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    Allergic responses in the gastrointestinal (GI) tract 
were relatively uncommon several decades ago; 
however, recent studies have demonstrated that 
food allergies now aff ect 2 – 6% of the population 
( 1, 2 ). Clinical and experimental analyses suggest 
that initiation of food-induced intestinal anaphy-
lactic responses is regulated by numerous infl am-
matory mediators, including Th2-cytokines. 
Indeed, peripheral blood and intestinal tissue 
from patients with food allergy contain elevated 
numbers of activated T cells, which correlate 
with elevated levels of Th2 cytokines and the 
degree of GI infl ammation and dysfunction ( 3, 4 ). 
Furthermore, in vitro allergen-stimulated T cells 
and T cell clones generated from food aller-
gic patients produce Th2-cytokines (IL-4, -5, 

and -13) ( 5 ). These cytokines activate immuno-
logical pathways associated with the onset of al-
lergic reactions, including Th2 cell diff erentiation, 
IgE synthesis, mast cell and eosinophil recruit-
ment, and activation. 

 IL-9 is a pleiotropic cytokine involved in 
Th2 infl ammatory reactions ( 6 ). Transgenic ex-
pression of IL-9 in the lung promotes Th2-medi-
ated allergic pulmonary disease characterized by 
elevated Th2 cytokines and immune pathology 
(mucus hypersecretion) and bronchial hyperre-
sponsiveness ( 7, 8 ). In vitro studies demonstrate 
that IL-9 enhances IL-4 – induced IgE production 
( 9 – 11 ), and airway epithelial cell – derived che-
mokine expression (CCL11/eotaxin-1, CCL3/
MIP-1 � , CCL2/MCP1, CCL7/MCP-3, and 
CCL12/MCP-5). IL-9 has also been implicated 
in the regulation of mast cell recruitment and 
eff ector function ( 6 ). Transgenic expression of 
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 Previous mouse and clinical studies demonstrate a link between Th2 intestinal infl ammation 

and induction of the effector phase of food allergy. However, the mechanism by which 

sensitization and mast cell responses occurs is largely unknown. We demonstrate that 

interleukin (IL)-9 has an important role in this process. IL-9 – defi cient mice fail to develop 

experimental oral antigen – induced intestinal anaphylaxis, and intestinal IL-9 overexpres-

sion induces an intestinal anaphylaxis phenotype (intestinal mastocytosis, intestinal perme-

ability, and intravascular leakage). In addition, intestinal IL-9 overexpression predisposes to 

oral antigen sensitization, which requires mast cells and increased intestinal permeability. 

These observations demonstrate a central role for IL-9 and mast cells in experimental 

intestinal permeability in oral antigen sensitization and suggest that IL-9 – mediated mast 

cell responses have an important role in food allergy. 
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mean I sc   ±  the SEM; P  <  0.05; I sc  of the jejunum of OVA-
sensitized saline –  vs. OVA-treated WT mice;  n  = 3 and 7 
mice per group, respectively). Furthermore, we demonstrate 

IL-9 in the lung promotes pulmonary mastocytosis ( 7, 8 ) and 
IL-9 stimulation of mast cells induces histamine release and 
promotes mast cell protease, IL-6, and Fc � RI �  expression 
( 12, 13 ). Although IL-9 has been implicated in the regulation 
of several Th2 processes, the contribution of this cytokine 
to oral antigen – induced intestinal allergic responses has not 
been explored. 

 The molecular basis underlying the causality of food anti-
gen sensitization in susceptible individuals is not currently 
understood. One predisposing factor that has long been sus-
pected for GI diseases is impaired barrier function, termed 
 “ leaky gut ”  ( 14, 15 ). First-degree relatives of infl ammatory 
bowel disease (IBD) patients have increased intestinal perme-
ability in the absence of clinical symptoms ( 16 – 19 ). Food 
allergy patients also have increased intestinal permeability, 
which correlates with the severity of their clinical symptoms 
( 14 ). Although constitutive abnormalities in intestinal perme-
ability have not been consistently observed in food allergic 
individuals, it is postulated that environmental events, includ-
ing infection and stress, may alter intestinal permeability and 
promote food antigen sensitization ( 15 ). 

 In this study, we evaluate the roles of IL-9 and mast cells in 
the oral antigen – sensitization and eff ector phases of experi-
mental intestinal anaphylaxis. We demonstrate that an IL-9 –
 stimulated, mast cell – mediated increase in intestinal permeability 
is central to the induction of oral antigen sensitization. 

  RESULTS  

 Experimental intestinal anaphylaxis is IL-9 dependent 

 The temporal expression of IL-9 mRNA in the jejunum after 
oral OVA challenge was evaluated by quantitative PCR anal-
ysis in OVA-sensitized mice that had received one and three 
oral OVA or saline intragastric (i.g.) challenges. Jejunal IL-9 
mRNA expression was up-regulated in WT mice after 1 
( � 200-fold) and 3 ( � 150-fold) oral OVA challenges as com-
pared with saline-challenged mice (1 i.g. challenge, 200.8  ±  
115.1-fold change in IL-9/GADPH ratio; 3 i.g. challenges, 
142.5  ±  29.3-fold change in IL-9/GADPH ratio; P  <  0.05 
and P  <  0.01, respectively). Thus, oral antigen – induced in-
testinal anaphylaxis is associated with increased intestinal IL-9 
mRNA expression. 

 To begin to elucidate the contribution of IL-9 to oral anti-
gen – induced intestinal anaphylaxis, we used IL-9 – defi cient 
mice (IL-9  � / �  ) and WT BALB/c mice. i.g. challenges of OVA 
to OVA-sensitized WT mice induced the intestinal anaphy-
laxis phenotype (intestinal mastocytosis, mast cell activation, 
and diarrhea;  Fig. 1 ).  WT mice started developing diarrhea 
acutely after the third i.g. challenge with  > 75% of the mice 
suff ering from diarrhea after the seventh challenge ( Fig. 1 A ). 
Food antigen – induced diarrhea is driven by electrogenic Cl  �   
secretion ( 20, 21 ). To confi rm abnormalities in Cl  �   secretory 
activity in our experimental intestinal anaphylaxis model, we 
measured basal intestinal epithelial short-circuit current (I sc ) re-
sponses to cholinergic stimulation. We show that induction of 
experimental intestinal anaphylaxis (9 i.g. challenges) induced 
altered basal I sc  (basal I sc  [ �  Å /cm 2 ]  � 0.30  ±  8.4 vs. 101.0  ±  13.3; 

  Figure 1.   Oral antigen – induced intestinal anaphylaxis is attenu-

ated in IL-9 – defi cient mice.  Diarrhea occurrence (A) and mean number 

of mast cells per high power fi eld (HPF; B) in the intestine of OVA-sensi-

tized and subsequently i.g. saline- or OVA-challenged BALB/c WT and IL-

9  � / �   mice. (C and D) Photomicrograph of CAE – stained jejunal sections 

from OVA-sensitized and -challenged BALB/c IL-9  � / �   and WT mice. Serum 

mouse mast cell protease-1 (E) and serum OVA-specifi c IgE (F) in saline- 

or OVA-sensitized, OVA-challenged BALB/c WT and IL-9  � / �   mice. Mean 

number of mast cells per HPF (G) and mast cell progenitor numbers (H) in 

the intestine under basal conditions in BALB/c WT and IL-9  � / �   mice. 

(A) Data are represented as the percentage of diarrhea occurrence over the 

number of OVA challenges. (B, E, and F) Data are represented as the mean  ±  

the SEM; 4 – 5 mice per group from  n  = 3 experiments. (C and D) Photo-

micrograph, 10 ×  magnifi cation; insert, 40 ×  magnifi cation. Saline/OVA 

indicate saline-sensitized i.g. OVA-challenged mice and OVA/OVA indicate 

OVA-sensitized i.g. OVA-challenged mice. (G) Data represented as the 

mean  ±  the SEM; 4 – 5 mice per group from  n  = 4 experiments. (H) Data 

represented as the mean  ±  the SEM; 4 mice per group. Bars: (capped) 

100  μ m; (uncapped) 10  μ m.   
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and intestinal tissue was signifi cantly elevated in iFABP-IL-
9Tg mice compared with WT mice ( Fig. 2, B and C ). To as-
sess the consequence of IL-9 expression in the small intestine, 
we performed histological analysis on the small intestine 
from WT and iFABPp-IL-9Tg mice. The gross morphology 
and architecture of the small intestine of iFABPp-IL-9Tg 
mice were similar in appearance to those of WT mice ( Fig. 3, 
C and D ).  Furthermore, epithelial cell subpopulation num-
bers (goblet cell, enteroendocrine, Paneth, and enterocytes) 
and intestinal epithelial cell proliferation in the small intestine 
were equivalent between WT and iFABPp-IL-9Tg mice (un-
published data). Mast cell levels, however, were signifi cantly 
elevated in iFABPp-IL-9Tg mice compared with WT mice 
( Fig. 3 A ). Mast cells were predominantly localized to in-
traepithelial, intercryptic, and lamina propria regions of the 
small intestine of IL-9 intestinal transgenic mice ( Fig. 3, A and D ). 
We observed no diff erence in mast cell levels in the trachea 
and kidney between WT and iFABPp-IL-9Tg mice, con-
fi rming intestinal specifi city (unpublished data). The level of 
mMCP-1 in the serum of iFABPp-IL-9Tg mice was approx-
imately sixfold greater than that of WT mice ( Fig. 3 B ). In 
contrast, levels of mast cell progenitors in the small intestine 
and other tissues, including lung, spleen, and BM of iFABPp-
IL-9Tg and WT mice were similar ( Fig. 3 E ). To determine 
the eff ect of intestinal expression of IL-9 on other intestinal 
immune parameters, we examined CD4 + , CD8 +  T cell, B 
(B220) cell, regulatory T cell (CD4 + , CD25 + , CD45RB low , 
and FoxP3 + ), and DC levels in the mesenteric LN (MLN) of 
iFABPp-IL-9Tg and WT mice (Table S2). We observed no 
diff erence in the number or percentages of these cells in the 
draining MLNs of iFABPp-IL-9Tg and WT mice and no dif-
ference in T cell activation status (CD44, CD62L, and CD69) 

signifi cant concentration-dependent increase in I sc  responses to 
methacholine in mice with experimental intestinal anaphylaxis 
as compared with control animals ( � I sc  [ �  Å /cm 2 ] at 100  μ M 
methacholine; 18.3  ±  6.8 vs. 58.3  ±  10.0; mean  � I sc   ±  the 
SEM; P  <  0.05;  � I sc  of the jejunum of OVA-sensitized saline –  
vs. OVA-treated WT mice;  n  = 3 and 7 mice per group, re-
spectively). Diarrhea in the OVA-challenged and -sensitized 
WT mice was also noted by direct observation of the colon 
and cecum after the ninth i.g. challenge; the liquid stool ob-
served after OVA challenge of WT mice contrasts with the 
solid pellets seen in the distal colon of saline-challenged WT 
and OVA-challenged IL-9  � / �   mice (unpublished data). Nota-
bly, intestinal mast cell and serum mMCP-1 levels were also 
signifi cantly elevated compared with saline-challenged, OVA-
sensitized WT mice ( Fig. 1, B – E ). In contrast, oral antigen – 
induced intestinal anaphylaxis was attenuated in IL-9  � / �   mice. 
Typically, in any one experiment, 1/6 OVA-challenged, 
OVA-sensitized IL-9  � / �   mice would have evidence of diar-
rhea 45 – 60 min after i.g. OVA challenge. No more than 20% 
of IL-9  � / �   mice developed diarrhea after 9 i.g. OVA chal-
lenges ( Fig. 1 A ). Consistent with the reduction in intestinal 
anaphylaxis, intestinal mast cell and serum mMCP-1 levels 
were signifi cantly lower in oral antigen – challenged OVA-
sensitized IL-9  � / �   mice than in WT mice ( Fig. 1, B, C, and E ). 
To determine whether the ablation of diarrhea in IL-9  � / �   
mice was caused by an attenuated OVA-CD4 +  Th2 response, 
we examined splenic cytokine production and levels of OVA-
specifi c IgE in OVA-challenged, OVA-sensitized WT and 
IL-9  � / �   mice. These levels were equivalent in WT and IL-9  � / �   
mice (Table S1, available at http://www.jem.org/cgi/content/
full/jem.20071046/DC1, and  Fig. 1 F ). 

 The inhibition of intestinal mastocytosis in oral antigen –
 challenged IL-9  � / �   mice led us to examine basal intestinal 
mast cell levels in WT and IL-9  � / �   mice. These were de-
creased twofold in IL-9  � / �   mice compared with WT mice 
( Fig. 1 G ). In contrast, the basal level of mast cell progenitors 
was similar in the intestines of IL-9  � / �   mice and WT mice 
( Fig. 1 H ). 

 Intestinal overexpression of IL-9 promotes 

intestinal mastocytosis 

 In an attempt to delineate the IL-9 – regulated infl ammatory 
pathways associated with oral antigen – induced intestinal ana-
phylaxis, we took a transgenic approach using the intestine-
specifi c promoter of the rat fatty acid – binding protein ( iFABPp ) 
gene. This promoter has been extensively used to direct 
the expression of genes specifi cally in enterocytes of the 
small intestine ( 22, 23 ). LightCycler PCR analysis using mu-
rine IL-9 – specifi c primers revealed an increase in the intesti-
nal mIL-9 mRNA expression in the iFABPp-IL-9Tg mice 
compared with WT mice ( Fig. 2 A ).  To confi rm tissue-specifi c 
expression of IL-9, we performed PCR analysis on multiple 
tissues, including lung, kidney, liver, jejunum, ileum, and colon. 
IL-9 expression was only detected in the small intestine 
(Fig. S1, available at http://www.jem.org/cgi/content/full/
jem.20071046/DC1). Furthermore, IL-9 protein in serum 

  Figure 2.   Increased systemic and intestinal IL-9 in iFABPp-IL-9Tg 

mice.  (A) Quantitative PCR analysis of IL-9 mRNA expression in the 

jejunum and IL-9 protein levels in the sera (B) and jejunum (C) of WT 

and iFABPp-IL-9Tg mice. Open circles in A represent individual mice. 

Data are represented as the mean  ±  the SEM; 4 – 5 mice per group from 

 n  = 3 experiments.   
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affi  nity  �  polypeptide (Fc  �  RI;  Fig. 4 B ).  To validate the whole 
genome – wide fi ndings, we performed real-time PCR analysis 
on select genes. Levels of mMCP-1 ( � 50-fold), mMCP-2 
( � 100-fold), mMCP-4 ( � 10-fold), and Fc  �  R1 ( � 100-fold) in 
the small intestine of iFABPp-IL-9Tg mice were signifi cantly 
elevated compared with WT mice ( Fig. 4 A ). Notably, we ob-
served no increase in the levels of mMCP-5 mRNA expression 
( Fig. 4 A ). These studies demonstrate that IL-9 overexpression 
up-regulates mast cell gene expression in the intestine. Previous 
whole genome – wide analysis of oral antigen – induced intestinal 
anaphylaxis ( 24 ) demonstrated that the most up-regulated genes 
associated with oral antigen – induced intestinal anaphylaxis 
were the mast cell – associated genes mMCP-2, mMCP-1, and 
F c  receptor, as well as IgE, high-affi  nity  �  polypeptide, and 
Th2-immunity genes, including RELM �  and small proline-
rich protein 2A ( Fig. 4 B ) ( 24 ). Remarkably, comparison of the 
up-regulated genes in these studies and the up-regulated genes 
in the intestine of syngeneic iFABPp-IL-9Tg mice revealed a 
similar profi le ( Fig. 4 B ). Thus, intestinal expression of IL-9 is 
suffi  cient to induce a genetic profi le that overlaps with that ob-
served in oral antigen – induced intestinal anaphylaxis. 

 Oral antigen – induced intestinal anaphylaxis in WT mice 
is associated with increased intestinal permeability ( 24 ). The 
similarities in the intestinal phenotype and gene profi le be-
tween iFABPp-IL-9Tg mice and WT mice led us to examine 

or DC subpopulations between groups. Finally, we examined 
serum IL-4 and IFN �  and total Ig levels in WT and iFABPp-
IL-9Tg mice and observed no signifi cant diff erences between 
groups (IL-4, 103.9  ±  28.8 vs. 134.2  ±  47.4 ng/ml; IFN � , 
717.4  ±  134.3 vs. 736.4  ±  133.1 ng/ml; mean  ±  the SD;  n  = 
4 – 5 mice per group, WT and iFABPp-IL-9Tg, respectively; 
unpublished data). Collectively, these studies reveal that over-
expression of IL-9 in the small intestine selectively promotes 
intestinal mastocytosis and mast cell activation. 

 Intestinal overexpression of IL-9 induces an experimental 

intestinal anaphylaxis transcriptome and phenotype 

 To gain a further understanding of the consequence of elevated 
intestinal IL-9 and mast cells on the intestine, we performed a 
genome-wide expression profi le analysis using Aff ymetrix 
oligonucleotide chips on small intestinal RNA from WT and 
iFABPp-IL-9Tg mice. Using a criterion of 2-fold change, we 
identifi ed 176 genes altered in the iFABPp-IL-9Tg mice 
(Table S3, available at http://www.jem.org/cgi/content/full/
jem.20071046/DC1). Out of these transcripts, 126 were up-
regulated and 52 were down-regulated. Functional classifi cation 
of the altered transcripts revealed a signifi cant predominance of 
mast cell – associated genes, including phospholipase A2, group 
IVC (26.9-fold), carbonic anhydrase 3 (12.7-fold), mMCP-2 
(7.4-fold), mMCP-1 (6.8-fold), and Fc receptor IgE, high-

  Figure 3.   Intestinal mastocytosis in iFABPp-IL-9Tg mice.  Localization of mean number of mast cells in the small intestine (A) and serum mMCP-1 

in WT and iFABPp-IL-9Tg mice (B). (C and D) Photomicrograph of CAE-stained jejunum sections of BALB/c WT (C) and iFABPp-IL-9Tg mice (D). (E) Mast cell 

progenitor levels in the intestine, lung, spleen and BM of iFABPp-IL-9Tg and BALB/c WT mice. (A – E) Data represented as the mean  ±  the SEM; 4 – 5 mice 

per group from  n  = 4 experiments. A is a pictorial representation of localization determination. (C and D) Photomicrograph, 10 ×  magnifi cation; insert, 

40 ×  magnifi cation. (E) Data represented as the mean  ±  the SEM; 4 mice per group. Bars: (capped) 100  μ m; (uncapped) 10  μ m.   
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expression in the jejunum ( Fig. 5 I ). These studies demon-
strate that intestinal expression of IL-9 was suffi  cient to pro-
mote an intestinal anaphylaxis-like phenotype. 

 Intestinal expression of IL-9 is suffi cient to predispose 

to intestinal anaphylaxis 

 The intestinal anaphylaxis phenotype in iFABPp-IL-9Tg 
mice prompted us to determine whether overexpression of 
IL-9 in the intestine increases susceptibility to oral antigen –
 induced intestinal anaphylaxis. We performed i.g. OVA 
challenge in OVA-sensitized WT and iFABPp-IL-9Tg mice. 
Susceptibility to intestinal anaphylaxis in iFABPp-IL-9Tg 
mice was signifi cantly increased as compared with WT mice 
( Fig. 6 A ).  Greater than 80% of OVA-sensitized iFABPp-IL-
9Tg mice developed diarrhea by the third OVA challenge 
compared with  < 25% of WT mice ( Fig. 6 A ). The increased 
acute diarrhea in iFABPp-IL9-Tg mice correlated with in-
creased intestinal mast cell numbers and serum mMCP-1 
levels compared with WT mice ( Fig. 6, B and C ). Notably, 
we observed no signifi cant diff erence in OVA-specifi c IgE 
( Fig. 6 D ), suggesting that the increased susceptibility was 
not caused by enhanced antigen-specifi c Th2 immunity. 
Remarkably, OVA challenge of unsensitized iFABPp-IL-9Tg 

this parameter in WT and iFABPp-IL-9Tg mice ( Fig. 5 ).  
Resistance, which is a measure of tissue permeability, was 
signifi cantly decreased in iFABPp-IL-9Tg mice compared 
with WT mice, indicating increased intestinal permeability 
( Fig. 5 A ). To confi rm altered epithelial cell barrier function 
in iFABPp-IL-9Tg mice, we examined intestinal permea-
bility by analyzing FITC-dextran and HRP transport in 
jejunum segments ex vivo. Compared with control mice, 
iFABP-IL-9Tg jejunum had increased intestinal permeability 
to FITC-dextran and HRP ( Fig. 5, B and C ). To exclude the 
possibility that the increased intestinal permeability is not 
caused by mechanical stress of mast cells, we examined intes-
tinal permeability in vivo. We confi rmed our ex vivo analysis 
demonstrating in vivo increased intestinal permeability in 
iFABPp-IL-9Tg mice as compared with WT mice (unpub-
lished data). 

 Because previous studies using models of parasitic infesta-
tions demonstrated a role for mast cells in intestinal permeability 
( 25, 26 ), the observed intestinal mastocytosis in iFABPp-IL-
9Tg mice led us to assess the role of mast cells in intestinal per-
meability in these mice. Initially, we treated iFABPp-IL-9Tg 
and WT mice with the anti – c-kit (ACK2) ( 27 ) neutralizing 
antibody and demonstrated that mast cell depletion abrogated 
intestinal permeability in iFABPp-IL-9Tg mice (unpublished 
data). c-kit, however, is also expressed on interstitial cells of 
Cajal, which play a central role in the regulation of intestinal 
epithelial cell barrier function ( 28, 29 ). To confi rm that the in-
creased intestinal permeability in iFABPp-IL-9Tg mice is mast 
cell mediated, we treated mice with the mast cell stabilizer 
cromolyn. i.p. administration of cromolyn reduced serum 
mMCP-1 levels, confi rming mast cell stabilization ( Fig. 5 D ). 
Notably, reduction in mast cell activity correlated with a 
reduction in HRP and dextran-FITC intestinal permeability 
in iFABPp-IL-9Tg mice ( Fig. 5, E and F ). Collectively, these 
studies indicate that intestinal permeability in iFABPp-IL-9Tg 
mice is mast cell mediated. 

 A major manifestation of food allergy, cardiovascular dys-
function, is primarily caused by increased vascular leakage (VL) 
( 30 – 32 ). Initially, we assessed whether multiple oral OVA 
challenges induced VL in our experimental model of intestinal 
anaphylaxis. As VL causes hemoconcentration, we measured 
venous hematocrit in mice with oral antigen – induced intesti-
nal anaphylaxis. Previous studies have demonstrated an in-
crease in hematocrit during systemic anaphylaxis in humans, 
rats, dogs, and mice ( 33 – 36 ). We show that oral sensitization 
and oral antigen challenge induces a signifi cant increase in he-
matocrit after four and six challenges ( Fig. 5 G ). We next ex-
amined naive iFABPp-IL-9Tg and WT mice and found that 
hematocrit levels in iFABPp-IL-9Tg mice were signifi cantly 
greater than those observed in WT mice, suggesting increased 
VL ( Fig. 5 H ). To confi rm VL, we measured Evans blue ex-
travasation in the tissue of naive iFABPp-IL-9Tg and WT 
mice. 3 h after i.v. injection, Evans blue concentration in the 
small intestine of iFABPp-IL-9Tg mice was signifi cantly 
greater than in WT mice. Notably, increased VL directly 
correlated with intestinal mastocytosis and IL-9 transgene 

  Figure 4.   Overexpression of IL-9 in the intestine induces features of 

an intestinal anaphylaxis genotype.  (A) Quantitative PCR analysis of mast 

cell gene mRNA expression in the jejunum of iFABPp-IL-9Tg and BALB/c WT. 

Results are expressed as the gene/GADPH ratio in respect to fold change 

over BALB/c WT. Gene expression was normalized to GADPH expression in 

each individual sample. Circles represent individual mice and black line 

represents mean value in each group (B) Genome-wide expression gene 

profi le comparative analysis of iFABPp-IL-9Tg and BALB/c WT mice com-

pared with OVA-sensitized, OVA-challenged BALB/c WT mice ( 6 ). Values 

represent fold increase over respective control. The complete dataset is 

available at the NCBI gene expression Omnibus (http://www.ncbi.nlm.gov) 

accession no. GSE10658.   
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exacerbate the eff ector phase of anaphylaxis by increasing target 
cell responsiveness to vasoactive mediators ( 37 ). To confi rm 
that oral antigen – induced intestinal anaphylaxis is mediated 
by STAT6 and IL-4R �  – dependent pathways, IL-4R �  and 
STAT6  � / �   mice were i.p. sensitized to OVA and subsequently 
received repeated i.g. OVA challenges. We demonstrate that 
oral antigen – induced intestinal anaphylaxis was dependent on 
STAT6 and IL-4R �  expression (Table S4, available at http://
www.jem.org/cgi/content/full/jem.20071046/DC1). Notably, 
the absence of intestinal anaphylaxis in these mice was linked 
to diminished intestinal mast cell and serum mMCP-1 levels 
(Table S4) and OVA-specifi c IgE (Fig. S2). To determine if 
OVA-induced intestinal anaphylaxis in unsensitized iFABPp-
IL-9Tg mice was dependent on an IL-4R �  – STAT6 – IgE –
 mediated pathway, we crossed the iFABPp-IL-9Tg mice 
onto IL-4R �  –  and STAT6-defi cient (BALB/c) backgrounds. 
OVA-induced intestinal anaphylaxis (diarrhea) in naive iF-
ABPp-IL-9Tg mice was ablated in the absence of IL-4R �  
and STAT6 ( Table I ).  Thus, intestinal anaphylaxis in iFABPp-
IL-9Tg mice is largely dependent on IL-4R � -, STAT6-, and 
mast cell/IgE pathways. 

mice induced diarrhea in 25% of iFABPp-IL-9Tg mice by 
challenge 6, and  > 80% by challenge 9 ( Fig. 6 A ). In contrast, 
i.g. OVA challenges of unsensitized WT mice did not induce 
diarrhea. We confi rmed that the persistence of diarrhea in 
unsensitized iFABPp-IL-9Tg mice was antigen specifi c by 
administering consecutive i.g. OVA challenges to iFABPp-
IL-9Tg mice and WT mice until they developed diarrhea, 
and then administering i.g. BSA ( Fig. 6 E ). BSA failed to in-
duce acute diarrhea in iFABPp-IL-9Tg mice. Notably, sub-
sequent i.g. OVA challenge reinduced diarrhea ( Fig. 6 E ). 
These results and the observation that unsensitized WT mice 
did not develop diarrhea demonstrate that diarrhea in unsen-
sitized iFABPp-IL-9Tg mice was not solely the result of an 
osmotic load in the gut, but rather an antigen-specifi c acute 
immunological response. 

 Intestinal anaphylaxis in unsensitized iFABPp-IL-9Tg mice is 

dependent on STAT6 and IL-4R �  pathways 

 IgE-mediated anaphylaxis is IL-4R �  dependent ( 37 ). IL-4 
and -13 signal through IL-4R  � -chain via STAT6 to promote 
CD4 +  Th2-diff erentiation and IgE antibody production and to 

  Figure 5.   Overexpression of IL-9 in the intestine induces features of an intestinal anaphylaxis phenotype including mast cell – dependent 

increased intestinal permeability and intravascular leakage.  Transepithelial resistance (A) and intestinal permeability measured by FITC-dextran (B) 

and horseradish peroxidase (HRP; C) transport in jejunal segments ex vivo for iFABPp-IL-9Tg and BALB/c WT mice, serum mouse mast cell protease-1 and 

mean number of mast cells per high power fi eld (hpf; D) and intestinal permeability measured by FITC-dextran (E) and HRP (F) transport in jejunal seg-

ments ex vivo for iFABPp-IL-9Tg and BALB/c WT mice treated with control or the mast cell stabilizing agent cromolyn sodium. (G) Percentage of hemato-

crit before and after 4 ×  or 6 ×  i.g. saline or OVA challenges of OVA-sensitized BALB/c WT mice. Percentage of hematocrit in iFABPp-IL-9Tg mice compared 

with BALB/c WT (H) and Evans blue extravasation in the jejunum and colon of iFABPp-IL-9Tg and BALB/c WT mice (I). (B) Data represents genes found to 

be up-regulated from profi le analysis. (C – G) Data represented as the mean  ±  the SEM; 4 – 5 mice per group. (I) Data represents Evans blue concentration 

in jejunum and colon normalized per milligram of tissue protein. Black line represents mean value in each group.   

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/205/4/897/1898902/jem
_20071046.pdf by guest on 08 February 2026



JEM VOL. 205, April 14, 2008 

ARTICLE

903

level of jejunal OVA-specifi c IgG 1  ( Fig. 7 C ). In contrast, 
repeated oral antigen challenge of iFABPp-IL-9Tg mice 
increased the level of intestinal IL-4 mRNA and protein 
( Fig. 7 A  and not depicted). This was associated with in-
creased levels of intestinal OVA-specifi c IgG 1  and total IgE 
( Fig. 7, C and D ). To examine whether the IL-4 – produc-
ing cells included CD4 +  T cells, we used fl ow cytometry to 
evaluate anti-CD3/CD28 – stimulated lamina propria (LP) 
cells from the small intestine of OVA-challenged WT and 
iFABPp-IL-9Tg mice. The percentage of CD4 +  IL-4 +  T 
cells in the LP of iFABPp-IL-9Tg mice was  � 2 – 3 fold greater 
than in WT mice ( Fig. 7 B ). Thus, intestinal expression of IL-9 
appears to predispose to oral antigen – induced CD4 +  Th2-
type sensitization. 

 Intestinal expression of IL-9 predisposes to oral 

antigen sensitization 

 The demonstration that oral antigen challenge induced in-
testinal anaphylaxis in unsensitized iFABPp-IL-9Tg mice 
and that this response depends on Th2-signaling led us to 
hypothesize that oral antigen challenge of iFABPp-IL-9Tg 
mice promotes sensitization rather than oral tolerance. To 
test this hypothesis, we orally challenged WT and iFABPp-
IL-9Tg mice with OVA and examined intestinal IL-4 and 
CD4 +  IL-4 +  T cell and OVA-specifi c IgG 1  levels ( Fig. 7, 
A – C ).  Oral antigen challenge of WT mice induced no sig-
nifi cant change in intestinal IL-4 mRNA or protein levels 
compared with naive WT mice ( Fig. 7 A  and not depicted). 
Furthermore, we observed no signifi cant diff erence in the 

  Figure 6.   Overexpression of IL-9 in the intestine increases susceptibility to oral antigen – induced intestinal anaphylaxis.  Diarrhea occurrence 

(A), mean number of mast cells per high power fi eld (hpf; B), serum mouse mast cell protease-1 (C), and serum antigen-specifi c IgE (D) in OVA- or saline-

sensitized and subsequently OVA-challenged BALB/c WT and iFABPp-IL-9Tg mice. (E) Diarrhea occurrence in OVA-challenged BALB/c WT and iFABPp-IL-

9Tg mice and subsequently challenged with BSA. (A) Data represented as the percentage of diarrhea occurrence over number of OVA challenges. 

(B – D) Data are represented as the mean  ±  the SEM; 4 – 5 mice per group from  n  = 3 experiments. (E) Data are represented as the percentage of diarrhea 

occurrence over the number of OVA challenges, and then subsequent BSA challenge.   
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zation and eff ector phases of intestinal anaphylaxis, we blocked 
mast cell activity during the initial i.g. sensitization stage, 
and reconstituted mast cell activity to evaluate eff ector 
function. To accomplish this, we used the mast cell stabi-
lizer cromolyn that was previously shown to block mast 
cell activity and abrogate intestinal permeability in iFABPp-
IL-9Tg mice ( Fig. 5, D – F ). Mice were treated with vehicle 
or cromolyn for 3 d to block intestinal permeability and 
were subsequently challenged i.g. with OVA while con-
tinuing cromolyn treatment for another 6 d. The control 
and cromolyn-treated iFABPp-IL-9Tg mice received six 
additional i.g. OVA challenges in the absence of cromolyn 
over the following 2 wk ( Fig. 8 A ).  Consistent with our 
previous observations, i.g. OVA challenge of vehicle-treated 
iFABPp-IL-9Tg mice induced intestinal anaphylaxis ( Fig. 
8 B ). However, OVA challenge of cromolyn-treated iF-
ABPp-IL-9Tg mice did not induce intestinal anaphylaxis 
( Fig. 8 B ). Studies performed to determine whether the 
 attenuation of intestinal anaphylaxis was caused by inhibi-
tion of oral sensitization demonstrated elevated levels of 
IgE in OVA-challenged, control-treated, iFABPp-IL-9Tg 
mice compared with OVA-challenged, cromolyn-treated, 
iFABPp-IL-9Tg mice ( Fig. 8 C ). To confi rm that the lack 
of diarrhea occurrence in these mice was not caused by cro-
molyn-suppression of mast cell activity during the eff ector 
phase, we performed passive sensitization in control- and 
cromolyn-treated iFABPp-IL-9Tg mice. After the ninth i.g. 
OVA challenge, mice were i.v. administered anti – TNP-IgE, 
and 24 h later they were challenged i.v. with BSA-TNP 
and body temperature, an indicator of systemic anaphylaxis, 
was measured over 60 min ( Fig. 8 D  at 20 min). Adminis-
tration of BSA-TNP i.v. to naive iFABPp-IL-9Tg mice 
did not aff ect body temperature ( Fig. 8 D ). In contrast, i.v. 
administration of BSA-TNP to naive iFABPp-IL-9Tg mice 

 Intestinal IL-9 mast cell – mediated intestinal permeability 

(i.e., leaky gut) predisposes to oral antigen sensitization 

 We next evaluated the involvement of mast cell – mediated 
intestinal permeability in oral antigen sensitization and pre-
disposition to intestinal anaphylaxis in iFABPp-IL-9Tg mice. 
To distinguish the involvement of mast cells in the sensiti-

  Table I.    Experimental intestinal anaphylaxis in iFABPp-IL-9Tg mice is IL-4R �  and STAT6 dependent 

Experimental group Treatment % Diarrhea 

 occurrence 

 (on day 9)

Mast cells/ HPF  

 (mean  ±  SEM)

Serum mMCP-1 (ng/ml; 

mean  ±  SEM)

BALB/c WT 0.68  ±  0.07 27.46  ±  3.90

   BALB/c WT Vehicle OVA 0/12 0.13  ±  0.01 23.91  ±  3.64

   BALB/c WT OVA OVA 14/14 31.29  ±  0.57 16,260.57  ±  4,817.16

IFABPp-IL-9Tg 7.20  ±  0.33 152.50  ±  1.65

   IFABPp-IL-9Tg Vehicle OVA 15/15 28.68  ±  0.82 19,319.34  ±  3,961.13

   IFABPp-IL-9Tg OVA OVA 12/16 97.52  ±  2.19 83,399.48  ±  7,880.93

IFABPp-IL-9Tg (IL-9Tg)/ STAT6  � / �  2.87  ±  0.31 37.90  ±  1.60

   IL-9Tg/STAT6  � / �  Vehicle OVA 0/9 2.93  ±  0.21 870.30  ±  191.92

   IL-9Tg/STAT6  � / �  OVA OVA 1/8 11.91  ±  0.66 1,168.17  ±  268.46

IFABPp-IL-9Tg (IL-9Tg)/IL-4R �   � / �  2.75  ±  0.01 26.20  ±  0.90

   IL-9Tg/IL-4R �   � / �  Vehicle OVA 0/10 3.04  ±  0.14 100.26  ±  15.01

   IL-9Tg/IL-4R �   � / �  OVA OVA 0/9 8.05  ±  0.19 808.07  ±  154.09

Diarrhea, mean number of mast cells per high power fi eld of view and serum mMCP-1 for iFABPp-IL-9Tg and BALB/c WT mice defi cient in IL-4R �  or STAT6 following 

intraperitoneal sensitization with OVA or saline and nine intragastric OVA or saline challenges.

  Figure 7.   Overexpression of IL-9 in the intestine increases local Th2 

responses after OVA i.g. challenge.  IL-4 protein levels in jejunal lysates 

(A) and percentage of CD4 +  IL-4 +  cells (B) in the lamina propria of the jeju-

num of BALB/c WT and iFABPp-IL-9Tg mice after i.g. OVA challenges. Antigen-

specifi c IgG 1  (C) and total IgE protein levels (D) in jejunal lysates from BALB/c 

WT and iFABPp-IL-9Tg mice under basal conditions and after 5 i.g. OVA 

challenges. (A) Data are expressed as protein level in picograms/milliliter per 

milligram protein. In A, each circle represents an individual mouse, and the 

black line represents the mean value in each group. (A – D) Data are repre-

sented as the mean  ±  the SEM; 4 – 5 mice per group from at least  n  = 2 

experiments. Dotted line depicts the detection limit.   
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 The molecular basis of IL-9 – mediated intestinal masto-
cytosis is not fully elucidated. Previous studies show that IL-9 
is insuffi  cient to induce mast cell growth and diff erentiation 
of mast cell progenitors, but can enhance stem cell factor – de-
pendent mast cell growth ( 39 ). Consistent with this, we ob-
served no diff erence in intestinal mast cell progenitor levels 
among IL-9 defi cient, iFABPp-IL-9Tg and WT mice, sug-
gesting that IL-9 promotes recruitment of mature mast cells 
from other tissues or enhances mature mast cell survival. 
However, we did not observe an alteration in mature mast 
cell levels in tissues other than the intestine (unpublished 
data), and IL-9 has previously been shown to be insuffi  cient 
to support survival of mature mast cells ( 39 ). An alternate ex-
planation is that IL-9 may promote intestinal mastocytosis via 
enhancing intestinal mast cell maturation and that immune 
mechanisms independent of IL-9 critically maintain intestinal 
mast cell progenitor number. 

 We also demonstrate that IL-9 transgene – induced intesti-
nal mastocytosis is reduced but can occur in the absence of 
IL-4R �  and STAT6 (Table S4). Moreover, intestinal mast 
cell levels in iFABPp-IL-9Tg mice backcrossed onto the IL-
4R �  or STAT6 backgrounds were signifi cantly higher than 
those observed in IL-4R �  or STAT6 defi cient mice. Consis-
tent with this observation, previous studies have demon-
strated intestinal mastocytosis in the combined absence of 
IL-4- and IL-13, and that this was dependent on IL-9 ( 40 ). 
Importantly, although mast cell levels in iFABPp-IL-9Tg/
IL-4R �  – defi cient or iFABPp-IL-9Tg/STAT6 – defi cient mice 

that had previously been injected i.v. with IgE anti-TNP in-
duced a signifi cant decrease in body temperature. Importantly, 
BSA-TNP administration to vehicle- or cromolyn-treated, 
OVA-challenged iFABPp-IL-9 mice that received IgE anti-
TNP also induced a rapid body temperature decrease, dem-
onstrating functional mast cell eff ector activity ( Fig. 8 D ). 
Thus, lack of diarrhea occurrence in cromolyn-treated iF-
ABPp-IL-9Tg mice was not caused by cromolyn-suppression 
of mast cell activity during the eff ector phase. Furthermore, 
these studies indicate that mast cell – mediated intestinal per-
meability promotes oral antigen sensitization and subsequent 
predisposition to intestinal anaphylaxis. 

  DISCUSSION  

 Our studies demonstrate a nonredundant role for IL-9 in the 
induction of the eff ector phase of intestinal anaphylaxis. The 
observed comparable levels of oral antigen – specifi c IgE and 
IL-4, -5, and -13 in IL-9  � / �   and WT mice suggest that the re-
duction in disease is not caused by an attenuated Th2 response. 
Consistent with this observation, previous studies have demon-
strated no role for IL-9 in the development and diff erentiation 
of CD4 +  Th2 T cells or antigen-driven antibody responses 
( 38 ). Attenuation of oral antigen – induced intestinal anaphylaxis 
in IL-9  � / �   mice was linked to a reduction in intestinal mast cell 
number and degranulation, which is required for development 
of the eff ector phase of intestinal anaphylaxis ( 24 ). Our studies 
in IL-9 – defi cient and IL-9 transgenic mice demonstrate that 
IL-9 is critical for the induction of intestinal mastocytosis. 

  Figure 8.   Treatment with mast cell stabilizing agent cromolyn sodium blocks intestinal permeability and protects against antigen sensitiza-

tion.  (A) Experimental regimen. Diarrhea occurrence (B), total serum IgE for iFABPp-IL-9Tg and BALB/c WT mice treated with control or the mast cell sta-

bilizing agent cromolyn sodium and subsequently OVA-challenged mice (C). (D) Passive anaphylaxis (maximum temperature decrease over 20 min) in 

iFABPp-IL-9Tg mice treated with control or the mast cell stabilizing agent cromolyn sodium. After the 9th OVA i.g. challenge, the mice were i.v. adminis-

tered IgE-anti-TNP and subsequently i.v. injected withTNP-BSA. (A – D) Data represented as the mean  ±  the SEM; 4 – 5 mice per group. (A) Data are repre-

sented as the percentage of diarrhea occurrence over the number of OVA challenges in iFABPp-IL-9Tg and BALB/c WT mice treated with control or the 

mast cell stabilizing agent cromolyn sodium.   
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induction of systemic and intestinal anaphylaxis, or alterna-
tively, that mast cell/IgE-mediated systemic anaphylaxis is 
regulated by IL-9 – independent pathways. To begin to dis-
criminate between these hypotheses, we examined active 
systemic anaphylaxis in WT and IL-9  � / �   mice. i.v. OVA 
challenge of OVA-sensitized WT and IL-9  � / �   mice induced 
systemic anaphylaxis (Fig. S3 A, available at http://www
.jem.org/cgi/content/full/jem.20071046/DC1). Furthermore, 
we observed an equivalent increase in serum mMCP-1 and 
histamine in WT and IL-9  � / �   mice, indicating that activa-
tion of the mast cell – dependent pathway can occur in the ab-
sence of IL-9 (Fig. S3, B and C). Collectively, these studies 
demonstrate that IL-9 plays a critical role in mast cell/IgE –
 mediated intestinal anaphylaxis; however, mast cell/IgE – me-
diated systemic anaphylaxis can occur in the absence of 
IL-9/IL-9R signaling. Interestingly, we observed elevated 
levels of serum histamine in WT and IL-9  � / �   mice during 
active systemic anaphylaxis, but not during intestinal anaphy-
laxis. This is consistent with our prior studies demonstrating 
that mast cell – mediated systemic anaphylaxis is histamine-de-
pendent, whereas, intestinal anaphylaxis is mediated by PAF 
and serotonin ( 24, 55 ). These studies also demonstrate that 
diff erential mast cell – derived mediators (histamine and PAF/
serotonin) exacerbate the clinical symptoms of systemic and 
intestinal anaphylaxis. 

 Induction of intestinal allergic responses, including OVA-
induced intestinal anaphylaxis in WT mice, is dependent on 
antigen sensitization with adjuvant and subsequent multiple-
antigen challenges ( 24, 58, 59 ). Remarkably, intestinal over-
expression of IL-9 was suffi  cient to predispose mice to 
intestinal anaphylaxis in the absence of systemic sensitization. 
Notably, we show that the development of intestinal anaphy-
laxis in the absence of systemic sensitization was associated 
with development of an antigen-specifi c CD4 +  Th2 cell 
response and dependent on CD4 +  Th2-signaling pathways 
(IL-4R �  and STAT6). These studies suggest that intestinal 
over expression of IL-9 promotes the generation of antigen-
specifi c CD4 +  Th2 cell responses. Consistent with this obser-
vation, recent investigations using a model of  Leishmania major  
infection demonstrated a role for IL-9 in the promotion of a 
detrimental Th2-type intestinal response ( 60 ). Although in 
this study the mode of IL-9 action was not defi ned, we dem-
onstrate that IL-9 promotion of an oral antigen – specifi c CD4 +  
Th2 cell response is primarily via induction of mast cell – me-
diated intestinal permeability. Notably, mast cell – mediated 
intestinal permeability has been shown to be primarily regu-
lated via IL-4 and -13 ( 26 ). The increased intestinal permea-
bility in iFABPp-IL-9Tg mice occurred in the absence of 
elevated IL-4 and -13. The mechanism of mast cell – induced 
increase in intestinal permeability that leads to oral antigen 
sensitization and predisposes to intestinal anaphylaxis is not 
yet fully elucidated. Previous studies using cIL-9Tg mice 
have demonstrated a mast cell – mediated increase in intestinal 
epithelial permeability ( 25 ). It remained possible that the IL-
9 – induced intestinal mastocytosis and increased intestinal per-
meability were mediated via an indirect mechanism, possibly 

were elevated compared with the IL-4R �  –  or STAT6-
defi cient mice, the levels were reduced by  � 50% compared 
with iFABPp-IL-9Tg mice that express IL-4R �  and STAT6 
normally. These studies suggest that optimal intestinal masto-
cytosis requires factors dependent on IL-4R �  and STAT6 
signaling in our model. IL-4 has previously been shown to 
promote proliferation and prime human and murine mast 
cells for enhanced survival and IgE-mediated cytokine and 
chemokine production ( 41 – 45 ). Furthermore, antibody neu-
tralization of IL-3 and -4 has been shown to block  Nippostron-
gylus brasiliensis  – induced intestinal mastocytosis by 85 – 90% 
( 46 ). To confi rm that the intestinal mastocytosis in iFABPp-
IL-9Tg mice is not caused by increased IL-4 signaling, we 
examined the Th2 immune profi le and IL-4R �  expression 
on intestinal mast cells in WT and iFABPp-IL-9Tg mice and 
observed no diff erence (unpublished data). We speculate that 
IL-9 is a potent inducer of intestinal mastocytosis; however, 
IL-9 may act additively or synergistically with other factors, 
including IL-3 and -4, to induce an optimal intestinal mast 
cell response. Furthermore, the importance of a particular 
mast cell stimulatory factor or signaling pathway may vary in 
diff erent models. Consistent with this possibility, STAT6 sig-
naling has been shown to enhance mastocytosis in some sys-
tems but suppress it in others ( 47, 48 ). 

 Our demonstration that IL-9 – induced mastocytosis is 
associated with elevated mMCP-1 and -2 (enzymes asso-
ciated with mucosal mast cells) suggests that IL-9 selec-
tively stimulates generation of intestinal mucosal mast 
cells. Consistent with this, we observed a significant in-
crease in interepithelial and intercryptic mast cells in the 
iFABP-IL-9Tg mice and experimental studies in cIL-
9Tg mice have demonstrated IL-9 – induced mastocytosis 
associated with elevated MCP-1 and -2 ( 49 ). Further-
more, in vitro studies demonstrate that IL-9 stimulates 
mouse BM – derived mast cells to express high steady-
state levels of mMCP-1 and -2 transcripts ( 50, 51 ). Ob-
servations that mast cell lines, human CD34 +  cord blood 
cells, and 12-wk – cultured mast cells all express IL-9R �  
mRNA suggest this may be a direct effect of IL-9 on mast 
cells ( 39, 52 ). 

 The eff ector phase of intestinal anaphylaxis has been 
shown to be mediated via mast cell – , Fc � RI-, and IgE-de-
pendent pathways ( 24 ). Consistent with this observation, we 
show that intestinal anaphylaxis in iFABPp-IL-9Tg mice was 
dependent on mast cells and IL-4R �  and STAT6 signaling. 
Importantly, murine systemic anaphylaxis can also occur via 
a mast cell, Fc � RI, and IgE-independent pathway, via IgG 
antibody, macrophages, Fc � RIII, and PAF ( 53 – 55 ). Recent 
studies that used IL-9 transgenic mice in which IL-9 is con-
stitutively expressed in all tissues (cIL-9Tg mice) ( 56 ), IL-
9R  � / �  , and models of systemic anaphylaxis have demonstrated 
that IL-9/-9R signaling can potentiate, but is not essential 
for, systemic anaphylaxis ( 57 ). In contrast, we demonstrate 
that oral antigen – induced intestinal anaphylaxis is critically 
dependent on IL-9. A possible explanation for these contrast-
ing fi ndings is the distinct molecular pathways central to the 
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an increase in food protein sensitivity in pediatric liver trans-
plant patients treated with the immunosuppressive tacrolimus 
( 69, 70 ). Tacrolimus, a calcineurin inhibitor, increases intes-
tinal permeability by uncoupling mitochondrial oxidative 
phosphorylation, leading to a disruption in intercellular junc-
tional integrins ( 71, 72 ). Two recent studies examining heart 
and liver transplant patients taking tacrolimus revealed they 
have an increased risk of developing food allergy ( 73, 74 ). 
Experimental investigations have also provided corroborative 
evidence supporting a role for intestinal barrier dysfunction 
and leaky gut, predisposing to oral sensitization and subse-
quent development of food allergy. Malnutrition increased 
 � -lactoglobulin – specifi c IgE and intestinal anaphylactic re-
sponses in guinea pigs, demonstrating an eff ect of environ-
mental factors in intestinal permeability and oral antigen 
sensitization ( 75, 76 ). 

 Other environmental factors, including intestinal infec-
tion that leads to elevated levels of IL-9, mast cells and in-
creased intestinal barrier dysfunction, may also predispose to 
oral antigen sensitization. Notably,  L. major  and  Helicobacter 
pylori  infection has been shown to be associated with the up-
regulation of IL-9 expression ( 60, 77 – 79 ). Consistent with 
these observations, mast cells and mast cell – derived mediator 
chymase are elevated in experimental leishmaniasis and hu-
man  H. pylori  – associated gastritis ( 60, 80 ). Notably,  H. pylori  
gastric infection has been shown to positively correlate with 
food allergy ( 81 ). 

 Previous investigations using nematode infestation and 
systemic and intestinal anaphylaxis models have demonstrated 
a role for mast cells in the end-stage eff ector phase of disease 
( 20, 24 – 26 ). We provide corroborative data supporting a role 
for mast cells in exacerbation of the intestinal anaphylactic 
phenotype. Notably, the role of mast cells in the end-stage 
eff ector phase of disease is dependent on IgE and an estab-
lished antigen-specifi c CD4 +  Th2-type response ( 24 ). In this 
study, we demonstrate that mast cells also promote the devel-
opment of an antigen-specifi c CD4 +  Th2-type response. 
Furthermore, we show that the mast cell – dependent develop-
ment of the antigen-specifi c CD4 +  Th2-type response was 
regulated via an indirect mechanism involving intestinal 
epithelial permeability. Importantly, these studies have iden-
tified a role for mast cells in oral antigen sensitization. 
Interestingly, patients with systemic mastocytosis often pre-
sent with intestinal manifestations, and some of these patients 
have impaired small intestinal absorption ( 82 ). Clinical stud-
ies have demonstrated that cromolyn is a successful treatment 
modality for intestinal symptoms of systemic mastocytosis 
( 83 ). A major draw back of cromolyn is its poor absorption 
properties, thus it is not unreasonable to speculate that the 
ability of cromolyn to successfully treat the intestinal symp-
toms in systemic mastocytosis may be attributable, at least in 
part, to increased intestinal permeability ( 84 ). 

 In conclusion, we demonstrate a central role for IL-9 in 
the regulation of oral antigen – induced intestinal anaphylaxis 
and identify a previously unappreciated role for mast cell – in-
duced intestinal permeability in oral antigen sensitization and 

through stimulation of intestinal epithelial cells. To test 
whether IL-9 could act directly on intestinal epithelial cells, 
we examined IL-9R �  expression on the human intestinal ep-
ithelial cell line (CaCO2bbe) by fl ow cytometry. We did not 
detect any IL-9R �  expression on CaCO2bbe cells (unpub-
lished data). Consistent with this observation, we observed no 
eff ect of IL-9 stimulation on CaCO2bbe cell TER and  � I sc  
to cholinergic stimulation (unpublished data). Mast cells gen-
erate several mediators that promote an increase in intestinal 
permeability, including histamine, serotonin, eicosanoid me-
diators (leukotrienes [LTB 4  and LTC 4 ] and prostaglandins 
[PGD 2  and PGE 2 ]), the cytokines IL-4 and TNF � , and mast 
cell proteases (mMCP-1 and -2) ( 25, 26, 61 ). Previous studies 
using a helminth infection model of intestinal permeability 
have demonstrated a role for mMCP-1 in increased mucosal 
leakiness via degradation of the tight junction protein occlu-
din ( 25 ). Interestingly, gene chip analysis revealed a signifi -
cant increase in the expression of phospholipase A2 gene in 
the intestine of iFABPp-IL-9Tg mice as compared with WT 
mice. PLA 2  catalyzes the hydrolysis of the sn-2 position of 
membrane glycerophospholipids to liberate arachidonic acid, 
which is a precursor of eicosanoids including prostaglandins, 
leukotrienes, and PAF. Notably, we have previously demon-
strated a role for serotonin and PAF in intestinal diarrhea in 
an IgE-mast cell – dependent model of intestinal anaphylaxis 
( 62 ). Defi ning the molecular mechanisms involved in IL-9/
mast cell – mediated increase in intestinal permeability will be 
important for understanding of oral sensitization and subse-
quent development of intestinal anaphylaxis. 

 The demonstration that increased intestinal permeability 
in iFABPp-IL-9Tg mice predisposes to oral antigen sensitiza-
tion suggests that a constitutive defect in barrier function could 
predispose to oral sensitization and subsequent development 
of food allergy. Impairment of intestinal barrier function has 
been implicated as a critical determinant in the predisposition 
to several GI diseases, including IBD and food allergy ( 63, 64 ). 
Indeed, patients with atopic diseases, including food allergy, 
have increased intestinal permeability ( 15, 65, 66 ). Further-
more, increased intestinal permeability in IBD is predictive of 
clinical relapse and 10 – 25% of fi rst-degree relatives of pa-
tients with IBD have increased intestinal permeability ( 64 ). 
Recently, a mutation in the caspase recruitment domain fam-
ily member 15/nucleotide binding oligomerisation domain 2 
3020insC has been linked to increased intestinal permeability 
in quiescent Crohn ’ s disease patients and their fi rst-degree 
relatives ( 63 ). Genetic mapping studies in both humans and 
mice demonstrated a linkage between the atopic phenotype 
and the IL-4 and -9 gene ( 67 ). Furthermore, gene – gene inter-
actions between IL-4R �  and -9 SNPs, particularly IL4RA 
Q576R and IL-9R rs731476, have been observed in asthma-
related diseases ( 68 ). 

 An alternate explanation to a congenital abnormality in 
intestinal permeability predisposing to oral sensitization and 
food allergy is that perturbations of environmental factors, 
such as stress, may induce intestinal barrier dysfunction and 
leaky gut. Notably, recent clinical studies have demonstrated 
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i.g. challenge. Mice demonstrating profuse liquid stool were recorded as di-

arrhea-positive animals. Sometimes multiple observers blinded to the experi-

mental protocol scored the occurrence of diarrhea. To stabilize mast cell ac-

tivity, mice were administered i.p. 100 mg/kg (200  μ l) cromolyn sodium 

(Sigma-Aldrich) every 12 h (fi nal volume 200  μ l) for 2.5 d. Mast cell stabili-

zation was determined by serum mMCP-1 levels. 

 Active systemic anaphylaxis.   WT and IL-9  � / �   mice were immunized 

with OVA/alum (50  μ g OVA/1 mg alum [200  μ l]) or alum alone on day 0 

and 7. On day 14, mice were i.v. challenged with 1 mg OVA in 200  μ l 

saline. Rectal temperatures were measured with a Digital Thermocouple 

Thermometer (model BAT-12; Physitery Instruments, Inc.) just before 

challenge, and then at 5, 10, 15, 30, 45, and 60 min after OVA challenge. As 

controls, naive WT mice were i.v. administered anti-IgE (clone EM95; 

10  μ g/200  μ l saline), isotype control (clone: GL117; 10  μ g/200  μ l saline), or 

OVA (grade V; 1 mg/200  μ l saline). Additional WT and IL-9  � / �   mice were 

i.p. injected with OVA/alum and subsequently challenged i.g. with OVA 

until 100% of the WT experienced diarrhea. After the eighth i.g. challenge, 

development of diarrhea was confi rmed and serum was collected for hista-

mine analysis. 48 h after the eighth i.g. challenge, the mice were injected i.v. 

with OVA (100  μ g/200  μ l saline) and their rectal temperatures were moni-

tored to demonstrate systemic anaphylaxis. 15 min after i.v. OVA challenge, 

serum was taken for histamine analysis. 

 Ussing chambers.   1-cm segments of mucosa were mounted in U2500 

Dual-Channel Ussing chambers (Warner Instruments) that exposed 0.30 

cm 2  of tissue to 10 ml of Krebs buff er. Agar-salt bridges and electrodes were 

used to measure the potential diff erence. After a 15-min equilibrium period, 

basal I sc , representing the net ion fl ux at baseline, and tissue resistance (TER), 

a measure of tissue permeability, were determined. Every 50 s, the tissues 

were short circuited at 1 V (EC 800 Epithelial Cell Voltage Clamp; Warner 

Instruments), and the I sc  was monitored continuously. In addition, every 50 s, 

the clamp voltage was adjusted to 3 mV for 5 s to allow calculation of tissue 

resistance using Ohm ’ s law. After a second 15-min period, concentration-

dependent changes in I sc  ( � I sc ) were determined for the cumulative addition 

of methacholine to the serosal side of the stripped mucosa. In some experi-

ments, after equilibrium period and baseline potential diff erence and resis-

tance had been established, FITC-dextran (2.2 mg/ml, molecular mass 4.4 

kD; Sigma-Aldrich) was added to the mucosal reservoir. Medium (0.25 ml 

out of 10 ml) was removed from the serosal reservoir and replaced with fresh 

medium every 20 min over a period of 180 min for measurement of FITC-

dextran. The concentration of HRP was measured by a kinetic enzymatic 

assay. In brief, 120  μ l of sample were added to 800  μ l of phosphate buff er 

containing 0.003% H 2 O 2  and 80  μ g/ml  o -dianisidine (Sigma-Aldrich), and 

the enzymatic activity was determined from the rate of increase in optical 

density at 460 nm during a 1.5-min period. The luminal-to-serosal fl ux was 

calculated using a standard formula and expressed as nanograms/milliliter. 

FITC-dextran concentration was determined from analysis of standard curve 

of dextran-FITC using a FL X 800 96-well microplate fl uorescence reader 

(excitation, 490 nm; emission, 530 nm; BioTek Instruments). 

 Solutions and drugs.   Krebs buff er contained 4.70 mM KCl, 2.52 mM 

CaCl 2 , 118.5 mM NaCl, 1.18 mM NaH 2 PO 4 , 1.64 mM MgSO 4 , and 24.88 

mM NaHCO 3  on each side. The tissues were allowed to equilibrate for 

15 min in Krebs buff er containing 5.5 mM glucose. All reagents were obtained 

from Sigma-Aldrich unless stated otherwise. 

 Ribonuclease protection assay 
 Jejunum RNA was obtained using TRIzol reagent (Life Technologies, Inc.) 

following the manufacturer ’ s protocol. The ribonuclease protection assay was 

performed by making a radioactive probe from the mCk-1b multiprobe tem-

plate (RiboQuant Multi-Probe RPA System; BD Biosciences). RNA from 

OVA- and saline-challenged BALB/c WT mice was hybridized overnight 

with the radioactive probe, purifi ed, and fi nally run on an urea-acrylamide 

gel at 75 W as described in the RiboQuant protocol from BD Biosciences. 

predisposition to intestinal anaphylaxis. These studies demon-
strate the importance of intestinal barrier function in oral anti-
gen sensitization and identify a role for IL-9 – driven mast cells 
in this process. 

  MATERIALS AND METHODS  
 Mice 
 6 – 8-wk-old IL-9 – defi cient mice (N10 BALB/c), as previously described ( 38 ), 

were a gift from A. McKenzie (Medical Research Council, Laboratory of 

Molecular Biology, Cambridge, UK). BALB/c mice were obtained from the 

National Cancer Institute. All mice were maintained in a barrier facility, and 

animals were handled under Institutional Animal Care and Use Committee –

 approved protocols (from Cincinnati Children ’ s Hospital Medical Center). 

 Generation of transgenic mice 
 cDNA was a gift from A. McKenzie. The IL-9 cDNA was amplifi ed by 

PCR using oligonucleotides containing BamHI sites (5 	 -GGATCCAT GTT-

GGTGACATACATCCTTGC-3 	  and 3 	 -GGATCCTCATGGTCGGC-

TTTTCTGCC-5 	 ) and the 446-bp fragment containing the entire coding 

region of the murine IL-9 cDNA was ligated into pCR2.1 TOPO TA 

cloning vector. The IL-9 cDNA was digested with BamHI, and the IL-9 

DNA was ligated into the BamHI site of the PBSIF1178-hGHpgkNeo plas-

mid, which contained a 3.5-kb EcoRI fragment containing nucleotides 

 � 1,178 to 28 of rat  Fabpi  promoter linked to nucleotides 3 – 2,150 of the hu-

man growth hormone (hGH) gene (except for its 5 	  regulatory sequences). 

The transgene plasmid was propagated in  Escherichia coli  DH5 �  cells, and the 

transgene fragment was liberated from the vector sequences by EcoRI endo-

nuclease digestion and gel electrophoresis, and then purifi ed using the 

QIAEX DNA extraction kit (QIAGEN). After extensive dialysis, 5  μ g of the 

linearized fragment was co-electroporated with 5  μ g of circular neomycin 

resistance plasmid (pMC1Neo; Stratagene) into BALB/c embryonic stem 

cells, a gift from B. Ledermann (University of Zurich, Zurich, Switzerland). 

Positive selection was performed with G418 for 10 d, and 7 surviving clones 

were screened for integration of the transgene by PCR. Of 3 Tg-positive 

embryonic stem colonies, 1 was injected into 3.5-d-old blastocysts from 

C57BL/6 mice and implanted into pseudopregnant females. Chimeric mice 

were bred with WT BALB/c females and germline (white) mice genotyped 

to identify positive transgenic mice. Heterozygous-positive Tg mice were 

crossed to WT BALB/c mice for 2 generations to remove any possible ran-

dom modifi cations caused by tissue culture. Transgenic mice were identifi ed 

by Southern blot analyses after restriction fragment digestion with BamHI, 

using the hGH genomic fragment to ensure specifi city for identifi cation of the 

transgene. Mice transgenic for IL-9 were also identifi ed by PCR using a for-

ward primer (P1; 5 	 -GGATCCATGTTGGTGACATACATCCTTGC-3 	 ) 

specifi c for the IL-9 cDNA in the transgenic construct and a reverse primer 

specifi c for hGH (P2; 5 	 -GTGAGCTGTCCACAGGACC-3 	 ); the trans-

genic band was  � 484 bp. STAT6- or IL-4R �  – defi cient mice expressing 

the  iFABPp- IL-9Tg were generated by mating STAT6 or IL-4R �  – defi cient 

mice of the BALB/c background ( 85 – 87 ) with iFABPp-IL-9 mice and sub-

sequently mating iFABPp-IL-9 +  F1 mice with STAT6- or IL-4R �  – defi cient 

mice. The resulting F2 mice were screened by PCR analysis for the presence 

of the IL-9 transgene and for the homozygous defi ciency of the STAT6 or 

IL-4R �  gene using the aforementioned primers. Control mice were matched 

to WT mice derived from both original backgrounds. 

 Experimental intestinal anaphylaxis.   6 – 8-wk-old mice were sensitized 

twice, 2 wk apart, with 50  μ g of OVA (grade V, A-5503; Sigma-Aldrich) 

in the presence of 1 mg of aluminum potassium sulfate adjuvant (alum, 

AIK[SO 4 ] 2 -12H 2 O; A-7210; Sigma-Aldrich) in sterile saline or sterile saline 

by i.p. injection. 2 wk later, mice were held in the supine position three 

times a week (every other day) and orally administered 250  μ l OVA (50 mg) 

in saline. Before each i.g. challenge, mice were deprived of food for 3 – 4 h 

with the aim of limiting antigen degradation in the stomach. Challenges 

were performed with i.g. feeding needles (01 – 290-2B; Thermo Fisher Sci-

entifi c). Diarrhea was assessed by visually monitoring mice for up to 1 h after 

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/205/4/897/1898902/jem
_20071046.pdf by guest on 08 February 2026



JEM VOL. 205, April 14, 2008 

ARTICLE

909

conjugate (Biosource), was added. 100  μ l of substrate (TMB Substrate Re-

agent Set; BD Biosciences) was added. Colorimetric reaction was stopped 

with 1 M H 2 SO 4  and was quantifi ed by measuring optical density with an 

ELISA plate reader at 450 nm. IL-4, -5, -9, -13, and IFN �  in jejunum was 

measured by ELISA according to the manufacturer ’ s instructions (BD Bio-

sciences and R & D Systems). For jejunal lysate samples, whole jejunum was 

excised and snap frozen at  � 70 ° C. Frozen jejunum sections were mechani-

cally disrupted and suspended in 1 ml of PBS containing protease inhibitors. 

The jejunal pellet was vigorously vortexed, the suspension was centrifuged 

at 12,000  g  for 10 min, and supernatant was removed, aliquoted, and stored 

at  � 20 ° C until analysis. Tissue protein samples were quantitated using a 

BCA protein assay kit following the manufacturer ’ s instructions (Pierce 

Chemical Co.). In vivo IL-4 and IFN �  levels were determined by IVCCCA, 

as previously described ( 90 ). In brief, iFABPp-IL-9Tg and BALB/c WT 

mice were i.v. injected with biotinylated rat IgG neutralizing monoclonal 

antibody anti – mouse IL-4 (BVD-1D11 [10  μ g/mouse] and biotinylated rat 

IgG neutralizing monoclonal antibody anti – mouse IFN �  [R4-6A2; 10  μ g/

mouse]) and bled 24 h later. Serum levels of IL-4 and IFN �  were deter-

mined by ELISA, as previously described ( 90 ). 

 Intestinal mast cell quantifi cation.   Jejunum tissue was collected 7 – 10 cm 

distal to the stomach, whereas ileum and colon samples were collected 1 cm 

proximal or distal of the cecum. All samples were fi xed in 10% formalin and 

processed by standard histological techniques. The 5- μ m tissue sections were 

also stained for mucosal mast cells with chloroacetate esterase (CAE) activity, 

as described elsewhere ( 24 ) and lightly counterstained with hematoxylin. At 

least four random sections per mouse were analyzed. Quantifi cation of 

stained cells was performed by counting the number of chloroacetate-posi-

tive cells from 25 – 50 fi elds of view (magnifi cation 40 × ). 

 Microarray hybridization.   After TRIzol purifi cation, RNA was repuri-

fi ed with phenol-chloroform extraction and ethanol precipitation. Purifi ed 

RNA from four WT and four iFABPp-IL-9Tg mice were then pooled to-

gether and processed at Cincinnati Children ’ s Hospital Medical Center Af-

fymetrix Gene Chip Core facility, using the murine MOE430_2, a whole 

genome expression chip encoding 45,101 genes as previously described by 

the manufacturer (Aff ymetrix). Diff erences between WT and iFABPp-IL-9 

mice were also determined using the GeneSpring software (Silicon Ge-

netics). Data were normalized to WT mice, and genes were screened for a 

greater than twofold change over saline. A further description of the meth-

odology, according to MIAME (minimum information about a microarray 

experiment) guidelines are available at www.mged.org/Workgroups/MI-

AME/miame.html. The complete dataset is available at the National Center 

for Biotechnology Information gene expression Omnibus (http://www

.ncbi.nlm.gov) accession no. GSE10658. 

 Lightcycler PCR 
 BALB/c WT and iFABPp-IL-9Tg mice were obtained and killed. In-

tetinal samples were harvested. RNA was isolated from intestinal samples 

and cDNA was generated by standard procedures. The RNA samples (500 ng) 

were subjected to reverse transcription analysis using Iscript reverse tran-

scription (Bio-Rad Laboratories) according to manufacturer ’ s instructions. 

GAPDH, mMCP -1, -2, -4, -5, and FC � R1 �  were quantifi ed by real-

time PCR using the LightCycler instrument and LightCycler FastStart 

DNA Master SYBR Green I as a ready-to-use reaction mix (Roche). 

Results were then normalized to GAPDH amplifi ed from the same 

cDNA mix and expressed as fold induction compared with the controls. 

cDNAs were amplifi ed using the following primers; GAPDH forward 

5 	 -TGG  AAATCCCATCACCATCT-3 	 , reverse 5 	 -GTCTTCTGG-

G  T   GGC AGTGAT-3 	 ; mIL-9 forward 5 	 -AGCTGCTTGTGTGTCT-

C  TC C GTC-3 	 , reverse 5 	 -TCACCCGATGGAAAACAGGCAA-3 	 , 

mMCP-1, -2, and -4 forward 5 	 -GCTGGAGCTGAGGAGATTATTG-3 	 , 

mMCP-1 reverse 5 	 -GATTAAAAACAGCATACATGGGAG-3 	 , mMCP-2 

reverse 5 	 -CCTCTCCTTCGAACCGTTCTTA-3 	 , mMCP-4 reverse 

5 	 -GAGG  CCTGTAAAAACTATTGGCA-3 	 ; and mMCP-5 forward 

 Northern blot analysis 
 RNA was extracted from the lung, kidney, liver, jejunum, ileum, and colon 

tissue using TRIzol reagent following the manufacturer ’ s protocol. 20  μ g of 

total RNA was used for Northern blot analysis, as previously described ( 88 ). 

 Mononuclear cell (MNC) preparation and MCp assessment 
 Mice were killed by CO 2  asphyxiation, and the small intestine, lungs, spleen, 

and BM were harvested. The entire organs were removed except for BM, in 

which case a single femur was taken from each mouse. Individual tissues from 

2 mice were pooled, placed in 20 ml RPMI 1640 complete (RPMI 1640 

containing 100 U/ml penicillin, 100  μ g/ml streptomycin, 10  μ g/ml gentami-

cin, 2 mM  l- glutamine, 0.1 mM nonessential amino acids, and 10% heat-in-

activated fetal calf serum), and processed essentially as previously described 

( 89 ). In brief, the intestines (fl ushed out and rinsed twice in HBSS) were fi nely 

chopped with a scalpel blade and transferred separately to 50-ml plastic tubes 

with 30 ml RPMI 1640 complete plus 1 mg/ml collagenase type 4 (Worthing-

ton Biochemical Corp.). There were 3 enzymatic digestions performed for 

 � 20 min each at 37 ° C. The undigested tissue clumps were collected after 

each digestion period and were subjected to another enzymatic digestion, 

whereas the liberated cells were pelleted, resuspended in 44% Percoll (Sigma-

Aldrich), overlayed on a 67% Percoll layer, and spun at 400  g  for 20 min at 

4 ° C. The cell collection procedure for BM and spleen omitted the digestion 

steps. BM was extruded from one femur of each animal using a 25-gauge sy-

ringe and 5 – 10 ml complete RPMI 1640. Spleen cells were obtained from 

crushed whole spleens suspended in complete RPMI 1640. The collected cells 

were pelleted and resuspended in 44% Percoll before centrifugation over 67% 

Percoll as described. The MNCs were harvested from the interfaces of the 

three digestions of the lung and intestine, pooled by a separate tissue source, 

and washed in complete RPMI 1640. The numbers of viable cells were deter-

mined by trypan blue dye exclusion with a hemocytometer. Cells were serially 

diluted in complete RPMI 1640, and 100- μ l samples of the MNC dilutions 

were added to each well of standard 96-well fl at-bottomed microtiter plates 

(Corning). Typically, 24 wells were plated for each cell concentration. Intesti-

nal or BM MNCs were plated starting at 5,000 – 10,000 cells/well, and lung or 

spleen MNCs starting at 20,000 – 40,000 cells/well. Next, each well received 

100  μ l  � -irradiated (30 Gy) splenic feeder cells plus cytokines (recombinant 

mouse IL-3 at 20 ng/ml and recombinant mouse stem cell factor at 100 ng/ml). 

The cultures were incubated in humidifi ed 37 ° C incubators with 5% CO 2  for 

12 to 14 d, and positive wells containing mast cell colonies were identifi ed and 

counted with an inverted microscope. The MC colonies were easily distin-

guished as large colonies of nonadherent small- to medium-sized cells. The 

MCp concentration is expressed as the number of MCps per 10 6  MNCs iso-

lated from the tissue. The number of MCps/tissue is derived by multiplying 

the concentration of MCps by the MNC yield/organ. 

 ELISA measurements.   mMCP-1 and histamine serum levels were mea-

sured by ELISA according to the manufacturer ’ s instructions (Moredun 

Scientifi c and Beckman Coulter). ELISA determined serum and jejunal 

OVA-specifi c IgE. In brief, plates were coated for 2 h with 100  μ l of anti-

IgE antibody (EM-95; 10  μ g/ml; BD Biosciences) and blocked with 200  μ l 

of 10% FBS (diluted in sterile PBS) before adding serial dilutions of plasma 

samples (100  μ l/well). After overnight incubation, plates were washed and 

biotinylated OVA was added (2.5  μ g/ml, 100  μ l/well). After 1 h of incuba-

tion, 1  μ g/ml streptavidin-HRP (Biosource) was added. Before the initiation 

of each step, plates were washed with 0.05% Tween-20 in PBS. Finally, after 

a 1-h incubation, 100  μ l of substrate (TMB Substrate Reagent Set; BD Bio-

sciences) was added. Colorimetric reaction was stopped with 1 M H 2 SO 4  

and was quantifi ed by measuring optical density with an ELISA plate reader 

at 450 nm. Jejunal OVA-specifi c IgG 1  levels were determined by ELISA. In 

brief, wells were coated with 100  μ g/ml OVA and blocked with 10% FBS 

in PBS. The wells were washed with 0.05% Tween-20 in PBS and 100  μ l of 

plasma samples (diluted 1/100) were added and incubated for 2 h at room 

temperature. Plates were washed and 0.5  μ g/ml HRP-conjugated anti –

 mouse IgG 1  (X56; BD Biosciences) or biotin-conjugated rat anti – mouse 

IgG 1  (A85-1; BD Biosciences), followed by streptavidin and 1  μ g/ml HRP 
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was assessed by change in rectal temperature using rectal probe (Model 

BAT-12; Physitemp) as previously described ( 34, 92 ). 

 Statistical analysis 
 Data are expressed as the mean  ±  the SEM, unless otherwise stated. Statistical 

signifi cance comparing diff erent sets of mice was determined by Student ’ s  t  

test. In experiments comparing multiple experimental groups, statistical dif-

ferences between groups were analyzed using the one-way analysis of vari-

ance nonparametric and a Bonferroni post test. P  <  0.05 was considered sig-

nifi cant. All analyses were performed using Prism 4.0 software. 

 Online supplemental material 
 Fig. S1 shows multitissue analysis of IL-9 mRNA expression in WT and 

iFABPp-IL-9Tg mice. Fig. S2 shows OVA-specifi c IgE in OVA-sensitized 

and nonsensitized saline- and OVA-challenged IL-4R �  –  and STAT6 fac-

tor – defi cient and iFABP-IL-9Tg/IL-4R �  – and STAT6 factor – defi cient 

mice. Fig. S3 shows active systemic anaphylaxis in WT and IL-9 -/-  mice. 

Table S1 shows splenocyte cytokine production from OVA-sensitized 

OVA-challenged IL9 -/-  and BALB/c WT mice. Table S2 shows character-

ization of mesenteric LN immune profi le in WT and iFABPp-IL-9Tg mice. 

Table S3 is a gene profi le analysis of the small intestine of WT and iFABPp-

IL-9Tg mice. Table S4 shows experimental intestinal anaphylaxis in OVA-

sensitized and nonsensitized saline- and OVA-challenged IL-4R �  –  and 

STAT6 factor – defi cient mice. The online version of this article is available 

at http://www.jem.org/cgi/content/full/jem.20071046/DC1. 
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5 	 -GAACTA CC  TGTCGGCCTGCAG-3 	 , mMCP-5 reverse 5 	 -TTC   A-

G    TAGCATGATGTGCGTGGAC-3 	 , and Fc � R1 �  forward 5 	 -TTA G-

CACCTGAAGGTGCAGGGG-3 	  and Fc � R1 �  reverse 3 	 -ACATGAGT-

GGCCTTTGACAGTG-5 	 . mIL-4 primers were used as described by the 

manufacturer (PPM3013A; SuperArray Frederick). Quantitative expression 

data from each gene of interest was normalized to GAPDH expression, and 

then expression in IL-9 Tg mice was compared with expression in WT mice. 

 FACS analysis 
 Single-cell suspensions from indicated organs were washed with FACS buff er 

(PBS/1% FCS) and incubated with combinations of the following antibodies 

(all antibodies were obtained from BD Biosciences unless indicated): PerCP 

anti – mouse CD4 (l3T4) (RM4-5); PE anti – mouse CD8a (53 – 6.7); APC 

anti – mouse CD62L (MEL-14); FITC anti – mouse CD44 (IM7), APC anti –

 mouse CD25 (PC61), PE anti – mouse CD45RB (16A), and FITC anti – mouse 

FoxP3 (FJK-16S); PE anti – mouse B220 (RA3-6B2), FITC anti – mouse CD23 

(B3B4) and PE-Cy7 anti – mouse IgM (R6-60.2); APC anti – mouse CD11c 

(HL3), APC-Cy7 anti – mouse Gr-1 (RB6-8C5) and PE-Cy7 anti – mouse 

CD11b (M1/70); PE anti – mouse CD4 (L3T4), and PE-Cy7 anti – mouse IL-4 

(BVD6; ebioscience). The following antibodies were used as appropriate iso-

type controls: PerCP rat IgG 2a  (R35-95), PE rat IgG 2a , (53 – 6.7), APC rat 

IgG 2a  (R35-95); FITC rat IgG 2a  (R35-95), PerCP rat IgG 2a , (R35-95), APC 

rat IgG 1 , (R3-34), PE rat IgM (R4-22); and FITC rat IgG 2a , (R35-95), PE rat 

IgG 2a  (R35-95), FITC rat IgG 2a  (R35-95), and PE-Cy7 rat IgG 2a  (R35-95), 

respectively. 7-amino-actinomycin-D was used to identify nonviable cells 

(BD Biosciences). Cells were analyzed on FACSCalibur (BD Biosciences) and 

analysis was performed using FlowJo software. 

 Vascular permeability 
 Peripheral blood samples were collected in EDTA Microtainer tubes (Becton 

Dickinson) by retroorbital bleeding. Automated total cell counts and diff eren-

tial counts were performed according to manufacturer ’ s instructions (Thermo 

Fisher Scientifi c). Evan ’ s blue tissue extravasation was performed as previously 

described ( 91 ). In brief, mice received i.v. Evan ’ s blue dye in (20 mg/kg) 

PBS, and 3.5 h later, mice were anesthetised i.p. with 20 mg/kg pentobarbi-

tal, and heart perfusion was performed (10 ml PBS arterial perfusion). Jeju-

num and colon were harvested, and Evan ’ s blue extravasation was measured 

in OD at 650 nm. Tissue protein levels were quantifi ed using a BCA protein 

assay kit, following the manufacturer ’ s instructions (Pierce Chemical Co.). 

 Mononuclear cell isolation from jejunal tissue 
 Approximately 5 cm of jejunum was excised and fl ushed with 1 ml of cal-

cium- and magnesium-free HBSS (CMF-HBSS). The jejunum was dissected 

longitudinally and placed in 5 ml CMF-HBSS and shaken vigorously for 30 s 

at room temperature to remove luminal debris. Tissue was then incubated 

in CMF-HBSS containing 10% FCS, 25 mM Hepes, and 5 mM EDTA for 

10 min at 37 ° C and shaken in 5-min intervals to remove epithelia and in-

traepithelial lymphocytes. The tissue was then washed and incubated in 

CMF-HBSS to block any remaining EDTA activity. The remaining tissue 

was cut into small pieces and incubated with incomplete RPMI 1640 sup-

plemented with Collagenase A (2.4 mg/ml) for 30 min at 37 ° C. The cell 

suspension was fi ltered using sterile gauze, washed in incomplete RPMI 

1640, and centrifuged, and the remaining pellet was resuspended in RPMI 

1640 + 10% FCS. MNC suspension was used in in vitro stimulation assays. 

 In vitro stimulation of jejunum MNCs 
 MNCs were plated at 5  ×  10 5  cells/ml for 6 h in the presence of 10 ng/ml 

IL-2 (BD Biosciences) and  � CD3/ � CD28 (5 and 1  μ g/ml, respectively; BD 

Biosciences) and monensin (eBioscience) to block intracellular protein trans-

port. MNCs were examined for CD4 and IL-4 expression by fl ow cytome-

try as previously described ( 89 ). 

 Passive anaphylaxis model 
 Mice were primed i.v. with 10  μ g of IgE � TNP and then challenged i.v. 

24 h later with 100 ng TNP-BSA. The severity of the anaphylactic shock 
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