but not IL-17F, as shown by an in 
vitro assay ( Fig. 1 B ). As IL-17 is produced mainly by a subset 
of T cells, its role is presumably restricted to infl ammation as-
sociated with underlying T cell – mediated immunity, such as 
autoimmunity or allergy ( 6, 9, 10, 12, 15 ). The time course 
of IL-17 production is slow, refl ecting the development of 
a specifi c T cell subset ( 6 ). However, in our model, SIRS 

  Figure 1.     Anti – IL-17 antibody protects mice against TNF-induced 

lethal shock.  (A) Mice were pretreated 2 h before TNF challenge with 100  μ l 

anti – IL-17 serum ( n  = 7), 100  μ l control rabbit serum ( n  = 6), or PBS ( n  = 7). 

Mortality was monitored for 60 h after challenge. No further deaths oc-

curred. **, P = 0.0074, preimmune versus anti – IL-17 serum; **, P = 0.0072, 

PBS versus anti – IL-17 serum. (B) H4 cells were incubated with 25 ng/ml 

IL-17(A) or 25 ng/ml IL-17F with or without anti – IL-17 serum (1:400). 

**, P = 0.0044; ***, P = 0.0001.   

  Figure 2.     IL-17R KO mice are less susceptible to TNF-induced shock.  TNF was injected i.v. in WT ( n  = 7) and IL-17R KO ( n  = 7) mice, and mortality 

was monitored. Blood samples were taken 3 h after the injection, and serum samples were tested for IL-6 and NO x . (A and B) Survival curves after 10 

and 7.5  μ g TNF, respectively. *, P = 0.00175 and **, P = 0.0075 compared with WT control. (C and D) Serum levels of NO x  (***, P = 0.0002;  n  = 5) and IL-6 (**, 

P = 0.0017;  n  = 6) 3 h after injecting 7.5  μ g TNF.   
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tween IL-17 and other proinfl ammatory cytokines such as 
TNF and IL-1 ( 14, 15 ). 

 Reduced serum levels of IL-6 and nitric oxide (NO) 

metabolites and reduced tissue damage and infl ammation 

in IL-17R KO mice 

 Serum levels of IL-6 and NO metabolites increase after in-
jection of TNF, faithfully refl ect the degree of TNF-induced 
shock, and correlate with lethality ( 3, 18 ). 3 h after injec-
tion of 7.5  μ g TNF, NO x  levels increased to 120  μ M in WT 
mice but remained signifi cantly lower in IL-17R KO mice 
( Fig. 2 C ). Similarly, the increase in serum IL-6 concentra-
tion was large in WT mice but signifi cantly less in IL-17R 
KO mice ( Fig. 2 D ). These results strongly support the me-
diating role of IL-17, together with its receptor, in TNF-in-
duced shock. 

 TNF injected into mice or humans causes severe infl am-
mation and tissue damage in the small bowel ( 19 ). 3 h after 
injection of 7.5  μ g TNF, small bowel samples (jejunum) were 
collected and stained for histopathological and immunohisto-
chemical (IHC) analyses. The intestinal epithelium of TNF-
treated WT mice ( n  = 6) was extensively damaged, with 
partial loss of morphological structure. The villi were fl attened 

 developed a few hours after systemic administration of TNF, 
and mice died after 12 – 48 h. Also, nude and SCID mice 
were fully responsive to TNF-induced SIRS (unpublished 
data), which reveals no major role for specifi c T cells. Hence, 
the prevention of TNF-induced shock by anti – IL-17 anti-
serum suggests a potentially new role for IL-17. Our obser-
vation supports a recent report on the aggravating eff ect 
of IL-17 in another model of SIRS, caecal ligation and punc-
ture ( 16 ). 

 IL-17R KO mice are protected against a lethal 

TNF challenge 

 Mice made IL-17R defi cient by targeted gene deletion ( 17 ) 
were moderately but signifi cantly protected against 10  μ g TNF, 
which causes 100% mortality in control WT mice ( Fig. 2 A ).  
Protection was much more pronounced when 7.5  μ g TNF 
was used ( Fig. 2 B ). These results confi rm our previous data 
on the use of antiserum against IL-17 and indicate that an in-
tact IL-17 – IL-17R axis plays a critical role in the lethality of 
TNF-induced shock. The partial dependency of the TNF ef-
fect on IL-17 indicates that IL-17 enhances or amplifi es this 
eff ect, resulting in signifi cant reduction of the lethal threshold 
of TNF. This is in agreement with the observed synergy be-

  Figure 3.     IL-17 R KO mice are protected against TNF-induced bowel tissue destruction.  7.5  μ g TNF was injected i.v. in WT mice ( n  = 6) and IL-

17R KO mice ( n  = 6), and jejunum was sampled 3 h later. (A and C) WT mice. (B and D) IL17R KO mice. (A and B) Standard hematoxylin and eosin staining 

showed more extensive tissue damage in the bowels of WT mice compared with KO mice. (C and D) Staining with an anti-CD45 antibody shows signifi -

cant infl ux of leukocytes in WT mice (C) but not in IL17R KO mice (D). (E) Quantifi cation of CD45 +  cells in WT and IL17R KO mice 3 h after TNF injection in 

10 defi ned fi elds (*, P = 0.0121). Bar, 10  μ m.   
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depicted). However, IHC examination using an antibody 
against mouse IL-17 revealed IL-17 +  cells in the small intes-
tine. Jejunum of untreated mice showed a constitutive level 
of IL-17 in cells located at the crypt bottom, which is surpris-
ing ( Fig. 4 A ).  A few faint signals could occasionally be found 
in lamina propria, but the most prominent specifi c signal was 
found at the crypt bottom. The IL-17 signal clearly increased 
1 h after TNF administration, peaked at 3 h, and remained 
high up to 9 h (not depicted). At 3 h after TNF administra-
tion, the overall signal intensity was dramatically increased and 
extended outward to the surface of the villi ( Fig. 4 B ). That 
the antibody is IL-17 specifi c was confi rmed using the tissue 
of untreated IL-17 KO mice (provided by Y. Iwakura, Tokyo 
University, Tokyo, Japan) ( Fig. 4 C ). As lamina propria lym-
phocytes and  �  � T cells are the dominant cell types producing 
IL-17 ( 20 – 22 ), the increased IL-17 associated with the villi 
can be partly attributed to these cells. The negative control for 
each time point was devoid of any signal ( Fig. 4, D and E , re-
spectively). This local expression was characteristic of IL-17, 
as we did not detect any signal using antibody against IL-1 �  or 
IL-18 (not depicted). As the unexpected localization of IL-17 
at the crypt bottom seemed to be associated with Paneth cells 
on morphological grounds, we further explored the identity 
of these cells using the IL-17 antibody and a specifi c anti-
matrilysin antibody on serial sections ( Fig. 4, H and I ). Be-
cause  �  � T cells reside in the intraepithelial layer ( 23 ) and not 
at the crypt bottom ( 24 ), it is unlikely that the observed signal 

and their tops were denuded or missing. Crypts contained 
mucus and debris ( Fig. 3 A ).  In contrast, the morphology of 
all IL-17R KO intestines ( n  = 6) after TNF challenge was al-
most normal with little or no damage ( Fig. 3 B ). Staining the 
intestinal sections of WT mice for leukocytes with an anti-
CD45 antibody 3 h after TNF injection demonstrated mas-
sive leukocyte infl ux in the villi, where the extensive tissue 
damage occurred ( Fig. 3 C ). Much fewer leukocytes were 
found in the IL-17R KO mice, correlating with the absence 
of tissue damage ( Fig. 3, D and E ). IL-17 induces expression 
of CXC chemokines, such as CXCL1, which account for 
chemotaxis of leukocytes ( 14 ) and activates neutrophils to re-
lease elastase and myeloperoxidase (MPO) in vivo ( 20 ). In line 
with this, by using anti-MPO antibody we observed neutro-
phil infi ltrate in some WT mice, which was not seen in any 
of the IL-17R KO mice (not depicted). 

 Induction of IL-17 by TNF 

 Protection against TNF-induced shock by the anti – IL-17 anti-
body and by genetic deletion of the IL-17R indicates that 
IL-17 is produced endogenously and acts synergistically to 
enhance the actions of TNF. To test this hypothesis, we 
studied the time course of IL-17 abundance in the serum and 
small intestine where the pronounced tissue damage was 
observed after TNF administration. Serum samples were 
screened for IL-17 activity by Luminex assay; IL-17 remained 
below the detection limit (10 pg/ml) at all time points (not 

  Figure 4.     Expression of IL-17 in mouse jejunum after TNF injection.  Small intestines were dissected from untreated mice (A, C, D, F, H, and I) and 

3 h after i.v. injection with 7.5  μ g TNF (B and E). WT mice (A, B, D, E, H, and I), matrilysin-defi cient mice (F), and IL-17 – defi cient mice (C) were used. 

(A, B, C and H) IHC with anti – IL-17 antibody shows presence of IL-17 by TNF in Paneth cells at 0 h (A and H) and 3 h (B). No signal could be detected in 

IL-17 – defi cient mice (C). (D and E) Negative control with control antibody at 0 h (D) and 3 h (E). (F and I) IHC with anti-matrilysin antibody shows expression 

of matrilysin in Paneth cells of WT mice (I) and its absence in matrilysin KO mice (F). (G) Real-time PCR for IL-17 in samples isolated from jejunum at indi-

cated times. *, P = 0.0458. Bar, 50  μ m.   
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the Paneth cells declined 3 h after injection with TNF ( Fig. 
5 B ). The negative control using the control antibody was 
devoid of any signal, confi rming the specifi city of the ob-
served signal ( Fig. 5 C ). This fi nding seemed to contradict 
the result of IHC using the same antibody, where an increase 
in the signal was detected after TNF injection. This seeming 
discrepancy might be due to TNF inducing rapid secretion of 
IL-17 stored in the granules. IHC may detect the cumulative 
level of secreted IL-17 around the neighboring cells beyond 
the immediately adjacent microvilli, whereas EM may not. 
Indeed, in IHC the strong signal was observed in the villi 
surface and occasionally in cells, presumably lamina propria 
lymphocytes and intraepithelial lymphocytes ( Fig. 4 B ). 
Therefore, it appears that the TNF-induced positive feed-
back loop involves two levels. IL-17 is fi rst secreted from the 
abundant intracellular vesicles, and then mRNA for IL-17 is 
up-regulated to restore the intracellular reservoir. This kind 
of regulation fi ts very well with the function of Paneth cells 
in the fi rst line of defense. 

 Indeed, Paneth cells are very important in innate immu-
nity against pathogens, expressing pattern recognition recep-
tors, e.g., NOD2, and many antimicrobial peptides, such as 
lysozyme, soluble phospholipases,  � -defensins, and cryptdin-
related peptides ( 26 ). Paneth cells are involved in anti-parasitic 
immunity and also express several infl ammatory molecules, 

came from this cell type. The matrilysin signal was specifi c, as 
shown by the absence of signal in matrilysin-defi cient mice 
( Fig. 4 F ). Matrilysin has been shown to be specifi cally ex-
pressed in Paneth cells, where it activates  � -defensins ( 25 ). We 
confi rmed the expression of IL-17 in the jejunum by real-time 
PCR; 3 h after TNF challenge, the transcript level of IL-17 
was signifi cantly up-regulated, about threefold ( Fig. 4 G ). 

 Identifi cation of Paneth cells as the producers of IL-17 

 Co-localization of IL-17 and matrilysin strongly indicated that 
Paneth cells are the likely producers of IL-17, and so we set 
out to confi rm this by electron microscopy (EM). We exam-
ined the localization of IL-17 within Paneth cells by using 
immunogold ( Fig. 5 A ).  The Paneth cells were identifi ed 
on the basis of typical ultrastructural morphology with large 
secretory granules and abundant endoplasmic reticulum. The 
gold particles were closely associated with secretory granules 
( Fig. 5 A , black arrow), demonstrating high constitutive lev-
els of IL-17 in Paneth cells. Some signals were associated 
with microvilli ( Fig. 5 A , white arrow), most likely due to 
secreted IL-17 adhering on the surface. We did not detect 
any  �  � T cells producing IL-17 because the sensitivity might 
have been too low or because their spatial distribution might 
have made it diffi  cult to identify these cells in the ultrathin 
sections. Contrary to expectation, the level of IL-17 within 

  Figure 5.     Expression of IL-17 in Paneth cells.  Small intestines were dissected from untreated mice (A and C) and 3 h after i.v. injection with 10  μ g 

TNF (B) and examined by EM. Immunogold detection of IL-17 in secretory granules (black arrow) and in microvilli (white arrow) (A and B). Control anti-

body shows no signal (C). The antibodies used were the same as in  Fig. 4 . Bar, 1  μ m.   
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bit preimmune serum was injected i.p. Mortality was scored for 60 h. Serum 

and tissue samples were collected 0, 1, 3, and 9 h after injection for the initial 

time course study. For later study, we concentrated on a 3-h time point 

when the induction of IL-17 was maximal. Tissue samples were fi xed briefl y 

and embedded in paraffi  n by a standard protocol (Tissue Tek VIP; Sakura). 

For EM, samples were briefl y immersed in hexadecene and frozen immedi-

ately in a high-pressure freezer (EM Pact; Leica). After freeze substitution 

(EM AFS; Leica) followed by infi ltration in LR-White (hard grade; London 

Resin), samples were embedded in capsules. RNA samples were isolated by 

using RNeasy (QIAGEN). 

 Determination of IL-6, IL-17, and NO x  in the serum.   IL-6 and 

NO metabolites were determined in serum and H4 supernatant as described 

previously ( 2 ). Serum levels of IL-17 were determined by a Luminex multi-

analysis system (BioPlex; Bio-Rad Laboratories) according to the manu-

facturer ’ s instructions. The sensitivity of the IL-6 assay, NO assay, and the 

multiplex kit was 1 pg/ml, 10  μ M, and 10 pg/ml, respectively. 

 Tissue section, histology, and immunohistochemistry.   The following 

antibodies were used: anti – IL-17 antibody and control antibody (sc-6077 

and sc-2028, respectively; Santa Cruz Biotechnology, Inc.), anti-CD45 

 antibody (BD Biosciences), anti-MPO antibody (Dako), and anti-matrilysin 

antibody (provided by B. Fingleton, Vanderbilt University, Nashville, TN). 

Biotin-conjugated IgGs, the Vectastain ABC kit (Vector Laboratories), 

AEC, and/or DAB were used for visualization. The slides were counter-

stained with Harris ’  hematoxylin. CD45 +  cells were counted in 10 random 

fi elds in double-blinded fashion. 

 Real-time PCR.   RNA samples were reverse transcribed by using oligo-dT 

primers and MMLV reverse transcription. Primers were designed with 

Primer Express (Applied Biosystems) and purchased from Biolegio. Quanti-

tative PCR was performed using the ABI/Prism 7000 sequence detection 

system (Applied Biosystems) for 10 ng cDNA with SYBR Green Master 

mix. The relative mRNA level was expressed as 2  �  � Ct   ×  10,000 ( � Ct, rela-

tive cycle threshold compared with GAPDH). 

 Immunodetection of IL-17 by EM.   Ultrathin sections of gold interfer-

ence color were cut on an ultramicrotome (Ultracut E; Reichert-Jung) and 

collected on formvar-coated copper slot grids. Grids were fl oated on block-

ing solution, followed by incubation with anti – IL-17 antibody or control 

antibody (sc-6077 or sc-2028; Santa Cruz Biotechnology, Inc.). The grids 

were labeled with the secondary antibody, anti – goat IgGs coupled with 12-nm 

gold (Jackson ImmunoResearch Laboratories). Sections were poststained in 

an LKB ultrastainer with uranyl acetate and with lead stain. Grids were viewed 

by using a JEOL 1010 TEM operating at 80 kV. 

 Statistical analysis.   Student ’ s  t  test was used for statistical analysis. All 

p-values of  < 0.05 were considered signifi cant. 
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such as TNF, GM-CSF, and inducible NO synthase ( 27, 28 ). 
Moreover, Paneth cells have a clear capacity to respond to 
infl ammatory cytokines as shown in the induction of induc-
ible NO synthase by TNF ( 28 ). The leukocyte-like Paneth 
cells, because they release TNF, are thought to be essential 
both in mucosal immunity against pathogens and in develop-
ment of Crohn ’ s disease. IL-17 expression seems to be in-
creased in the colons of Crohn ’ s patients ( 29 ), but it has never 
been associated with Paneth cells until now. 

 To date, IL-17 – producing cells were identifi ed only among 
leukocytes: Th17 cells, subset of CD8 +  cells, NK cells,  �  � T 
cells,  �  � T cells, and neutrophils ( 30 ). Our data clearly dem-
onstrate that IL-17 is produced in Paneth cells and released 
upon challenge with TNF, and that it seems to be involved 
in a positive amplifi cation loop together with the major IL-17 
receptor. This receptor is expressed on a variety of cell types, 
such as fi broblasts, epithelial cells, endothelial cells, and leuko-
cytes ( 4 ). Thus, Paneth cells clearly respond to TNF by pro-
ducing IL-17 and this leads to a fast, mucosa-specifi c reaction. 
Th17 cells and  �  � T cells also participate in these mucosa-
specifi c immune responses ( 23 ). For instance, Th17 cells play 
a role in mucosal innate immunity by inducing antimicrobial 
peptides ( 31 ). Th17 cells,  �  � T cells, and Paneth cells might 
participate in a coordinated interplay between innate and 
adaptive immunity in a spatiotemporally regulated manner to 
ensure the host defense at the local mucosa. This is in agreement 
with the role of local mucosal tissue as the fi rst immunological 
barrier to pathogens. A rapid local amplifi cation mechanism 
needed for defense, however, may turn out detrimental in case 
of systemic infl ammatory syndromes caused by bacterial endo-
toxins or by TNF. 

 Our fi nding sheds light on the role of Paneth cells as a 
ready source of IL-17, which amplifi es signals in acute in-
fl ammation. It may also add a new dimension to the mech-
anism by which Paneth cells ensure mucosal immunity to 
gut pathogens. 

 MATERIALS AND METHODS 
 Mice.   C57BL/6J WT mice were purchased from Iff a Credo. IL-17R KO 

mice (IL-17R KO) ( 16 ) and Matrilysin-defi cient mice were provided by 

J.J. Peschon (Amgen Washington, Seattle, WA) and L. Matrisian (Vanderbilt 

University, Nashville, TN), respectively. Mouse lines had been crossed back 

into a C57BL/6J background for over fi ve generations. The mice were kept 

in specifi c pathogen-free conditions and used at matched ages. Animal stud-

ies were approved by the Institutional Review Board of the Radboud Uni-

versity Nijmegen and by the ethics committee of Ghent University. 

 Agents.   Recombinant mouse TNF (7.8  ×  10 7  units/mg) was produced at 

Ghent University. Polyclonal rabbit antibodies were raised against recombi-

nant mouse IL-17 (R & D Systems) by CFA immunization and repeated sub-

cutaneous injections of IL-17 mixed with alum, as described previously ( 12 ). 

Titers were determined by a specifi c mIL-17 ELISA (R & D Systems). No 

cross-reactivity was observed with IL-1 � , IL-1 � , or TNF. To test subtype 

specifi city, H4 cells were incubated with IL-17(A) and IL-17F with or with-

out anti – IL-17 antibody. The conditioned medium was analyzed for the 

production of NO metabolite using Griess reagent. 

 Injections, monitoring, and sampling.   TNF was diluted in endotoxin-

free PBS and injected i.v. into the lateral tail vein. Antiserum or control rab-
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