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 We used a novel approach to address this issue, making use 
of patients with various inborn errors of immunity impairing 
most of these cytokine signaling pathways separately to investi-
gate the development of IL-17 T cells in vivo. We studied the 
following groups: (a) patients with autosomal-dominant devel-
opmental disorders associated with various mutations in the 
TGF- �  pathway associated with enhanced TGF- �  signaling, 
such as Camurati-Engelmann disease, with mutations in  TGFB1  
( 14 ), or Marfan-like syndromes, with mutations in  TGFBR1  
or  TGFBR2  ( 15 ); (b) patients with autosomal-recessive sus-
ceptibility to pyogenic bacteria and loss-of-function mutations 
in  IRAK4  ( 16 ) or  MYD88  (unpublished data), whose cells do 
not respond to IL-1 �  and related cytokines or to Toll-like re-
ceptors (TLRs) other than TLR3; (c) patients with autosomal-
dominant hyper-IgE syndrome (AD-HIES) associated with 
dominant-negative mutations in  STAT3  ( 17, 18 ), whose cells 
respond poorly to several cytokines, including IL-6; and (d) 
patients with autosomal-recessive susceptibility to mycobacterial 
diseases and loss-of-function mutations in  IL12B  or  IL12RB1  
( 19 ), whose cells do not express or do not respond to IL-12 
and IL-23 (Table S1, available at http://www.jem.org/cgi/
content/full/jem.20080321/DC1). The role of IL-21 cannot 
be studied in this way, as the only known defects in this path-
way (i.e., JAK3 and common  �  chain defi ciencies) are typically 
associated with a total absence of T cells ( 20 ). 

  RESULTS AND DISCUSSION  

 We used fl ow cytometry to investigate the percentage of IL-
17 – expressing blood T cells ex vivo in 49 healthy controls. 
Nonadherent PBMCs were stained for CD3, CD4, CD8, 
and IL-17. No IL-17 – producing T cells were detected in the 
absence of activation (unpublished data). Upon activation 
with PMA-ionomycin, the percentage of CD3-positive cells 
producing IL-17 ranged from 0.06 to 2% ( Fig. 1, A and B ).  
The vast majority ( > 90%) of IL-17 – positive cells were CD4-
positive and CD8-negative (unpublished data). Thus, within 
the general population, there is considerable interindividual 
variability in the numbers of IL-17 – producing cells present 
among freshly isolated T cells activated ex vivo. This makes 
it diffi  cult to assess the impact of genetic lesions on the develop-
ment of IL-17 – producing T cells. We tested nine patients 
with null mutations in  IRAK4  or  MYD88 , whose cells were 
unresponsive to IL-1 �  (and most TLRs and other IL-1 cyto-
kine family members). The proportion of IL-17 – producing 

    IL-17A (IL-17) is the fi rst of a six-member family of cyto-
kines (IL-17A – F). IL-17 is produced by NK and T cell sub-
sets, including helper  � / �  T cells,  � / �  T cells, and NKT 
cells, and it binds to a widely expressed receptor ( 1 ). This 
cytokine was fi rst described 10 yr ago, but interest in this 
molecule was recently revived by the identifi cation of a spe-
cifi c IL-17 – producing T helper cell subset in the mouse ( 1 ). 
The specifi c development and phenotype of IL-17 – producing 
helper T cells have been characterized in the mouse model, 
in which these cells have clearly been identifi ed as a Th17 
subset. The hallmarks of mouse Th17 cells include (a) a pat-
tern of cytokine production diff erent from those of the Th1 
and Th2 subsets, with high levels of IL-17 production, often 
accompanied by IL-17F and IL-22; (b) dependence on TGF- �  
and IL-6 for early diff erentiation from naive CD4 T cells, 
followed by dependence on IL-21 and IL-23 for further ex-
pansion; and (c) dependence on at least four transcription 
factors for diff erentiation: the Th17-specifi c retinoic acid re-
ceptor – related orphan receptor  � t (ROR � t) and ROR � , and 
the more promiscuous STAT-3 and IFN regulatory factor 4 
(for review see reference  1 ). 

 Increasingly detailed descriptions of the in vitro and in vivo 
diff erentiation of the Th17 subset in mice are becoming avail-
able. In contrast, the tremendous, uncontrolled genetic and 
epigenetic variability of human samples has made it diffi  cult 
to characterize human IL-17 – producing T cells ( 2 – 13 ). It has 
proved very diffi  cult to identify the cytokines governing the 
diff erentiation of these cells in vitro. The fi rst four groups 
that have investigated this issue all suggested that TGF- �  was 
not required for the diff erentiation of human IL-17 – produc-
ing T helper cells from purifi ed naive CD4 T cells in vitro 
( 5 – 8 ). TGF- �  was even found to inhibit diff erentiation in 
three studies ( 5, 6, 8 ). IL-6 was inhibitory in one study ( 6 ) 
and redundant in three others ( 5, 7, 8 ). In contrast, IL-23 was 
found to enhance the development of IL-17 T cells in all four 
studies ( 5 – 8 ) and IL-1 �  was identifi ed as a positive regulator 
in two studies ( 5, 6 ), whereas IL-21, which was tested in one 
study, was found to be redundant ( 8 ). In contrast, three re-
cent studies showed that TGF- �  is essential in this process, 
whereas there was more redundancy between the four ILs 
( 11 – 13 ). In vitro studies using recombinant cytokines and 
blocking antibodies have therefore yielded apparently con-
fl icting results, particularly if the results for human cells are 
compared with those for mice. 

 The cytokines controlling the development of human interleukin (IL) 17 – producing T helper cells in vitro have been 

diffi cult to identify. We addressed the question of the development of human IL-17 – producing T helper cells in vivo by 

quantifying the production and secretion of IL-17 by fresh T cells ex vivo, and by T cell blasts expanded in vitro from 

patients with particular genetic traits affecting transforming growth factor (TGF)  � , IL-1, IL-6, or IL-23 responses. 

Activating mutations in  TGFB1 ,  TGFBR1 , and  TGFBR2  (Camurati-Engelmann disease and Marfan-like syndromes) and 

loss-of-function mutations in  IRAK4  and  MYD88  (Mendelian predisposition to pyogenic bacterial infections) had no 

detectable impact. In contrast, dominant-negative mutations in  STAT3  (autosomal-dominant hyperimmunoglobulin E 

syndrome) and, to a lesser extent, null mutations in  IL12B  and  IL12RB1  (Mendelian susceptibility to mycobacterial 

diseases) impaired the development of IL-17 – producing T cells. These data suggest that IL-12R � 1 –  and STAT-3 – depen-

dent signals play a key role in the differentiation and/or expansion of human IL-17 – producing T cell populations in vivo. 
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 We tested 16 patients with AD-HIES bearing mutations in 
 STAT3 . They displayed normal proportions of CCR6-positive 
CCR4-positive CD4 T cells but low proportions of CCR6-
positive CCR4-negative CD4 T cells (Table S2, available at 
http://www.jem.org/cgi/content/full/jem.20080321/DC1). 
These patients had signifi cantly fewer IL-17 – positive T cells 
than controls (P = 9.7  ×  10  � 7 ;  Fig. 1, A and B ). However, as 
observed in patients with IL-12p40 or IL-12R � 1 defi ciency, 
some AD-HIES patients had normal proportions of IL-17 –
 producing T cells, perhaps refl ecting genetic or epigenetic 
heterogeneity between individuals, residual STAT-3 sig-
naling, or both. In these experimental conditions, the huge 
variations in IL-17 secretion between healthy controls (from 
50 to 5,000 pg/ml), as measured by ELISA, prevented rigorous 
comparison with the small number of patients studied (un-
published data). We did not assess other potential features of 
IL-17 – producing T cells in the patients studied, such as the 
production of IL-22, a cytokine produced by Th17 cells in 
mice ( 1 ) and humans ( 5, 6 ), or expression of ROR � t, a key 

T cells was not signifi cantly diff erent from that in healthy 
controls, as shown by Wilcoxon tests comparing the values 
for each individual between the two groups ( Fig. 1, A and B ). 
We then tested 17 patients with null mutations in  IL12B  or 
 IL12RB1 , whose cells did not produce (for  IL12B  mutations) 
or did not respond (for  IL12RB1  mutations) to IL-23 (and 
IL-12). Interestingly, there were clearly fewer IL-17 – pro-
ducing T cells in these patients than in healthy controls (P = 
4.7  ×  10  � 3 ;  Fig. 1, A and B ). However, some patients had 
normal numbers of IL-17 – producing T cells. In contrast, cells 
from patients with mildly enhanced TGF- �  responses owing 
to mutations in  TGFB1  or  TGFBR2  did not diff er signifi -
cantly from controls ( Fig. 1 B ). These results suggest that IL-
1R – associated kinase 4 (IRAK-4) and MyD88 are not required 
for the development of IL-17 – producing T cells in vivo, that 
TGF- �  probably does not markedly inhibit this process, and 
that both IL-12p40 and IL-12R � 1 are required, at least in 
most individuals and in these experimental conditions of fl ow 
cytometry on T cells activated ex vivo. 

  Figure 1.     Identifi cation of IL-17 – producing T cells ex vivo.  (A) Flow cytometry analysis of CD3 and IL-17 in nonadherent PBMCs activated with 

PMA-ionomycin as a representative control, an IRAK-4 – defi cient patient (P4), an IL-12R � 1 – defi cient patient (P17), and a STAT-3 – defi cient patient (P36; 

Table S1, available at http://www.jem.org/cgi/content/full/jem.20080321/DC1). The percentage indicated in the gate is that of IL-17 –  and CD3-positive 

cells. (B) Percentage of CD3-positive cells that were also IL-17 – positive, as determined by fl ow cytometry of nonadherent PBMCs activated with PMA-

ionomycin. Each symbol represents a value from an individual control (black circles) or patient (red circles). Horizontal bars represent medians. The p-

values for Wilcoxon tests between controls ( n  = 49) and patients with mutations in  IRAK4  or  MYD88  ( n  = 9),  IL12B  or  IL12RB1  ( n  = 17),  TGFB1  or  TGFBR2  

( n  = 7), and  STAT3  ( n  = 16) are indicated.   
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patients bearing specifi c IL-23(R) mutations would be re-
quired to rigorously test this hypothesis. We then tested seven 
patients with mutations associated with mildly enhanced TGF- �  
responses and found no signifi cant diff erences from controls 
in the four conditions tested ( Fig. 2 ). 

 In contrast, 14 patients with mutations in  STAT3  had al-
most no detectable IL-17 – producing T cells in any of the four 
conditions tested (P = 3.2  ×  10  � 8 , 4.9  ×  10  � 9 , 1.9  ×  10  � 9 , and 
3.6  ×  10  � 9 , respectively;  Fig. 2 ). This phenotype was clearly 
more pronounced than that observed with cells from IL-
12p40 –  and IL-12R � 1 – defi cient patients, as the almost com-
plete lack of IL-17 – positive T cells was not complemented by 
IL-23, IL-1 � , or a combination of the four cytokines. T cells 
from the 11 patients with  STAT3  mutations studied prolif-
erated normally in these conditions. Our results demonstrate 
that STAT-3 is required for the expansion of IL-17 – produc-
ing T cell blasts, at least in these experimental conditions. In 
these conditions, all the groups of patients studied had fewer 
IFN- �  – producing cells than controls (Fig. S2, available at 
http://www.jem.org/cgi/content/full/jem.20080321/DC1). 

 Finally, we assessed the secretion of IL-17, IL-22, and 
IFN- �  by T cell blasts from controls and patients, with or 
without activation with PMA-ionomycin, as measured by 
ELISA ( Fig. 3 ; and Figs. S3 and S4, available at http://www
.jem.org/cgi/content/full/jem.20080321/DC1).  Control T 
cell blasts cultured without recombinant cytokine produced 
detectable amounts of IL-17 in the absence of activation by 
PMA-ionomycin (mean = 137  ±  149 pg/ml;  Fig. 3 A ). The 
amounts of IL-17 secreted increased signifi cantly (P = 3  ×  
10  � 4 ) upon activation with PMA-ionomycin (mean = 7,338  ±  
11,134 pg/ml). However, considerable interindividual vari-
ability was observed in both sets of experimental conditions. 
The addition of IL-23, IL-1 � , or a combination of IL-23, IL-
1 � , TGF- � , and IL-6 signifi cantly increased the amounts of 
secreted IL-17 in the absence of activation with PMA-iono-
mycin (P = 10  � 4  and 8  ×  10  � 4 , and P  <  10  � 4 , respectively; 
 Fig. 3, B – D ). Upon PMA-ionomycin activation, only IL-1 �  
signifi cantly increased the amount of IL-17 secretion (P = 
0.04). Four patients with IRAK-4 or MyD88 defi ciency were 
tested. They displayed low levels of IL-17 secretion in the ab-
sence of activation with PMA-ionomycin in the four sets 
of conditions tested (P = 4  ×  10  � 3 , 10  � 5 , 10  � 4 , and 8  ×  10  � 4 , 
respectively;  Fig. 3 ). Upon PMA-ionomycin activation, the 
level of IL-17 secretion is not signifi cantly diff erent from the 
controls, except in the presence of IL-1 �  (P = 0.04;  Fig. 3 ). 
These results suggest that the Toll/IL-1R signaling pathway, 
and possibly the IL-1R pathway, may be involved in the secre-
tion of IL-17 in T cell blasts. These patients produced amounts 
of IL-22 that were similar to the controls (Fig. S3). 

 T cell blasts from the 13 IL-12p40 –  or IL-12R � 1 – defi -
cient patients tested secreted normal amounts of IL-17 in the 
absence of cytokine stimulation ( Fig. 3 A ). The 10 patients 
tested produced normal amounts of IL-17 in the presence of 
IL-1 �  ( Fig. 3 C ). In the presence of the four cytokines, pa-
tients with IL-12R � 1 defi ciency did not secrete normal 
amounts of IL-17 without (P = 2  ×  10  � 3 ) or with (P = 10  � 3 ) 

transcription factor in mouse ( 1 ) and human Th17 cells ( 11 ), 
as too few blood samples were available. Our results nonethe-
less suggest that STAT-3 is required for the diff erentiation 
of human IL-17 – producing T cells in vivo ,  as suggested by 
fl ow cytometry analysis on ex vivo – activated T cells. We also 
assessed the production of IFN- �  in some patients (Fig. S1). 
The proportion of IFN- �  – producing T cells was found to 
be lower in patients with mutations in  IRAK4  and  MYD88  
(P = 1.2  ×  10  � 4 ),  IL12RB1  and  IL12B  (P = 1.8  ×  10  � 3 ), or 
 STAT3  (P = 8  ×  10  � 4 ), but not in patients with mutations in 
 TGFB1  or  TGFBR2  (P = 0.11). 

 No consensus has yet been reached on how to best in-
duce the diff erentiation of human IL-17 T cells from naive 
CD4 precursors in vitro ( 5 – 8, 11 – 13 ), and only small amounts 
of blood from a limited number of blood samples from our 
patients were available. We therefore tried to induce specifi c 
IL-17 memory T cell responses using the cytokines shown to 
be critical for this lineage in the mouse. We evaluated IL-17 
production by populations of T cell blasts expanded in vitro 
from PBMCs. All patients studied, in particular STAT-3 – de-
fi cient patients, displayed normal proportions of CD4 and 
CD8 T cells (Table S3, available at http://www.jem.org/cgi/
content/full/jem.20080321/DC1). We incubated nonadher-
ent PBMCs from controls with OKT3 for 5 d, alone or in the 
presence of IL-23, IL-1 � , TGF- � , or IL-6, or a combination of 
these four cytokines, and then activated them with PMA-
ionomycin. We did not assess the development of antigen-
specifi c IL-17 – producing T cells. There were no IL-17 – positive 
T cells in any control or in any set of experimental conditions 
in the absence of activation with PMA-ionomycin, as shown 
by fl ow cytometry (unpublished data). In the absence of 
 cytokine stimulation, the percentage of IL-17 – positive T cells 
found in healthy controls after stimulation with PMA-iono-
mycin was highly variable (from 0.12 to 10%;  Fig. 2 A ).  
A statistically signifi cant increase in the number of IL-17 –
 producing T cells was observed after stimulation with IL-23 
(P = 7  ×  10  � 3 ) and IL-1 �  (P = 0.04), but not after stimula-
tion with TGF- �  (P = 0.1) or IL-6 (P = 0.3), as shown by 
paired  t  tests ( Fig. 2  and not depicted). This recall-response 
pattern is consistent with IL-1 �  and IL-23 playing an impor-
tant role in maintaining and expanding IL-17 T cell popula-
tions in mice ( 1 ) and humans ( 11 – 13 ). 

 We then investigated IL-17 production by T cell blasts 
from various patients in the same experimental conditions. 
For four patients with IRAK-4 or MyD88 defi ciency and 
impaired responses to IL-1 � , the proportion of IL-17 – pro-
ducing cells appeared to be normal in the various experimen-
tal conditions, except in response to IL-1 �  ( Fig. 2 ). 16 patients 
with IL-12p40 ( n  = 2) or IL-12R � 1 ( n  = 14) defi ciency were 
found to have much smaller proportions of IL-17 – producing 
T cells in the absence of cytokine stimulation (P = 7  ×  10  � 5 ; 
 Fig. 2 A ). The two IL-12p40 – defi cient patients, unlike the 
IL-12R � 1 – defi cient patients (P = 5  ×  10  � 5 ), apparently re-
sponded to IL-23 in these conditions ( Fig. 2 B ). These data 
suggest that IL-23 makes a major contribution to the expan-
sion of the IL-17 T cell population in this assay. However, 
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mans ( 25 ). Impaired IL-6 signaling may be the key factor in-
volved, as suggested by the results obtained for IL-6 – defi cient 
mice ( 1, 26, 27 ). However, STAT-3 is also involved in other 
relevant pathways, including the IL-21 and IL-23 pathways. 
Our data for IL-12p40 –  and IL-12R � 1 – defi cient cells suggest 
that IL-23 is required for the optimal development of IL-17 –
 producing T cells. IL-23 is probably the only cytokine in-
volved, as the patients also lacked IL-12 responses, which 
might be expected to enhance the development of this subset 
( 1 ). This is consistent with the mouse model, in which IL-23 
is required for the maintenance and expansion of these cells ( 1, 
28, 29 ), and with the results of previous human studies based 
on the use of recombinant cytokines ( 5 – 8, 11 – 13 ). In contrast, 
our fi ndings for IRAK-4 –  and MyD88-defi cient cells do not 
support the notion that IL-1 �  (or any of the IL-1Rs and TLRs 
other than, possibly, TLR3 and TLR4) is essential for the 
development of human IL-17 – producing T cells ( 5, 6 ), con-
sistent with the phenotype of IL-1 – defi cient mice ( 1 ). Finally, 

PMA-ionomycin stimulation ( Fig. 3 D ). In all culture condi-
tions, cells from patients with  IL12B  and  IL12RB1  mutations 
secreted less IL-22 than control cells (Fig. S3). T cell blasts 
from all patients with mutations in the TGF- �  pathway se-
creted normal amounts of IL-17, whereas T cell blasts from 
all patients with STAT-3 defi ciency secreted much smaller 
amounts of IL-17 (P = 8  ×  10  � 6 , 9  ×  10  � 7 , 9  ×  10  � 11 , 2  ×  
10  � 7 , 10  � 8 , 3  ×  10  � 7 , 4  ×  10  � 9 , and 3  ×  10  � 6 , respectively) 
and IL-22 in all experimental conditions ( Fig. 3  and Fig. S3). 
These data indicate that STAT-3 is required for the mainte-
nance and expansion of IL-17 – secreting human T cell blasts 
and for the secretion of IL-22 by human T cell blasts, at least 
in these experimental conditions. 

 Patients with STAT-3 defi ciency had the most severe IL-
17 phenotype of all the patients tested, with a profound im-
pairment of IL-17 production by T cells ex vivo and T cell 
blasts in vitro. This observation is consistent with fi ndings for 
STAT-3 – defi cient mice ( 1, 21 – 24 ) and a recent report in hu-

  Figure 2.     Identifi cation of IL-17 – expressing T cell blasts expanded in vitro.  Intracellular production of IL-17 in T cell blasts activated with PMA-iono-

mycin for controls (black circles) and patients (red circles), as assessed by fl ow cytometry. The cells were cultured in different stimulation conditions: OKT3 only 

(A), or OKT3 with IL-23 (B), IL-1 �  (C), or IL-23, IL-1 � , TGF- � , and IL-6 (D). Each symbol represents a value for an individual control or patient. Horizontal bars 

represent medians. In controls, stimulation with IL-23 and IL-1 �  had a signifi cant effect with respect to medium alone (P  <  0.05). The p-values for Wilcoxon 

tests between each patient group and the control group are indicated. In B and D, the patients circled in blue carry  IL12B  mutations and cannot produce IL-12 

and IL-23, but can respond to both cytokines. The p-value of the  IL12B-IL12RB1  group was therefore calculated only with IL-12R � 1 – defi cient patients (*).   
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some present with peripheral candidiasis (unpublished data). 
Mycobacterial disease is exceedingly rare in STAT-3 – defi -
cient patients, but not in IL-12p40 –  and IL-12R � 1 – defi cient 
patients, in whom it results from impaired IFN- �  immunity, 
which is consistent with the redundancy of IL-17 in mouse 
primary immunity to mycobacteria ( 36, 37 ). Staphylococcal 
disease is the main infection seen in STAT-3 – defi cient patients. 
Mouse IL-17 seems to be involved in immunity to  Staphylo-
coccus  ( 38 ). However, both IL-12p40 –  and IL-12R � 1 – defi cient 
patients are normally resistant to  Staphylococcus . The function 
of human IL-17 and related cytokines in host defense there-
fore remains unknown. The genetic dissection of human in-
fectious diseases should help us to attribute a function to this 
important cytokine in natura ( 39, 40 ). 

 MATERIALS AND METHODS 
 Patients and controls.   55 healthy, unrelated individuals of various ages 

from 12 countries (Argentina, Canada, Cuba, France, Germany, Israel, Por-

tugal, Spain, Switzerland, Turkey, UK, and USA) were tested as controls. 

We also investigated 50 patients with mutations in  IRAK4 ,  MYD88 ,  IL12B , 

the paradoxical suggestion that TGF- �  may have no eff ect or 
may even inhibit the development of human IL-17 – produc-
ing T cells ( 5 – 8 ) was neither supported nor disproved by our 
data for patients with mildly enhanced TGF- �  responses ( 1 ). 

 Does our report provide any clues to the possible function 
of IL-17 in host defense? The mouse Th17 subset plays a key 
role in mucosal defense ( 30 ). IL-23 –  and IL-17 – defi cient 
mice are vulnerable to  Klebsiella  ( 31, 32 ). This may account 
for the greater susceptibility of IL-12p40 –  and IL-12R � 1 – de-
fi cient patients than of IFN- � R – defi cient patients to both 
 Klebsiella  (Levin, M., and S. Pedraza, personal communica-
tion; Table S1) and the related  Salmonella  ( 19 ). However, nei-
ther  Klebsiella  nor  Salmonella  is commonly found as a pathogen 
in STAT-3 – defi cient patients despite the apparently greater 
defect of these patients in terms of IL-17 – producing T cell 
development ( 17, 18 ). Mice with impaired IL-17 immunity 
are also susceptible to  Candida  ( 33 – 35 ). This may account for 
the peripheral candidiasis commonly seen in STAT-3 – defi -
cient patients. Interestingly, although most IL-12p40 –  and 
IL-12R � 1 – defi cient patients are not susceptible to  Candida  ( 19 ), 

  Figure 3.     IL-17 secretion by T cell blasts expanded in vitro.  Secretion of IL-17 by T cell blasts from controls (black circles) and patients (red circles), as 

measured by ELISA. Open circles represent values in the absence of stimulation, and closed circles correspond to values obtained after stimulation with PMA-

ionomycin. Different stimulation conditions are shown: OKT3 only (A), or OKT3 with IL-23 (B), IL-1 �  (C), or IL-23, IL-1 � , TGF- � , and IL-6 (D). Each symbol corre-

sponds to a value obtained from an individual. Horizontal bars represent medians. The p-values for Wilcoxon tests between each patient group and the control 

group, either unstimulated or stimulated with PMA-ionomycin, are indicated. In B and D, patients circled in blue carry  IL12B  mutations and cannot produce 

IL-12 and IL-23, but can respond to both cytokines. The p-values of the  IL12B-IL12RB1  group were therefore calculated only with IL-12R � 1 – defi cient patients (*).   
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microwell peroxidase substrate (KPL). The reaction was stopped by adding 

1.8 M H 2 SO 4 . Optical density was determined with a microplate reader 

(MRX; Thermolab Systems). 

 Statistical analysis.   We fi rst assessed diff erences between controls and pa-

tients (when there were more than two patients) for (a) the percentage of 

circulating IL-17 – producing T cells, (b) the percentage of IL-17 – positive T 

cells in vitro, and (c) the level of IL-17 production in various stimulation 

conditions, as assessed by ELISA. As the distribution of these three variables 

could not be assumed to be normal and some of the patient groups examined 

were very small, we used the nonparametric Wilcoxon exact test, as imple-

mented in the NPAR1WAY module of SAS software (version 9.1; SAS In-

stitute). A second set of tests was performed on controls only to assess the 

eff ects of diff erent stimulation conditions on (a) the percentage of IL-17 – pos-

itive T cells in vitro and (b) the level of IL-17 production, as assessed by 

ELISA. We used a strategy of matching, with paired  t  tests performed with 

the TTEST procedure of SAS software (version 9.1) to investigate the corre-

lation between observations for diff erent controls. For all analyses, P  <  0.05 

was considered statistically signifi cant. 

 Online supplemental material.   Fig. S1 shows the percentage of CD3-

positive IFN- �  – positive cells, as determined by fl ow cytometry of nonad-

herent PBMCs activated with PMA-ionomycin from controls and patients. 

Fig. S2 shows intracellular IFN- �  production in T cell blasts activated with 

PMA-ionomycin from controls and patients in the various culture condi-

tions, as assessed by fl ow cytometry. Fig. S3 shows the secretion of IL-22 by 

T cell blasts from controls and patients in the various culture conditions, as 

measured by ELISA. Fig. S4 shows the secretion of IFN- �  by T cell blasts 

from controls and patients in the various culture conditions, as measured by 

ELISA. Table S1 shows the genetic and clinical features of the patients stud-

ied. Table S2 shows the proportions of CCR6-positive CD4 T cells in con-

trols and STAT-3 – defi cient patients. Table S3 shows the proportions of 

CD4 and CD8 T cells in patients. Online supplemental material is available 

at http://www.jem.org/cgi/content/full/jem.20080321/DC1. 
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