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BRIEF DEFINITIVE REPORT

    Thrombin and other coagulation proteases medi-
ate a variety of eff ects independently of thrombo-
sis through specifi c protease-activated receptors 
(PARs), stimulation of which can amplify in-
fl ammation initiated by several diverse stimuli 
( 1 ). Although the proinfl ammatory consequences 
of PAR stimulation have been implicated in 
 several diseases ( 2 – 4 ), it has yet to be established 
whether thrombin or PAR activation provides a 
unique stimulus responsible for a nonthrombotic 
manifestation of infl ammation. 

 Working in a model of acute humoral xe-
nograft rejection (mouse heart into rat), we 
previously reported that inhibiting thrombin 
generation or inhibiting thrombin itself inside 
the graft (using organs from transgenic [Tg] mice 
expressing endothelial cell [EC]-tethered anti-
coagulants) completely inhibited humoral rejec-
tion so that hearts were rejected by infi ltrating 
T lymphocytes ( 5 ). These fi ndings were surpris-
ing because the rejected hearts had signifi cant Ig 
and C deposition on graft ECs. Inhibiting throm-
bosis by depleting fi brinogen from the recipients 

(using a snake venom protein, ANCROD) failed 
to achieve the same degree of survival, and under 
these conditions, infi ltrating NK cells and macro-
phages (M � s), rather than T cells, were observed 
in rejected grafts ( 6 ). From these studies we hypo-
thesized that thrombin was providing a stimulus 
in the humoral rejection process that was neces-
sary for the infi ltration of NK cells and M � s. 
We have tested this hypothesis and confi rmed our 
conclusions in a second model of thioglycollate-
induced M �  recruitment into the peritoneum. 

  RESULTS AND DISCUSSION  

 Donor monocyte chemoattractant protein 

(MCP)-1 is required for NK cell and M �  

recruitment 

 We hypothesized that infi ltration of NK cells 
and M � s into rejecting mouse hearts was due 
to the establishment of a chemokine gradient, 
most likely MCP-1, a CC chemokine known 
to be essential for NK cell and M �  recruitment. 
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 Thrombin, acting through a family of protease-activated receptors (PARs), is known to amplify 

infl ammatory responses, but the in vivo importance of PARs in infl ammation is not fully 

appreciated. In a mouse heart-to-rat transplant model, where it is possible to distinguish graft 

(mouse) from systemic (rat) chemokines, we show that donor PAR-1 is required to generate the 

local monocyte chemoattractant protein (MCP)-1 needed to recruit rat natural killer cells and 

macrophages into the hearts. We have confi rmed the importance of this mechanism in a 

second model of thioglycollate-induced peritonitis and also show that PAR-1 is important for 

the production of MCP-3 and MCP-5. Despite the presence of multiple other mediators capable 

of stimulating chemokine production in these models, these data provide the fi rst evidence that 

thrombin and PAR activation are required in vivo to initiate infl ammatory cell recruitment. 
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ments confi rmed CCR2 expression by rat NK cells (as other 
species; reference  7 ) and showed that mouse MCP-1 acted as a 
chemoattractant for rat cells (not depicted). 

 Inhibition of PAR-1 activation inhibits donor 

MCP-1 production 

 Rejected hearts from Tg mice (CD31-Hir-Tg) expressing a 
tethered hirudin fusion protein (a direct specifi c inhibitor of 
thrombin) on activated ECs ( 5 ) showed minimal NK cell or 
M �  infi ltration, except when rats were given an inhibitory 
anti-hirudin mAb ( Fig. 1, b and c ). Rejection was associated 
with low plasma levels of both mouse and rat MCP-1 ( Fig. 1 a ), 
suggesting that both were thrombin dependent. When mea-
sured on day 3 and normalized for zero using values from re-
cipients of MCP-1 KOs, circulating mouse MCP-1 levels in 
ANCROD-treated recipients of WT hearts were  > 10 times 

We confi rmed that rejection of WT hearts was associated 
with elevated plasma levels of both recipient and donor 
MCP-1 ( Fig. 1 a ).  Hearts from MCP-1 KO mice were trans-
planted into ANCROD-treated rats. As previously reported, 
pre-transplant fi brinogen levels were depleted to 5% of the 
levels seen in control rats, and hearts rejected by ANCROD-
treated rats contained no evidence of fi brin deposition ( 5 ). Fi-
brinogen levels were maintained at 5 – 8% control values to the 
time of rejection (0.23  ±  0.03 in ANCROD-treated rats vs. 
2.78  ±  0.4 g/liter in controls;  n  = 3; P  <  0.0001). MCP-1 KO 
hearts had a mean survival time (MST) of 5.5  ±  0.22 d (vs. 
3.83  ±  0.31 d for WT plus ANCROD;  n  = 6; P = 0.004) and 
at rejection had fewer infi ltrating NK cells and M � s ( Fig. 1, b 
and c ) ( 6 ), despite high rat MCP-1 levels ( Fig. 1 a ). Thus, do-
nor but not recipient MCP-1 was associated with infi ltration 
by rat infl ammatory cells and graft rejection. In vitro experi-

  Figure 1.     Role of donor versus recipient MCP-1 and PAR-1 versus PAR-4 in leukocyte recruitment in vivo.  (a) Mouse and rat MCP-1 levels in 

rat plasma on the day of rejection (between days 2 [WT] and 7 [CD31-Hir-Tg]).  n  = 6. Compared with WT hearts in normal rats: *, P  ≤  0.002;  † p, NS. 

(b) Immunohistology of rejected hearts from MCP-1 KO or CD31-Hir-Tg hearts. Sections stained with DAPI (blue) and  � -smooth muscle actin (red) and 

green, with CD161 (NK cells) or CD68 (M � s). Bar, 100  μ M. (c) Cells infi ltrating rejected hearts. Results are reported as cells per hpf  ±  SEM. At least 100 

cells from six fi elds on multiple sections were counted. Numbers in the grid represent the specifi c PAR antAg or Ag that rats received. WT compared with 

no antAgs: *, P  ≤  0.003;  † p, NS. CD31-Hir-Tg compared with MCP-1 KO: *, P  ≤  0.004. Compared with CD31-Hir-Tg:  † , P  ≤  0.001;  ¥ , P  ≤  0.0003;  Ω , P = NS; 

#, P = 0.01. Compared with isotype control:  � , P  ≤  0.007. (d) Mouse MCP-1 levels on the day of rejection. WT,  n  = 6. Compared with WT hearts in defi -

brinogenated rats (a): *, P = 0.001;  † , P = NS. CD31-Hir-Tg,  n  = 6. Compared with CD31-Hir-Tg hearts (a): *, P = 0.001;  † , P = NS.   
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on direct PAR-1 activation on donor tissue, rather than being 
stimulated indirectly by the actions of rat cytokines generated 
in a thrombin-dependent way. 

 Donor PAR-1 activation enhances production of donor 

MCP-3 and MCP-5, but not recipient chemokines 

or cytokines 

 There were fewer NK cells and M � s in PAR-1 KO or CD31-
Hir-Tg hearts than in MCP-1 KO hearts, despite the fact that 
both made more MCP-1, suggesting that additional donor 

those seen in recipients of CD31-Hir-Tg hearts (37.9  ±  7.16 
vs. 3.6  ±  1.9 pg/ml;  n  = 6; P = 0.01), indicating that  > 90% 
of mouse MCP-1 generation was inhibited by the hirudin. 
Therefore, we hypothesized that hirudin, by inhibiting throm-
bin, prevented the generation of mouse MCP-1. 

 To test this hypothesis, WT hearts were transplanted into 
rats given ANCROD with highly selective antagonists (an-
tAgs) to PAR-1, PAR-4, or both. Generation of mouse MCP-1 
was inhibited only by the PAR-1 antAg to levels similar to 
those in animals transplanted with CD31-Hir-Tg hearts (com-
pare  Fig. 1, d and a ). The PAR-1 antAg also inhibited NK and 
M �  infi ltration ( Fig. 1 c ) and prolonged survival (MST 5.83  ±  
0.31 d;  n  = 6; P = 0.003 compared with ANCROD alone). 
Although the PAR-4 antAg prolonged survival (MST 5.17  ±  
0.31 d;  n  = 6; P = 0.006 vs. WT plus ANCROD), rejection 
was accompanied by signifi cant NK cell and M �  infi ltration 
( Fig. 1 c ). Both antAgs together had no additional impact com-
pared with PAR-1 antAg alone (MST 6.33  ±  0.33 d;  n  = 6; 
P = NS). The selectivity of these antAgs was confi rmed in vitro 
(see  Fig. 2 ). Donor MCP-1 production, recruitment of NK 
cells and M � s, and graft survival were not altered when rat re-
cipients of CD31-Hir-Tg hearts were treated with PAR-1 or 
PAR-4 antAgs (not depicted). 

 PAR-1 activation promotes donor MCP-1 production 

 In contrast, when rats transplanted with hearts from CD31-
Hir-Tg mice were given highly selective agonist (Ag) peptides 
for PAR-1, PAR-4, or PAR-2, the PAR-1 Ag promoted sig-
nificant mouse MCP-1 generation ( Fig. 1 d ), infiltration 
by NK cells and M � s ( Fig. 1 c ), and accelerated rejection 
(MST 4  ±  0.26 d vs. 6.67  ±  0.21 d for PAR-4 Ag, P = 0.0006; 
6.33  ±  0.21 d for PAR-2 Ag, P = 0.0006; or 6.67  ±  0.33 d for 
rats receiving no Ag, P = 0.0006;  n  = 6 each group). These 
data show that signaling through PAR-1 alone was suffi  cient 
to promote donor MCP-1 production and infi ltration by NK 
cells and M � s. To show that MCP-1 was responsible for re-
cruitment, recipients of CD31-Hir-Tg hearts were given an 
inhibitory anti – MCP-1 mAb with the PAR-1 Ag. Compared 
with controls, these hearts had few NK cells or M � s ( Fig. 1 c ) 
and survived longer (MST 5.33  ±  0.21 d vs. 3.83  ±  0.17 d; 
 n  = 6; P = 0.001). 

 Production of donor MCP-1 is dependent on activation 

of donor PAR-1 

 In vitro experiments with purifi ed mouse heart microvascular 
ECs showed that MCP-1 production was mediated predomi-
nantly through PAR-1 ( Fig. 2, a – d ).  In vivo, hearts from 
PAR-1 KO mice were transplanted into ANCROD-treated 
rats. Compared with defi brinogenated rats receiving WT hearts 
with PAR-1 antAg, levels of mouse MCP-1 were as low 
(compare  Figs. 2 e and 1 d ), hearts were as poorly infi ltrated 
by either NK cells or M � s (compare  Figs. 2 f and 1 c ), and 
survival was comparable (MST 5.17  ±  0.31 d;  n  = 6; P = NS), 
and this was signifi cantly longer than that in ANCROD-treated 
animals given WT hearts without PAR-1 antAg (P = 0.02). 
Therefore, generation of the donor MCP-1 was dependent 

  Figure 2.     Role of donor PAR-1.  (a) MCP-1 made by ECs stimulated by 

thrombin for 5 h. SEM bars are included but are too small to see.  n  = 3. 

Repeated twice. (b) MCP-1 ( ±  SEM) made by ECs stimulated by 300 nM 

thrombin in the presence of PAR antAgs as indicated.  n  = 3. Compared with 

medium: *, P  ≤  0.004; #, P = 0.01;  † , P = NS. (c) MCP-1 ( ±  SEM) made by ECs 

stimulated by PAR-1 Ag ( � ) or PAR-4 Ag ( � ).  n  = 3. (d) Shows the selectiv-

ity of the PAR Ags and antAgs. MCP-1 made by ECs and P-selectin on rat 

platelets after stimulation with 10  μ M PAR-1 Ag or PAR-4 Ag in the pres-

ence of PAR antAgs as indicated.  n  = 3. Comparing PAR-1 Ag to PAR-4 Ag: 

for mouse EC, *, P = 0.03; for rat platelets,  § , P = 0.0001. Within each panel, 

compared with medium control: #, P  ≤  0.05;  † , P = NS. (b – d) Representative 

of two experiments. (e) Mouse and rat MCP-1 levels on day of rejection in 

defi brinogenated rats given hearts from PAR-1 KO mice.  n  = 5. Compared 

with WT hearts in defi brinogenated rats ( Fig. 1 a ): *, P = 0.02;  † , P = NS. 

(f) NK cells and M � s infi ltrating rejected PAR-1 KO hearts in defi brinogenated 

rats. Compared with WT hearts in defi brinogenated rats: *, P  ≤  0.001.   
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chemokines may play a role in recruiting mononuclear cells. 
Consistent with this, mouse MCP-3 and MCP-5 were found 
circulating at lower levels in recipients of PAR-1 KO and 
CD31-Tg hearts than in recipients of WT hearts ( Fig. 3, a and b ).  
In the latter, levels were signifi cantly inhibited by the PAR-1 
antAg, whereas conversely, after CD31-Hir-Tg hearts were 
transplanted, levels were increased by the PAR-1 Ag ( Fig. 3, a 
and b ). Two other observations appear signifi cant. First, con-
sistent with a previous report ( 8 ), mouse MCP-3 was found at 
negligible levels after transplantation of MCP-1 KO hearts and 
after rats were given the anti – MCP-1 antibody ( Fig. 3 a ), sug-
gesting that MCP-3 production is MCP-1 dependent. Second, 
donor MCP-5 levels were signifi cantly inhibited and enhanced 
by the PAR-4 antAg or Ag, respectively ( Fig. 3 b ). 

 In contrast, rat MCP-1 was found at comparable levels in 
defi brinogenated recipients of WT and PAR-1 KO hearts 
(compare  Figs. 2 e and 1 a ), as were rat IFN- � , TNF- � , and 
IL-6 ( Fig. 3, c – e ), indicating that donor PAR-1 was not in-
volved. The concentrations of all four were also high in rats 
receiving MCP-1 KO or WT hearts in the context of an anti –
 MCP-1 antibody ( Figs. 1 a and 3, c – e , and not depicted for 
rat MCP-1), indicating that levels did not correlate with the 
degree of mononuclear cell infi ltration. 

 Nevertheless, rat MCP-1 (not depicted), IFN- � , IL-6, and 
to a lesser extent TNF- �  were signifi cantly suppressed by the 
PAR-1 antAg when administered to ANCROD-treated rats 
and enhanced by the PAR-1 but not PAR-4 Ag when admin-
istered to rats receiving CD31-Hir-Tg hearts ( Fig. 3, c – e ). Both 
rat NK cells and M � s expressed PAR-1 and PAR-4 by fl ow 
cytometry (not depicted), so these data are most consistent 
with the hypothesis that thrombin, generated in the graft, am-
plifi es chemokine and cytokine production by rat mononuclear 
cells via PAR-1 but is insuffi  cient, by itself, to promote infi ltra-
tion in the absence of mouse MCP-1 generation. 

 PAR-1 is important for MCP-1 – dependent recruitment 

in a nontransplantation model 

 M �  recruitment into the peritoneum after instillation of 
thioglycollate is known to be MCP-1 dependent ( 9 ), and we 
confi rmed this using MCP-1 KO mice ( Fig. 4, a and b ).  Us-
ing PAR-1 KO mice we demonstrated that levels of MCP-1, 
MCP-3, and MCP-5 ( Fig. 4, c – e ) and M �  recruitment ( Fig. 4, 
b and c ) were dependent on PAR-1. WT mice injected with 
PAR-1 antAg and CD31-Hir-Tg mice had signifi cantly re-
duced levels of circulating MCP-1, MCP-3, and MCP-5 and 
accordingly showed signifi cantly reduced M �  recruitment 
( Fig. 4, a – e ). Finally, injection of PAR-1 Ag into the Tg mice 
signifi cantly enhanced levels of circulating chemokines and M �  
recruitment ( Fig. 4, b – e ). No mice received ANCROD in these 
experiments. Therefore, PAR-1 is required to generate MCP-1, 
MCP-3, and MCP-5 for infl ammatory cell recruitment. 

 The importance of MCP-1 for mononuclear cell recruit-
ment has been shown in various animal models of disease 
( 9 – 13 ). Our results confi rm that peritoneal M �  recruitment 
after thioglycollate is signifi cantly reduced in MCP-1 KO 
mice, and we demonstrate for the fi rst time the importance 

  Figure 3.     Mouse MCP-3, MCP-5, and rat cytokines.  All graphs are 

organized in a similar pattern. (a) Mouse MCP-3, (b) mouse MCP-5, (c) rat 

IFN- � , (d) rat TNF- � , and (e) rat IL-6. In KO column: white, MCP-1 KO; 

black, PAR-1 KO. Statistics: (a) MCP-3: compared with WT into defi brino-

genated rats: *, P  ≤  0.01;  § , P = NS; CD31-Hir-Tg into normal rats:  † , P  <  

0.05; #, P = NS; isotype control:  ¶ , P  <  0.05; (b) MCP-5: compared with 

WT into defi brinogenated rats: *, P  <  0.02;  § , P = NS; CD31-Hir-Tg into 

normal rats:  † , P  <  0.05; #, P = NS; isotype control:  ¶ , P = NS; (c) IFN- � : 

compared with WT into defi brinogenated rats: *, P  ≤  0.04;  § , P = NS; 

CD31-Hir-Tg into normal rats:  † , P  <  0.02; #, P = NS; isotype control:  ¶ , 

P = NS; (d) TNF- � : compared with WT into defi brinogenated rats: *, P  ≤  

0.04;  § , P = NS; CD31-Hir-Tg into unmanipulated rats:  † , P = 0.002; #, P = 

NS; isotype control:  ¶ , P = NS; (e) IL-6: compared with WT into defi brino-

genated rats: *, P  ≤  0.04;  § , P = NS; CD31-Hir-Tg into unmanipulated rats: 

 † , P = 0.002; #, P = NS; isotype control:  ¶ , P = NS.   
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into unmanipulated rats, showed that PAR-1 activation on 
donor cells was necessary to generate suffi  cient quantities of 
donor MCP-1 to promote leukocyte infi ltration. Similarly, 
MCP-1 generation and M �  recruitment into the infl amed 
peritoneum after thioglycollate were PAR-1 dependent. Al-
though this contrasts with fi ndings from a previous study in 
PAR-1 KO mice, which nevertheless reported thrombin-de-
pendent M �  recruitment after thioglycollate ( 14 ), the fact that 
our distinct experimental approaches gave the same results 

of this chemokine for NK cell and M �  recruitment during 
acute humoral rejection. By performing the transplant study 
in a xenogeneic model, it was possible to diff erentiate be-
tween MCP-1 made by donor tissue from that made by re-
cipient. Only the former was associated with infi ltration into 
rejecting hearts. 

 Results from complimentary but distinct experimental ap-
proaches, using either WT or PAR-1 KO hearts transplanted 
into defi binogenated rats or CD31-Hir-Tg hearts transplanted 

  Figure 4.     Thioglycollate peritonitis model.  (a and b)   �  Total peritoneal cells (a) or   �  CD11b+Ly6G-M � s (b) isolated 48 (white), 72 (black), and 96 

(gray) h after thioglycollate.  n  = 3 animals per group. Total cells counted manually. Percentage of M � s derived by fl ow cytometric analysis using anti-

CD11b and Ly6G.  � , numbers derived by subtracting the average cells in mice given control saline from experimental values after thioglycollate. Compar-

ing peak cells to: WT: *, P  ≤  0.05;  § , P = NS; CD31-Hir-Tg:  † , P  ≤  0.05; #, P = NS. (c – e)  � , MCP-1 (c), MCP-3 (d), and MCP-5 (e) concentrations in the same 

groups of mice as in a and b.  � , concentrations derived by subtracting the average chemokine concentration in mice administered saline from the experi-

mental values obtained after thioglycollate. Comparing peak [MCP-1] to: WT: *, P  <  0.007;  § , P = NS; CD31-Hir-Tg:  † , P  <  0.02; #, P = NS. Comparing peak 

[MCP-3] to: WT: *, P  ≤  0.01;  § , P = NS; CD31-Hir-Tg:  † , P  <  0.05; #, P = NS. Comparing peak [MCP-5] to: WT: *, P  <  0.02;  § , P = NS; CD31-Hir-Tg:  † , P  <  

0.05; #, P = NS.   
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 Thrombin generation during systemic infl ammation is 
highly dependent on the procoagulant changes induced on en-
dothelium ( 26 ). Why mammals have evolved or maintained, as 
an integral part of EC activation, the switch from an anticoag-
ulant to a procoagulant phenotype is interesting because if it 
results in intravascular thrombosis it can pose a direct threat to 
the survival of the individual, as often occurs during acute se-
vere sepsis. The conventional explanation is that generating 
intravascular fi brin clots allows an organism to isolate certain 
types of infection ( 27 ) thereby limiting spread, a concept sup-
ported by a recent analysis showing the importance of plas-
minogen activators as pathogenicity factors for some types of 
bacterial infection ( 28 ). Our data support an additional and 
complimentary explanation that there may be other advan-
tages to the organism, based on thrombin-mediated signal-
ing through PAR on vascular cells, that mediate eff ective 
production of chemokines such as MCP-1, resulting in the ef-
fi cient recruitment of leukocytes to clear or contain a localized 
source of infl ammation. 

 MATERIALS AND METHODS 
 Animals.   Male inbred Lewis rats (200 g) were from Harlan Olac. Donor 

hearts were from 25 – 30-g WT, CD31-Hir-Tg ( 26 ), MCP-1-KO (reared by 

V. Perry, University of Southampton, Southampton, England, UK) ( 9 ), or 

PAR-1 KO mice ( 29 ). Tg organs were from heterozygous and KO were 

from homozygous mice, backcrossed onto WT for  > 10 generations. All ani-

mal procedures were approved by UK Home Offi  ce. 

 Reagents.   ANCROD (EC 3.4.21.74), BSA, goat and rabbit serum, and 

SLIGRL (PAR-2 Ag) were from Sigma-Aldrich. TFLLR (PAR-1 Ag), GYP-

GKF (PAR-4 Ag), merxaptopropionyl-Phe-Cha-Arg-Lys-Pro-Asn-Asp-Lys-

NH2 (PAR-1 antAg), and Trans-cinnamoyl YPGKF-NH2 (PAR-4 antAg) 

were from Peptides International Inc. Thrombin was from Enzyme Research 

Laboratories Ltd. 

 Cell culture.   Mouse microvascular ECs were purifi ed and passaged as de-

scribed previously ( 26 ) and used at passages 1 – 3. 

 Cardiac transplantation.   Heterotopic heart transplantation was performed 

as described previously ( 5 ). PAR Ags (8 picomoles/g twice daily), PAR  antAgs 

(10  μ g/g once daily [o.d.]), and ANCROD (0.08 U/g o.d. beginning pre-

transplantation) ( 6 ) were administered i.v. Anti – MCP-1 antibody (400  μ g 

 pretransplant and 200  μ g o.d. thereafter) or control Armenian hamster IgG 

(eBioscience) was administered i.p. Graft rejection was defi ned as loss of 

regular palpable contractions on daily palpation. Graft MSTs are expressed as 

days  ±  SEM, and statistical signifi cance was determined using a log-rank test. 

 Thioglycollate-induced peritonitis.   This was performed as by Lu et al. 

( 9 ). Mice received 1 ml sterile 4% thioglycollate broth (Sigma-Aldrich) or 

control saline i.p. Cells were harvested by peritoneal lavage with 3 ml of ice-

cold HBSS and washed and resuspended in 1.2 ml PBS for fl ow cytometric 

analysis with a rat Cy5-labeled anti-CD11b and FITC-labeled anti-Ly6G 

(both from Abcam) or manual counting with a hemocytometer. 

 Immunohistology.   Sections were prepared exactly as described previously 

( 5 ). The following antibodies were used: sheep anti-hirudin (Enzyme Re-

search), rat anti – mouse CD31, FITC-conjugated goat anti – rat CD3, mouse 

anti – rat IgG (BD Biosciences), mouse anti – rat IgM, mouse anti – human  

� -smooth muscle actin (Sigma-Aldrich), goat anti – rat C3, goat anti – rat IgG1, 

goat anti – mouse IgG3 (all from Autogen Bioclear), FITC-conjugated mouse 

anti – rat CD161 (3.2.3), purifi ed mouse anti – rat CD68 (ED2; Serotec Ltd), or 

rabbit anti – rat C9 (provided by B.P. Morgan, University of Cardiff , Cardiff , 

strengthens our conclusions over those made by Szaba and 
Smiley ( 14 ). 

 Our data also show the importance of thrombin and PAR-1 
for the generation of MCP-3 and MCP-5, two other ligands 
of CCR2. We have not addressed the precise role of these 
chemokines relative to MCP-1 in our models, nor the inter-
play between them, particularly between MCP-1 and MCP-3. 
However, our observations are consistent with those of 
 Inouye et al. ( 8 ), who, on fi nding signifi cantly reduced MCP-3 
levels in MCP-1 KO mice, suggested that MCP-3 might be 
regulated by MCP-1. 

 Previous work has shown that thrombin can promote the 
release of preformed MCP-1 from intracellular vesicles ( 15 ) 
and induce MCP-1 synthesis from various cells ( 16, 17 ), ei-
ther directly through PAR-mediated signaling or indirectly 
via release of infl ammatory cytokines from bystander leuko-
cytes ( 18, 19 ). Our work complements and extends all these 
previous data by showing the critical role that thrombin plays 
in promoting MCP-1 generation in vivo. 

 The fact that PAR-4 signaling played no role in our mod-
els may be partially explained by well-defi ned diff erences in 
the avidity of thrombin for PAR-1 compared with PAR-4 
( 20 ). However, our results also show that maximal activation 
of PAR-4 on microvascular ECs was incapable of stimulating 
signifi cant MCP-1 production ( Fig. 2 c ). In contrast, in vivo 
production of MCP-5 appeared equally reliant on PAR-1 
and PAR-4. 

 This work is the fi rst to demonstrate that thrombin is neces-
sary in vivo to promote NK cell and M �  recruitment through 
locally generated tissue chemokines. Although from the data 
presented here we cannot rule out an indirect role for throm-
bin through, for instance a thrombin-dependent PAR-1 activa-
tor such as activated protein C, it is likely that thrombin is 
acting directly on PAR-1, as the importance of PAR-1 sig-
naling by activated protein C at physiological concentrations 
is under debate. That thrombin should be so important in the 
heart transplant model is surprising, as the humoral immune 
response against both WT and Tg hearts is intact ( 5, 6 ), with 
signifi cant deposits of IgM, IgG (of all isotypes), C3, and C9 
on the ECs of rejecting grafts. Many of these factors, but es-
pecially C components, have been shown in other model 
systems to induce MCP-1 generation ( 21 ) or have direct chemo-
tactic activity for M � s ( 22 ), as have IFN- � , TNF- � , and IL-6 
( 16, 23 – 25 ). However, our data indicates that each of these 
was unable to promote signifi cant donor MCP-1 production 
in the absence of PAR-1. 

 Interestingly, systemic administration of PAR Ags did not 
lead to massively elevated levels of these rat cytokines, despite 
the theoretical potential for PAR to be activated on all circu-
lating cells. The most likely explanation is that a second signal, 
generated by contact with the xenogeneic heart, for instance, 
is required for cellular activation. Consistent with this, in vitro 
cultures using rat NK cells revealed that PAR-1 Ags were in-
capable of stimulating IFN- �  secretion unless mouse ECs were 
present, in which case PAR-1 activation signifi cantly enhanced 
IFN- �  production (not depicted). 
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Wales, UK). Appropriate second layer staining was with a sheep anti – mouse 

IgG-FITC, donkey anti – goat IgG-FITC (Sigma-Aldrich), goat anti – rabbit 

IgG-Texas red (Dako), or horse anti – mouse IgG-Texas red (Vector Labora-

tories). Many sections were also stained with DAPI (Sigma-Aldrich). Sections 

were examined on an immunofl uorescence microscope (Axiovert S100 TV; 

Carl Zeiss, Inc.). NK cells and M � s were counted manually from six diff er-

ent high power fi elds (hpf) from each of three diff erent rejected hearts 

to generate cell infi ltration data. Results are presented as mean cells per 

hpf  ±  SEM. 

 ELISA.   Protocols for rat TNF- � , rat IL-6 (Metachem Diagnostics), rat 

IFN- �  (Thermo Fisher Scientifi c), rat (Assay Designs) or mouse MCP-1 

(R & D Systems), mouse MCP-3 (AXXORA Ltd.), mouse MCP-5 (R & D 

Systems), and fi brinogen (Genway Biotech, Inc.) were performed according 

to the manufacturers ’  instructions, with absorbance measured at 450 nm on 

a plate reader (Titertek Multiskan Plus). Alternatively, fi brinogen was mea-

sured using the Clauss method as described previously ( 26 ). All samples were 

run in triplicate, and results were expressed as mean  ±  SEM. Experiments 

using purifi ed reagents revealed no cross reactivity of the anti – mouse ELISA 

reagents with rat MCP-1 (unpublished data). 

 Platelets.   Platelet suspensions were prepared as described previously ( 26 ) and 

suspended in PBS solution (10 8 /ml) containing 2.5 mM Gly-pro-Arg-Pro 

peptide (Sigma-Aldrich) with 5 mg/ml BSA. P-selectin expression after throm-

bin or PAR Ag was analyzed using FITC-conjugated anti-CD62P (Santa Cruz 

Biotechnology, Inc.) on a Beckman Coulter EPICS XL fl ow cytometer. 

 NK cells.   Rat peripheral blood mononuclear cells were isolated by Ficoll-

hypaque centrifugation, washed, and resuspended in medium containing 3% 

FCS for magnetic selection using anti – rat NK cell mAb 3.2.3 (Endogen). 

Staining was with goat polyclonal anti-CCR2 antibody (Autogen Bioclear) 

or goat IgG isotype control (Abcam) followed by FITC-conjugated anti – goat 

IgG FITC (Sigma-Aldrich). 

 Statistical analyses.   Results were analyzed using a log-rank or Student ’ s non-

paired  t  test, and values were regarded as statistically signifi cant if P  <  0.05. 
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