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    Sex diff erences in susceptibility to autoimmune 
diseases have been recognized for decades ( 1 ). 
A variety of sex-related diff erences in immune 
responses have been described, with females 
generally having increased cellular and humoral 
responses compared with males. Autoimmune 
diseases characterized by a female preponder-
ance are numerous, including multiple sclerosis, 
rheumatoid arthritis, and systemic lupus ery-
thematosus, to name a few. Many experimental 
models of autoimmune disease also demon-
strate a female preponderance ( 1 ). Extensive 
research has been devoted to the role of sex 
hormones in the sex diff erence in autoimmune 
diseases in both humans and animal models, 
and numerous eff ects of sex hormones have in-
deed been shown. However, eff ects of sex hor-
mones do not rule out a more direct eff ect of 
sex chromosomes. 

 Direct eff ects of sex chromosomes and in-
direct eff ects of sex chromosomes (mediated by 
sex hormones) are the two major classes of sig-
nals that induce sex diff erences in phenotype. 
In male mammals, the Y-linked gene  Sry  is ex-
pressed in cells of the undiff erentiated gonadal 
ridges to cause them to diff erentiate into Sertoli 
cells, which begins the diff erentiation of the testes 
( 2 ). Once the testes have formed, they secrete 
hormones that are distinct from those of the 
ovary, and these hormonal diff erences generate 

sex diff erences in many nongonadal tissues, such 
as the external genitalia, immune system, brain, 
cardiovascular system, and skeletal system. In-
deed, the eff ects of these hormones account for 
the majority of sex diff erences in nongonadal 
tissues identifi ed to date. However, there are 
direct genetic diff erences between males and 
females arising from the diff erence in sex chro-
mosome complement that could also contrib-
ute to sex diff erences in phenotype ( 3, 4 ). Such 
possibilities include expression of genes located 
on the nonrecombining region of the Y chro-
mosome whose role in nongonadal tissues has 
been understudied, diff erences in X gene ex-
pression that arise from the X chromosome 
origin (maternal or paternal), and diff erences in 
dosage of genes located on the nonpseudoauto-
somal region of the X chromosome. 

 Fortunately, a mouse model system has 
recently been developed to identify eff ects of 
the sex chromosome complement without the 
confounding eff ects of diff erences in gonadal 
type ( 4 ). In this study, the testes-determining  Sry  
gene has been deleted from the Y chromosome, 
producing the  Sry -defi cient Y   –   . This results in 
XX and XY   –    ovary-bearing mice. Further, when 
 Sry  is inserted as a transgene on an autosome, 
this results in XX Sry  and XY   –    Sry  testes-bearing 
mice. This model system allows comparisons 
between XX and XY   –    within a female hormonal 
background, as well as between XX Sry  and 
XY   –    Sry  within a male hormonal background 
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 Most autoimmune diseases are more common in women than in men. This may be caused 

by differences in sex hormones, sex chromosomes, or both. In this study, we determined if 

there was a contribution of sex chromosomes to sex differences in susceptibility to two 

immunologically distinct disease models, experimental autoimmune encephalomyelitis (EAE) 

and pristane-induced lupus. Transgenic SJL mice were created to permit a comparison 

between XX and XY within a common gonadal type. Mice of the XX sex chromosome com-

plement, as compared with XY, demonstrated greater susceptibility to both EAE and lupus. 

This is the fi rst evidence that the XX sex chromosome complement, as compared with XY, 

confers greater susceptibility to autoimmune disease. 

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/205/5/1099/1899351/jem
_20070850.pdf by guest on 09 February 2026



1100 SEX CHROMOSOMES AND AUTOIMMUNE DISEASE | Smith-Bouvier et al.

mice, as compared with XY   –    Sry  mice (P = 0.0001, Friedman 
test including all days;  Fig. 1 A  and  Table I ).    This diff erence in 
disease severity also occurred when comparing ovariectomized 

(Table S1, available at http://www.jem.org/cgi/content/full/
jem.20070850/DC1). We use this model system to present 
the fi rst evidence of a sex chromosome eff ect that encom-
passes two distinct autoimmune disease models. 

  RESULTS  

 XX sex chromosome complement confers greater 

susceptibility to EAE 

 We addressed the role of the sex chromosome complement 
in the sex diff erence in EAE using the SJL strain because this 
strain had previously been shown to demonstrate greater dis-
ease susceptibility in females as compared with males ( 5 ). We 
backcrossed the  Sry -defi cient Y chromosome from original 
outbred MF1 mice ( 6 ) onto the SJL strain to the F16 genera-
tion (Fig. S1, available at http://www.jem.org/cgi/content/
full/jem.20070850/DC1). We then gonadectomized both 
females and males to remove any intercurrent eff ects of sex 
hormones that might mask eff ects of sex chromosomes ( 7 ). 
SJL castrated male mice that were either XX Sry  or XY   –    Sry , had 
active EAE induced with proteolipid protein (PLP) peptide 
139 – 151. Clinical disease course was more severe in XX Sry  

  Figure 1.     The XX sex chromosome complement, as compared with 

the XY  –  , confers greater disease severity to active EAE.  (A) Active 

EAE was induced in castrated XX Sry  and XY   –    Sry  male mice with autoanti-

gen PLP 139 – 151. Mean clinical disease course was more severe in cas-

trated male XX Sry  mice as compared with XY   –    Sry  mice. P  <  0.0001. XX Sry , 

 � ,  n  = 6; XY   –    Sry ,  � ,  n  = 5. (B) Active EAE was induced in ovariectomized 

XX and XY   –    female mice with autoantigen PLP 139 – 151. Clinical disease 

course was more severe in ovariectomized female XX mice compared with 

XY   –    mice. P  <  0.0001. XX,  � ,  n  = 5; XY   –   ,  � ,  n  = 5. Data are representative 

of one experiment in males and two independent experiments in females. 

Graphs show mean clinical score for each group at each time point. Statis-

tical analysis compares mean score for all days from each group. Female 

symbol with x overlay indicates ovariectomized female; male symbol with 

x overlay indicates castrated male.   

  Figure 2.     The XX sex chromosome complement, as compared with the 

XY  –  , confers greater disease severity to adoptive EAE.  (A) Effect of sex 

chromosome complement on adoptive EAE. LNCs from ovariectomized female 

XX and XY   –    mice (immunized with PLP 139 – 151) were adoptively transferred 

into WT females (gonadally intact). Mean clinical disease course was signifi -

cantly higher in recipients of LNCs derived from XX mice as compared with 

those derived from XY   –    mice. P  <  0.0001. XX,  � ,  n  = 13; XY   –   ,  � ,  n  = 8. Data 

are representative of two independent experiments. Graph shows mean clini-

cal score for each group at each time point. Statistical analysis compares 

mean score for all days from each group. (B) Recipients of XX-derived LNCs 

had more CNS infl ammation than recipients of XY   –   -derived LNCs. Shown are 

representative thoracic spinal cord sections of mice with adoptively trans-

ferred EAE that were coimmunostained with anti-CD45 (red) and anti –  � 3-

tubulin (green) antibodies. LF, lateral funiculus; VH, ventral horn). EAE mice 

that received LNCs derived from XX mice (left) had signifi cantly increased 

CD45 +  staining as compared with EAE mice that received LNCs derived from 

XY   –    mice (right). Bar, 100  μ m. (C) Quantifi cation of EAE neuropathology. Mice 

that received XX LNCs had a signifi cant increase in CD45 +  cells compared with 

mice that received XY   –    LNCs. P  <  0.001, Student ’ s  t  test. XX,  � ,  n  = 12; XY   –   ,  � , 

 n  = 12. Data are representative of two independent experiments. Histograms 

show the means and the SEM for mice in each group. Female symbol with x 

overlay indicates ovariectomized female.   
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cell density revealed a signifi cant increase in mice that received 
XX-derived LNCs versus mice that received XY   –   -derived 
LNCs (P = 0.001;  Fig. 2 C ). Together, these clinical and 
neuropathology studies demonstrated that the XX sex chromo-
some complement, as compared with the XY  –  , confers greater 
susceptibility to EAE by promoting the development of a 
more encephalitogenic immune response. 

 Because it had been previously shown that no gender dif-
ference exists in EAE in the C57BL/6 strain of mice ( 8 – 10 ), 
we then questioned whether an eff ect of sex chromosomes 
could be found in this strain. Similar to our work in the 
SJL, we next backcrossed the  Sry -defi cient Y chromosome 
from the original outbred MF1 mice ( 6 ) onto the C57BL/6 
strain to the F14 generation. We then gonadectomized both 
females and males to remove any eff ects of sex hormones 
that might mask eff ects of sex chromosomes ( 7 ). C57BL/6 
castrated male mice that were either XX Sry  or XY   –    Sry  had 
active EAE induced with myelin oligodendrocyte protein 
peptide (MOG) 35 – 55. In contrast to results in the SJL, clinical 
disease courses were no diff erent when comparing XX Sry  
mice with XY   –    Sry  mice ( Fig. 3 A  and  Table III ).    There was 
also no diff erence in disease when comparing ovariectomized 
female XX versus XY   –    mice ( Fig. 3 B  and  Table III ). To-
gether, our data indicated that when a strain is used that 
is characterized by a female-to-male diff erence in EAE (the 
SJL), a sex chromosome eff ect is present. In contrast, when 

female XX versus XY   –    mice (P = 0.0012, Friedman test in-
cluding all days;  Fig. 1 B  and  Table I ). 

 Because the induction phase and the eff ector phase of 
EAE occur in the same animal in active EAE, it was un-
known whether the diff erence in active EAE disease severity 
in XX versus XY   –    mice was caused by diff erences in the 
development of the encephalitogenic immune response or 
by diff erences in the target organ, the central nervous system 
(CNS) in this case. To determine if the sex chromosome 
effect in active EAE was caused by the influence of the 
sex chromosome complement on the immune response, 
we adoptively transferred autoantigen-stimulated LN cells 
(LNCs) from ovariectomized XX or XY  –   mice (immunized 
with PLP 139 – 151) into WT female mice. LNCs derived 
from ovariectomized female XX mice, as compared with 
those derived from XY  –  , induced more severe clinical dis-
ease (P = 0.0001, Friedman test including all days;  Fig. 2 A  
and  Table II ).    

 We then assessed the extent of infl ammation in the CNS 
of mice with adoptive EAE. On day 40 after induction of 
adoptive EAE, thoracic spinal cord sections of WT females 
that received either XX or XY  –   LNCs were coimmuno-
stained with anti-CD45 (an immune cell marker) and anti –
  � 3-tubulin (a neuronal marker). Qualitatively, recipients of 
XX-derived LNCs had more CNS infl ammation than recip-
ients of XY   –   -derived LNCs ( Fig. 2 B ). Quantifi cation of CD45 +  

  Table I.  Clinical features of active EAE in XX ovariectomized female SJL mice compared with XY   –    ovariectomized female SJL mice 

and XX Sry  castrated male SJL mice compared with XY   –    Sry  castrated male SJL mice 

Genotype Incidence Mortality Mean day of onset Mean peak Mean score (all days)

Experiment 1  a  

XX females 4/5 0/5 7.3 3.7 0.6  b  

XY   –    females 3/5 0/5 8.3 2.8 0.2

Experiment 2

XX females 4/4 0/4 13 3.6 1.8  b  

XY   –    females 3/3 0/3 16 2.3 0.8

Experiment 3  a  

XX males 5/6 0/6 8 3.9  b  1.9  b  

XY   –    males 4/5 0/5 8.5 3.1 0.6

 a These data are depicted in  Fig. 1 .

 b A signifi cant difference between groups; P  <  0.05.

  Table II.    Clinical features of adoptive EAE in WT female SJL mice that received PLP 139-151 reactive LN cells from either XX 

ovariectomized female SJL mice or XY   –    ovariectomized female SJL mice 

Genotype of donor cells Incidence Mortality Mean day of onset Mean peak Mean score (all days)

Experiment 1

XX females 12/12 7/12 9.4 4.6  a  3.5  a  

XY   –    females 2/11 0/11 10.5 3.3 0.2

Experiment 2  b  

XX females 13/13 2/13 9.9 4.0  a  2.7  a  

XY   –    females 5/8 1/8 11.2 3.6 1.1

 a A signifi cant difference between groups; P  <  0.05.

 b These data are depicted in  Fig. 2 .
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a strain is used that is not characterized by a female-to-male 
diff erence in EAE (the C57BL/6), a sex chromosome eff ect 
is not present. The presence of a sex chromosome eff ect 
in one strain, but not another, revealed an interaction be-
tween sex chromosome complement and genetic background. 
Notably, eff ects of sex hormones in EAE have also previ-
ously been shown to be dependent on genetic background 
( 9 ), and some autosomal gene linkages to susceptibility to 
multiple sclerosis have been identifi ed in one gender, but 
not the other ( 11 ). Thus, in the outbred human population, 
the genetic background of some, but not all, individuals may 
be permissive to sex chromosome or sex hormone eff ects. 
Notably, because overall there is a gender diff erence in many 
autoimmune diseases in humans, the relatively permissive 
genetic backgrounds are likely to be prevalent, not rare, 
in occurrence. 

 XX sex chromosome complement confers greater 

susceptibility to lupus 

 In light of the fact that lupus in humans is characterized by a 
9:1 female preponderance, and because we had previously 
shown that pristane-induced lupus in SJL mice was charac-
terized by greater susceptibility in females as compared with 
males ( 12 ), we next determined whether the eff ect of sex 
chromosome complement observed in SJL mice with EAE 
was unique to this disease or was more pervasive across auto-
immune diseases. Thus, we next evaluated the role of sex 
chromosome complement in pristane-induced lupus. Ovari-
ectomized female XX and XY   –    SJL mice and castrated male 
XX Sry  and XY   –    Sry  mice were injected with pristane and 
monitored daily for signs of disease ( Fig. 4, A and B ).  By 26 wk, 
only 30.8% of XX mice had survived, whereas 68.4% of XY  –   
mice had survived (P = 0.036, Kaplan-Meier including all 
days). This greater disease severity in XX mice also  occurred 

  Figure 3.     No effect of sex chromosome complement for active 

EAE in C57BL/6 mice.  (A) Active EAE was induced in castrated male 

XX Sry  and XY   –    Sry  C57BL/6 mice with autoantigen MOG 35 – 55. Mean 

clinical disease course was no different when comparing castrated male 

XX Sry  mice to XY   –    Sry  mice. XX Sry ,  � ,  n  = 6; XY   –    Sry ,  � ,  n  = 6. (B) Active 

EAE was induced in ovariectomized female XX and XY   –    C57BL/6 mice with 

autoantigen MOG 35 – 55. Mean clinical disease course was also no differ-

ent when comparing ovariectomized female XX versus XY   –    mice. XX,  � , 

 n  = 6; XY   –   ,  � ,  n  = 4. Data are representative of three independent experi-

ments in males and two independent experiments in females. Graphs 

show mean clinical score for each group at each time point. Statistical 

analysis compares mean score for all days from each group. Female sym-

bol with x overlay indicates ovariectomized female; male symbol with x 

overlay indicates castrated male.   

  Table III.    Clinical features of active EAE in XX ovariectomized female C57BL/6 mice compared with XY   –    ovariectomized female 

C57BL/6 mice and XX Sry  castrated male C57BL/6 mice compared with XY   –    Sry  castrated male C57BL/6 mice 

Genotype Incidence Mortality Mean day of onset Mean peak Mean score (all days)

Experiment 1

XX females 7/7 0/7 11 3.4 2.8

XY   –    females 6/6 0/6 13 3.2 2.1

Experiment 2  a  

XX females 6/6 1/6 12 3.7 2.8

XY   –    females 4/4 1/4 9 3.9 3.0

Experiment 3  a  

XX Sry males 6/6 0/6 11 4.4 3.4

XY   –    Sry males 6/6 0/6 13 4.5 3.3

Experiment 4

XX Sry males 5/5 0/5 14 2.9 2.3

XY   –    Sry males 7/7 0/7 14 3.6 2.9

Experiment 5

XX Sry males 5/5 3/5 14 4.7 3.0

XY   –    Sry males 7/7 4/7 12 4.4 3.0

 a These data are depicted in  Fig. 3 .
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when comparing castrated male XX Sry  mice with XY   –    Sry  
(P = 0.027, Kaplan-Meier including all days). 

 Upon reaching death or terminal moribund state, mice 
were evaluated for kidney pathology. The representative photo-
micrograph of a kidney from an XX female demonstrates 
diff use glomerular infi ltration (GI), segmental glomerulosclerosis, 
a cellular crescent, tubular casts, and tubular atrophy, whereas 
the photomicrograph of a kidney from an XY   –    female shows 
only focal segmental proliferative nephritis and mild mesan-
gial matrix deposition with relatively intact tubules ( Fig. 4 C ). 
Further, kidney lesions from pristane-injected XX and XY  –   
mice were scored, ranked, and expressed as percent frequency 
of mice in each group. A greater percentage of XX mice 
showed more severe tubular disease scores ( ≥ 10; P = 0.006), 
chronic lesion scores ( ≥ 3; P = 0.046), and vascular lesion 
scores (P = 0.013) than their XY  –   littermates. In addition, a 
greater percentage of XX mice showed severe glomerular 
disease scores ( ≥ 10), but this eff ect did not reach signifi -
cance ( Fig. 4 D ). 

 To assess possible sex chromosome complement eff ects 
on humoral autoimmunity, sera from ovariectomized female 
XX and XY   –    SJL mice injected with pristane were assessed 
for the level of anti-dsDNA antibodies. 16 wk after pristane 
injection, XX mice had signifi cantly higher levels of anti-
dsDNA IgG antibodies in sera than XY   –    mice (P  <  0.01;  Fig. 
4 E ). To determine whether the sex chromosome eff ect on 
autoantibody production was related to disease induction or 
was inherent in healthy SJL mice, levels of anti-dsDNA IgG 
antibodies were also determined in sera from age-matched 
XX and XY  –   mice injected with PBS. At 16 wk, antibody 
levels in XX and XY  –   mice injected with PBS were low and 
similar to levels from normal BALB/c-negative controls, and 
there was no diff erence between the groups in these low levels. 
Together, these studies demonstrated that the XX sex chromo-
some complement, as compared with the XY  –  , confers greater 
susceptibility to pristane-induced lupus. 

 Finally, we and others have previously reported that sex 
hormones and sex chromosomes have interactions, whereby 
their eff ects are synergistic in some organ systems and antago-
nistic in other organ systems ( 7, 13 ). Although the goal of this   Figure 4.     The XX sex chromosome complement, as compared with 

the XY  –  , confers greater disease severity to lupus.  (A) Castrated male 

XX Sry  and XY   –    Sry  SJL mice were injected with pristane and monitored 

daily for signs of disease. By 26 wk, XX Sry  mice had increased mortality 

as compared with XY   –    Sry  mice. P = 0.027. XX Sry ,  � ,  n  = 12; XY   –    Sry ,  � , 

 n  = 13. (B) Ovariectomized female XX and XY   –    SJL mice were injected with 

pristane and monitored daily for signs of disease. At 26 wk, XX mice had 

increased mortality as compared with XY  –   mice. P = 0.036. XX,  � ,  n  = 13; 

XY  –  ,  � ,  n  = 15. Data are representative of two independent experiments. 

(C) Kidneys from ovariectomized female XX and XY   –    female SJL mice in-

jected with pristane were harvested upon death for renal pathology. Rep-

resentative renal histology from pristane-induced lupus SJL mice showing 

that ovariectomized female XX mice (left) have more severe nephritis than 

ovariectomized female XY   –    mice (right). GI, glomerular infi ltration; GS, 

segmental glomerulosclerosis; Cr, cellular crescent; TC, tubular casts; TA, 

tubular atrophy; FSP, focal segmental proliferative; MM, mild mesangial 

matrix. Bars, 50  μ m. (D) Lesions from pristane-injected ovariectomized 

female XX and XY  –   mice were scored, ranked, and expressed as the per-

cent frequency of mice in each group. A greater percentage of XX mice 

showed severe tubular disease scores ( ≥ 10; P = 0.006), chronic lesion 

scores ( ≥ 3; P = 0.046), and vascular lesion scores (P = 0.013) than their 

XY  –   littermates. In addition, a greater percentage of XX mice showed 

 severe glomerular disease scores ( ≥ 10; NS). XX,  n  = 13; XY   –   ,  n  = 14. XX, 

white columns; XY  –  , shaded columns. (E) Effect of sex chromosome com-

plement on autoantibody levels in pristane-induced lupus. Ovariecto-

mized female XX and XY   –    SJL mice were bled to detect anti-dsDNA 

antibodies in serum. 16 wk after pristane injection, XX mice had signifi -

cantly higher levels of anti-dsDNA IgG antibody in sera than XY  –   mice. 

P  <  0.01. XX,  n  = 9, white columns; XY   –   ,  n  = 9, shaded columns; (NZBxNZW)F1 

(+control), diagonal-lined columns; BALB/c ( � control), vertical-lined col-

umns. Histograms show the means and the SEM for mice in each group 

from one of three independent experiments. Female symbol with x overlay 

indicates ovariectomized female; male symbol with x overlay indicates 

castrated male.   
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compared with the gonadectomized mice, thus survival was 
no diff erent between groups earlier in the course of disease 
(week 0 – 28). In gonadally intact XX Sry  versus XY   –    Sry  phe-
notypically male mice, no signifi cant mortality was observed 
in either group for the entire duration of observation. This 
was likely caused by the protective eff ect of endogenous tes-
tosterone ( 14 – 16 ). 

 Immune response differences in XX versus XY  –   mice 

 Because we had shown that the disease-promoting eff ect of 
the XX sex chromosome complement as compared with the 
XY   –    was present in both EAE and lupus, it suggested an ef-
fect of sex chromosomes on the immune system. Data of a 
sex chromosome complement eff ect on the induction phase 
of EAE using the adoptive transfer EAE model were consis-
tent with this hypothesis. Although these data did not rule 
out additional sex chromosome eff ects on the target organs 
(i.e., brain or kidneys) of these two diseases, they did provide 
a rationale for assessing whether there were sex chromosome 
eff ects on the peripheral immune response. To this end, 
ovariectomized female XX and XY   –    SJL mice were immu-
nized with PLP 139 – 151 and draining LNs were stimulated 
ex vivo with autoantigen and assessed for cytokine produc-
tion. The Th2 cytokines IL-13 and -5 were signifi cantly 
higher in XY   –    females than in XX females (P  <  0.05;  Fig. 5,  
top and middle).  In addition, there was also a trend for higher 
production of the Th2 cytokine IL-10 in XY   –    mice than in 
XX mice, but this did not reach statistical signifi cance (un-
published data). There were also trends for higher levels of 
Th1 cytokines, namely IFN- �  and TNF � , in XY   –    mice, but 
these also did not reach signifi cance. There were no diff er-
ences in IL-1 � , -2, -6, -17, -23, -27, or TGF �  when com-
paring the two groups of mice with diff erent sex chromosome 
complements. IL-4, -12p40, and -12p70 were at the lower 
limits of detection and were also no diff erent between the two 
groups. There were also no signifi cant diff erences in the pro-
portions and numbers of the diff erent cell subsets in the spleens 
of PLP-immunized SJL mice when comparing the two sex 
chromosome complements (Table S2, available at http://www
.jem.org/cgi/content/full/jem.20070850/DC1). 

 When ovariectomized female XX and XY   –    SJL mice 
were injected with pristane and splenocytes were cultured 
with anti-CD3 and -CD28 antibodies, results similar to those in 
PLP-immunized mice were observed. Namely, IL-13 and -5 
were each higher in XY   –    compared with XX  mice (unpub-
lished data). Additionally, unlike PLP-immunized mice, IL-4 
was detectable after pristane injection. XY   –    mice, as com-
pared with XX, were found to have signifi cantly higher lev-
els of IL-4 as well ( Fig. 5 , bottom). No signifi cant diff erences 
were observed in other cytokines as above or in spleen cell 
subsets from pristane-injected mice when comparing the two 
sex chromosome complements (Table S2). 

 As a control experiment, to assess whether in vivo disease 
induction was or was not a prerequisite to observing sex 
chromosome – related diff erences in the Th2 cytokines (IL-13, 
-5, and -4), ovariectomized female XX and XY   –    SJL mice 

paper was to study the eff ect of sex chromosomes in a pure 
design that was not confounded by sex hormone eff ects, we 
nevertheless repeated the lupus experiment using gonadally 
intact mice. Similar to results in gonadectomized mice, dif-
ferences were observed in survival when comparing gonad-
ally intact XX versus XY   –    phenotypically female mice. 
Specifi cally, at 38 wk after disease induction, there was 27.3% 
survival in XX ( n  = 11), whereas there was 66.7% survival in 
XY   –    mice ( n  = 9; P = 0.05, Kaplan-Meier from week 28 –
 38). Disease onset was relatively later in gonadally intact as 

  Figure 5.     Effect of sex chromosome complement on Th2 cytokine 

levels.  Ovariectomized female XX and XY   –    SJL mice were immunized with 

PLP 139 – 151, and after 10 d, draining LNCs were stimulated with PLP 

139 – 151 and assessed for cytokine levels in supernatants. IL-13 (top) and 

IL-5 (middle) were signifi cantly increased in XY   –    females compared with 

XX females. *, P  <  0.05. XX,  � ,  n  = 4; XY  –  ,  � ,  n  = 3. Ovariectomized 

female XX and XY   –    SJL mice were injected with pristane, and after 10 d, 

splenocytes were stimulated with anti-CD3 � /anti-CD28 and cultured for 

cytokine production. IL-4 levels in supernatant were signifi cantly higher 

in XY   –    females as compared with XX females. *, P  <  0.05. XX,  � ,  n  = 3; XY  –  , 

 � ,  n  = 3. All data are representative of at least three independent experi-

ments. Graphs show the means and the SEM of mice in each group for 

each concentration. Female symbol with x overlay indicates ovariecto-

mized female.   
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  DISCUSSION  

 The goal of this article was to use a uniquely informative 
model system to determine whether sex chromosome com-
plement may contribute to the gender diff erence in suscepti-
bility to EAE and lupus. Our data have indicated that the XX 
sex chromosome complement is disease promoting compared 
with the XY   –    complement. Has the possibility been ruled out 
that long-term eff ects of developmental hormones may have 
had an infl uence in our system? Regarding a potential eff ect 
of hormonal diff erences present before gonadectomy at 4 wk, 
the comparisons made in our manuscript are between XX 
versus XY   –    femice, with both groups having had ovaries dur-
ing development. Analogously, comparisons between XX Sry  
versus XY   –    Sry  male mice are between groups that have both 
had testes during development. Moreover, our laboratory ( 7 ) 
and another ( 22 ) have assessed testosterone levels in 6 – 8-wk-
old XX Sry  versus XY   –    Sry  male mice, as well as in XX versus 
XY   –    female mice, and have found no diff erence between 
groups. Although it is impossible to state that hormones were 
equivalently secreted from XX Sry  versus XY   –    Sry  testes, or 
from XX versus XY   –    ovaries, at every day of development, 
when phenotypic measures in the CNS that are known 
to undergo organizational eff ects mediated by gonadal hor-
mones were previously compared between XX Sry  and XY   –
    Sry  males, as well as between XX and XY   –    females, no 
diff    erences were found ( 23 ). Together, these previously pub-
lished results provide strong evidence against a gonadal hor-
mone diff erence between our comparisons of mice that diff er 
in sex chromosome complement although they have the 
same gonadal type. Finally, the fact that diff erences similar to 
those observed when comparing XX Sry  versus XY   –    Sry  in 
autoimmune disease outcomes in this article were observed 

were injected with saline, and splenocytes were assessed for 
cytokine production. In contrast to the results observed after 
PLP immunization and pristane injection, there were no 
diff erences observed in cytokine production in XX versus 
XY   –    SJL mice injected with saline (unpublished data). This 
demonstrated that in vivo disease activation was necessary 
to drive the Th2 cytokine diff erences observed when com-
paring immune responses in mice of the two sex chromo-
some complements. 

 Finally, the IL-13R � 2 gene is on the X chromosome ( 17 ), 
thereby representing a candidate gene underlying immune 
diff erences between XX and XY   –    sex chromosome comple-
ments. IL-13R � 2 is also known to be a decoy receptor with 
the ability to limit Th2 responses ( 18 – 21 ). Because we had 
observed relatively lower Th2 responses in XX compared 
with XY   –    mice, we hypothesized that this could potentially 
be caused by increased expression of IL-13R � 2 in XX. 
Ovariectomized SJL XX mice and XY   –    mice were immu-
nized with autoantigen (PLP 139 – 151) and expression of IL-
13R � 2 and -13R � 1 was assessed on freshly isolated spleen 
cells. Both IL-13R � 2 and -13R � 1 were detected on den-
dritic cells, macrophages, and B cells in spleens of immunized 
animals ( Fig. 6 ).  Consistent with our hypothesis, IL-13R � 2 
expression was higher on macrophages (CD11b + ) and den-
dritic cells (CD11c + ), particularly on the myeloid subset 
(CD11c + CD11b + ) of XX mice as compared with these cells 
from XY   –    mice ( Fig. 6 A ). In contrast, IL-13R � 1 expression 
was no diff erent between XX and XY   –    mice ( Fig. 6 B ). In 
summary, increased expression of the decoy IL-13R � 2 on 
spleen cells derived from XX, as compared with XY   –   , mice 
was consistent with lower levels of IL-13 and other Th2 cyto-
kines in XX mice. 

  Figure 6.     Effect of sex chromosome complement on IL-13R � 2 expression.  Freshly isolated splenocytes from PLP 139 – 151 immunized SJL mice of 

the XX or the XY   –    sex chromosome complement were analyzed for the expression of IL-13R � 2 (top) and IL-13R � 1 (bottom) on B cells (CD19 + ), macro-

phages (CD11b + ), dendritic cells (CD11c + ), and myeloid dendritic cells (CD11c + CD11b + ) by fl ow cytometry. XX, thick red lines; XY  –  , blue lines; shaded area, 

negative control. The mean fl uorescent intensities are indicated on FACS plots (red, XX; blue, XY  –  ). IL-13R � 2 expression was signifi cantly higher on mac-

rophages, dendritic cells, and myeloid dendritic cells in XX mice than in XY  –   mice. *, P  <  0.05;  n  = 3 each. Results represent two independent experiments.   
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XXY men and XX women have a similarly high risk of 
developing lupus, whereas the incidence of lupus in XO 
females is very low ( 39 ). Because these sex chromosome dif-
ferences in humans are confounded by diff erences in sex 
hormones during both development and adulthood, one may 
never be able to distinguish between a sex chromosome eff ect 
versus a sex hormone eff ect in humans. In contrast, our ex-
perimental murine system off ers distinct advantages for inves-
tigating direct eff ects of X and Y genes. Future studies using XO 
mice will determine whether the XX versus XY   –    diff erences 
observed in this study are caused by an X dosage eff ect or an 
eff ect of a gene on the Y chromosome. 

 Previous descriptions of an eff ect of a gene on a sex chro-
mosome on lupus exist, but our fi ndings are distinct from those 
results. It is well known that the BXSB strain develops lupus 
with a reversed sex bias, with males having accelerated disease. 
This was reported to be caused by a gene duplication event, 
whereby the  Yaa  region containing Toll-like receptor 7 was 
duplicated on the Y chromosome ( 40 ). Although this was an 
elegant demonstration of how gene duplication can localize 
to a sex chromosome to aff ect autoimmunity, our results are 
unique. Specifi cally, the previous study described a gene dupli-
cation event in the pseudoautosomal region, whereas our 
comparisons between XX versus XY   –    revealed eff ects from 
diff erences in the nonpseudoautosomal region because mice 
compared in this study had the same pseudoautosomal region 
( 4 ). Second, lupus disease acceleration caused by  Yaa  on the Y 
chromosome in the BXSB strain is opposite from the known 
enhanced susceptibility of females to lupus in humans, whereas 
our fi nding of enhanced susceptibility in XX mice are consis-
tent with the known female bias. Lastly,  Yaa  is disease acceler-
ating in lupus, whereas it is protective in EAE ( 41 ). Thus, the 
 Yaa  eff ect is disease specifi c. In contrast, our fi nding of en-
hanced susceptibility in XX exists in both EAE and lupus. 
Thus, our data are the fi rst to describe a sex chromosome eff ect 
that is consistent with the known female sex bias and is present 
across immunopathologically distinct autoimmune diseases. 

  MATERIALS AND METHODS  
 Mice.   SJL and C57BL/6 mice were obtained from The Jackson Laboratory. 

MF1 XY   –    Sry  males (Y   –    chromosome of 129 origin) ( 6 ) were backcrossed 

with WT SJL females for over 16 generations to obtain litters consisting of 

the following genotypes: female XX, female XY   –   , male XX Sry , and male 

XY   –    Sry  ( 4 ). Animals were housed under guidelines set by the National Insti-

tutes of Health, and experiments were conducted in accordance with the 

University of California Los Angeles Chancellor ’ s Animal Research Com-

mittee and the Public Health Service Policy on Humane Care and Use of 

Laboratory Animals. 

 Gonadectomies.   Gonadectomies were performed at 4 wk of age, 8 wk be-

fore disease induction. Methods for ovariectomy and castration have been 

previously described ( 9 ). 

 EAE induction.   Active EAE induction ensued with s.c. injection of an 

emulsion containing the autoantigen PLP peptide, aa 139 – 151 (200  μ g/mouse) 

for SJL mice, or MOG peptide, aa 35 – 55 (200  μ g/mouse; Mimotopes) for 

C57BL/6 mice, in combination with  Mycobacterium tuberculosis  (200  μ g/mouse) 

in complete Freund ’ s adjuvant (CFA). SJL mice were immunized 1 time, 

on day 0, whereas C57BL/6 mice were immunized twice, on day 0 and 7. 

when comparing XX versus XY   –    suggests that this diff erence 
in autoimmune disease outcomes did not require a particular 
history of a diff erence in ovarian or testicular secretions. Thus, 
we conclude that the female sex chromosome complement, as 
compared with the male sex chromosome complement, has a 
direct eff ect on promoting susceptibility to two distinct auto-
immune diseases, which is unlikely to be mediated by indirect 
eff ects of diff erences in gonadal hormones. 

 In addressing what immune mechanisms might underlie 
the disease-promoting eff ect of the XX as compared with the 
XY   –    sex chromosome complement, we found clear diff er-
ences in Th2 cytokine production, with higher levels from 
cells derived from XY   –    mice. These Th2 cytokines (IL-13, 
-4, and -10) have been previously associated with protection 
from disease in EAE ( 24 – 28 ). Therefore, increased Th2 cyto-
kine production in XY   –    mice compared with that in XX 
mice could underlie the decreased EAE disease severity in 
XY   –    mice compared with XX mice. Further, although late 
stages of murine lupus characterized by renal fi brosis have been 
considered a Th2-mediated disease ( 29 ), initiation of events 
in the early phase of disease have been reduced by treatment 
with Th2 cytokines such as IL-4 and -10 ( 30 – 33 ). Consistently, 
in vivo blockade of IL-4 has been shown to result in increases 
in serum IgG anti-DNA antibody levels ( 29 ). Therefore, as in 
EAE, relatively higher levels of Th2 cytokines early during 
disease induction in XY   –    as compared with XX mice could 
underlie the decreased severity of pristane-induced lupus in 
XY   –    mice. 

 Our fi nding of increased IL-13R � 2 expression in spleen 
cells derived from XX mice, as compared with XY   –   , was par-
ticularly interesting because the IL-13R � 2 gene is on the X 
chromosome ( 17 ) and because not all X genes undergo X 
 inactivation ( 34, 35 ). Thus, increased expression of IL-13R � 2 
could be caused by an X dosage eff ect in XX as compared with 
XY   –   . Relatively higher expression of IL-13R � 2 in XX could 
in turn act as a decoy receptor to limit Th2 responses in the 
XX ( 18 – 21 ), which is consistent with lower levels of Th2 cyto-
kines in XX as compared with XY   –   . Alternatively, cytokine 
diff erences could be the cause, not the eff ect, of diff erences in 
IL-13R � 2. This is however less likely because cytokines such 
as IL-13 and -10, which up-regulate IL-13R � 2 expression, 
were not increased in XX. Furthermore, expression of another 
IL-13 receptor, IL-13R � 1, was no diff erent between XX and 
XY   –    mice. Such a selective increase in IL-13R � 2, but not 
IL-13R � 1, has been described in other models of immuno-
infl ammatory diseases, such as in oxazolone-induced colitis 
and bleomycin-induced infl ammatory disease ( 36 – 38 ). Ongoing 
experiments will further investigate the contribution of IL-
13R � 2 in mediating the enhanced susceptibility of XX mice 
to increased autoimmune diseases in females. 

 Our data demonstrating an increase in IL-13R � 2 ex-
pression in cells derived from XX mice do not preclude the 
possibility of increased expression of other candidate genes 
on X. These other candidate genes are numerous and include 
CD40 ligand, FoxP3, and Toll-like receptor 7, to name a few. 
Consistent with a potential X dosage eff ect in our lupus model, 
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on ice in the dark. Stained cells were acquired on FACSCalibur and analyzed 

with Cell Quest (BD Biosciences) or FlowJo (Tree Star, Inc.) software, as 

previously described ( 46, 47 ). 

 Statistics.   For EAE, mean clinical scores, calculated from all mice induced 

with EAE, were compared between groups (genotype) over all time points 

measured using the nonparametric Friedman test. Mean peak disease scores, 

calculated from all aff ected mice, were also compared between groups (ge-

notype) using Student ’ s  t  tests. For pristane-induced lupus, survival curves 

between groups (genotype) were computed using the Kaplan-Meier method 

and compared using the log-rank test. Fisher ’ s exact test was used to com-

pare renal scores. Antibody and cytokine levels were compared using Graph-

Pad Prism software. Student ’ s  t  tests were used if data followed a normal 

distribution; otherwise, the Mann-Whitney test was used. All graphs show 

the mean and SEM for mice in each group. 

 Online supplemental material.   Fig. S1 shows the breeding strategy for 

backcrossing MF1Y  –   Sry  mice onto the SJL background to yield the in-

formative four core genotypes to dissociate sex chromosome complement 

from gonadal sex. Table S1 demonstrates the genotypes of the phenotypic 

male and phenotypic female mice of the four core genotypes. Table S2 

indicated the cellular composition of spleen cells in mice of the XX and 

XY  –   sex chromosome complement which were injected with either PLP 

or pristane. The online version of this article is available at http://www.jem

.org/cgi/content/full/jem.20070850/DC1. 
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