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    Aluminum-containing adjuvants have histori-
cally served as immunopotentiators in vaccines 
and continue to be the most widely used clini-
cal adjuvants ( 1 ). Despite the fact that millions 
of doses of aluminum-containing adjuvants 
have been given to healthy populations, it is 
surprising that there is no consensus regarding 
the mechanisms by which they potentiate the 
immune system ( 2 – 7 ). The following three 
potential mechanisms are frequently cited to 
explain how these adjuvants increase humoral 
immunity, although scarce experimental evi-
dence is publicly available: (a) the formation of 
a depot by which the Ag is slowly released to 
enhance the antibody production; (b) the in-
duction of infl ammation, thus recruiting and 
activating APCs that capture the Ag ( 8 ); and (c) 
the conversion of soluble Ag into a particulate 
form so that it is phagocytosed by APCs such as 
macrophages, DCs, and B cells. It is common 
knowledge that aluminum-containing adju-
vants (alum) predominantly induce humoral 

immunity, an observation that is further sup-
ported by the recent discovery that alum induces 
B cell priming and Ca 2+  mobilization via a 
splenic Gr-1 +  myeloid IL-4 – producing cell type 
( 5 ). Classical cell-mediated immunity measured 
by DTH responses and induction of CD8 +  CTL 
responses to a range of polypeptide and protein 
Ags is poorly induced by alum, caused by a 
lack of cross-priming ( 9, 10, 1 ). However, pro-
liferative responses of CD4 +  T cells, as well as 
Th2 cytokine production, have been found to 
be enhanced in several murine and human stud-
ies, suggesting that alum boosts humoral immu-
nity by providing Th2 cell help to follicular 
B cells ( 11, 8, 2 ). 

 DCs are seen as nature ’ s adjuvant and have 
the potential to recognize foreign Ag, process it 
into small peptides for presentation onto MHC 
molecules to the TCR, and provide the essen-
tial costimulatory molecules for activation of 
naive CD4 +  and CD8 +  T cells ( 12 ). DCs have 
an immature phenotype in peripheral tissues, 
specialized for Ag uptake, but upon recognition 
of exogenous or endogenous  “ danger signals ”  
like uric acid or extracellular ATP, they migrate 
to the LN T cell paracortex, where they arrive 
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 Alum (aluminum hydroxide) is the most widely used adjuvant in human vaccines, but the 

mechanism of its adjuvanticity remains unknown. In vitro studies showed no stimulatory 

effects on dendritic cells (DCs). In the absence of adjuvant, Ag was taken up by lymph node 

(LN) – resident DCs that acquired soluble Ag via afferent lymphatics, whereas after injection 

of alum, Ag was taken up, processed, and presented by infl ammatory monocytes that 

migrated from the peritoneum, thus becoming infl ammatory DCs that induced a persistent 

Th2 response. The enhancing effects of alum on both cellular and humoral immunity were 

completely abolished when CD11c +  monocytes and DCs were conditionally depleted during 

immunization. Mechanistically, DC-driven responses were abolished in MyD88-defi cient 

mice and after uricase treatment, implying the induction of uric acid. These fi ndings sug-

gest that alum adjuvant is immunogenic by exploiting  “ nature ’ s adjuvant, ”  the infl amma-

tory DC through induction of the endogenous danger signal uric acid. 
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injected the Ag in the left lower quadrant, in which case 
divisions occurred in the left ILN, or when we combined a 
right Ag injection with a left sterile puncture containing no 
Ag, in which case both ILNs reacted to the Ag ( Fig. 1 B ). 
When the right ILN was resected before Ag injection on the 
right side, the ipsilateral axillary LN became Ag reactive, 
illustrating that the Ag reached the LN via the aff erent lym-
phatics (unpublished data). 

 When T cell division was followed over time (Fig. S1, 
available at http://www.jem.org/cgi/content/full/jem
.20071087/DC1), it was evident that Ag-specifi c T cell re-
sponses were restricted to the draining right ILN and MLN 
for the fi rst 3 d of the response. By day 4, cells that had 
divided at least three times began to appear in the nondrain-
ing LNs and, importantly, also in the spleen. These cells ex-
pressed high levels of CD44 and low levels of CD69, which 
is consistent with their phenotype of recirculating primed 
T cells as previously reported (unpublished data) ( 23, 24 ). 
However, by day 7 and 14, the majority of divided cells had 
disappeared from the lymphoid organs and could not be re-
trieved from the peritoneum. 

 Effect of alum adjuvant on the immune response induced 

by an i.p. or i.m. injection of OVA 

 When OVA was emulsifi ed in alum adjuvant, the localiza-
tion of the primary immune response after i.p. injection 
into the lower right quadrant was again restricted to the 
ipsilateral ILN and MLN. In some mice, there was also a 
clear primary proliferation of OVA-specifi c TCR Tg cells 
in the mesenteric nodes, as previously reported for CD8 +  
T cell responses after i.p. injection (unpublished data) 
( 25 ). By day 4 of the response, the primary T cell re-
sponse in the draining MLN (and ILN) was more pro-
nounced in mice receiving both OVA and alum compared 
with OVA alone, with a total percentage of CFSE +  Tg cells 
of 1.7 vs. 0.6% in the mediastinal nodes ( Fig. 2 A ).  By day 
2 – 4 of the response, there was a clear increase in CFSE 
content (i.e., the number of CFSE +  KJ1-26 +  cells per 10 5  
CD4 +  T cells, correcting for the multiplying eff ect of cell 
division) in OVA-alum – immunized mice compared with 
mice only immunized with OVA or saline control, signify-
ing that the increase was not only caused by division but 
also by recruitment of naive Ag-specifi c T cells to these 
nodes ( Fig. 2 B ). However, such recruitment did not occur 
in nondraining nodes. Also, signifi cantly more divided 
CFSE +  Tg +  recirculating eff ector cells were seen in the 
nondraining node and spleen. By day 7, a time point when 
the majority of OVA-specifi c TCR Tg T cells have disap-
peared in mice receiving OVA, the Tg T cells persisted in 
the draining and nondraining nodes and spleen in mice re-
ceiving OVA-alum ( Fig. 2, A [right] and B ). These per-
sisting cells in the mediastinal nodes had Th2 eff ector 
potential in the OVA-alum group, as they produced IL-4, -5, 
and -10, but little IFN �  ( Fig. 2 C ). Bulk cultures of medias-
tinal node cells from OVA-immunized mice did not pro-
duce signifi cant levels of cytokines in response to OVA 

as mature cells, expressing all costimulatory molecules and 
having lost the capacity to take up Ags ( 13, 14 ). The response 
of DCs to exposure to foreign Ags is part of the innate im-
mune response, and by providing a link between Ag recogni-
tion and Ag processing for presentation to naive T cells, these 
cells bridge innate and adaptive immunity ( 15 ). 

 Many agents with adjuvant activity, such as bacterial 
endotoxin, Freund ’ s adjuvant, bacterial CpG motifs, mo-
nophosphoryl lipid A, MF59, and  � -galactosylceramide 
boost immunity through induction of DC maturation ( 16 – 19 ). 
It has been less clear if and how aluminum-containing 
adjuvants can induce DC mobilization and maturation. 
At least in vitro, alum did not enhance costimulatory mole-
cule expression and DC maturation, although this fi nding 
would not preclude such an eff ect in vivo, as endogenously 
released danger signals from damaged or infl ammatory cells 
might indirectly activate DCs ( 20, 21, 13 ). The issue is 
even more complex as Toll-like receptors and TLR signal-
ing through the MyD88 or TRIF adaptor pathway, classi-
cal activators of innate immunity and the DC network in 
vivo, were not always necessary for alum to act as an adju-
vant for humoral immunity ( 6, 22, 21 ). In view of the cru-
cial role of DCs in activation of adaptive immunity, we 
therefore set out to carefully study the eff ects of alum on 
DCs and their monocytic precursors in vivo after i.p. and 
i.m. injection of antigen (Ag) in alum and studied T cell 
activation using an adoptive transfer system of traceable 
Ag-specifi c T cells. Our experiments revealed a hitherto 
unappreciated role for monocyte-derived infl ammatory 
DCs and uric acid release in boosting adaptive immunity in 
alum-formulated Ag preparations. 

  RESULTS  

 Distribution of the primary immune response after i.p. 

injection of OVA 

 Despite the wide use of i.p. injection of experimental Ags 
coupled to alum adjuvant, the precise localization of primary 
T cell activation after i.p. injection of Ag has not been stud-
ied in great detail. By analogy with the rapid resorption of 
drugs after i.p. injection, it is often assumed that i.p. injection 
leads to rapid systemic resorption of Ag, and therefore i.p. 
injection is often regarded as systemic immunization. To 
study primary T cell activation, naive BALB/c mice received 
a cohort of CFSE-labeled OVA-specifi c TCR Tg cells 
obtained from DO11.10 mice, and mice were subsequently 
immunized 1 d later with 10  μ g of OVA via an i.p. injection 
in the right lower quadrant. 2 d later, primary T cell divisions 
were readily noticed in the inguinal LN (ILN) on the right 
side, and in the mediastinal LN (MLN). In Ag-injected mice, 
only the CD4 +  Ag-specifi c T cells recognized by the KJ1-26 
Ab divided, whereas a coinjected fraction of TCR Tg popu-
lation did not. Strikingly, there were no primary divisions in 
the contralateral left ILN or in the spleen ( Fig. 1 A ).  The fact 
that Ag presentation occurred only in the ipsilateral ILN was 
caused by the fact that the needle injection caused a break 
in the peritoneal and skin barrier. This was clear when we 
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a rapid recruitment into the peritoneal cavity of CD11b + F4/
80 int Ly6G  �  Ly6C high  infl ammatory monocytes, previously 
shown to be immediate precursors for DCs ( 26, 27 ). 12 and 24 h 
after injection of OVA-alum, a signifi cant increase in the num-
ber of myeloid DCs (defi ned as MHCII high CD11c + F4/80 low ) 
and plasmacytoid DCs (defi ned as 120G8 + CD11b dim CD11c int ) 
could be found compared with OVA-injected mice. Further-
more, OVA-alum led to a marked increase in the numbers of 
neutrophils (defi ned as CD11b + Ly6C + Ly6G high F4/80  �   cells) 
and eosinophils (CD11b + Ly6C dim Ly6G dim F4/80 dim ) recruited 
into the peritoneal cavity. In an attempt to explain the increase 
in innate immune cells so early after injection of alum, we also 
measured the levels of chemokines in the peritoneal lavage at 
2 h after injection of saline, OVA, or OVA-alum. There was 
a marked increase in the levels of the monocyte chemotac-
tic protein (MCP1; CCL2), the neutrophil chemotaxin KC 
(CXCL1), and the eosinophil chemotaxin eotaxin-1 (CCL11) 
in mice receiving OVA-alum versus OVA or saline ( Fig. 3 B ). 
OVA by itself induced an intermediate level of MCP-1 com-
pared with saline- or OVA-alum – injected mice. 

 At 24 h after injection, we also studied the presence of 
a population of IL-4 – producing Gr-1 +  myeloid cells, which 
were previously shown to be involved in inducing splenic B 
cell priming after alum injection ( 5 ). Using IL-4 GFP reporter 
mice (4-Get mice) ( 28 ), we could detect an alum-induced in-
crease in this population in the peritoneum and spleen, but not 
MLNs. In addition, we found that alum induced two popu-
lations of CD11b + Gr1 +  myeloid cells expressing IL-4 in the 
peritoneum, the highest Gr1 +  one most likely being granu-
lar F4/80 +  eosinophils, and the intermediate Gr1-expressing 
one being monocytes (Fig. S3, available at http://www.jem
.org/cgi/content/full/jem.20071087/DC1). 

restimulation. In the nondraining nodes, there was simil   -
arly a clear increase in Th2 cytokine production in mice 
receiving OVA-alum, most likely caused by recirculating 
primed T cells. 

 The i.p. route is most often used for immunization of ani-
mals because of its ease of use, but in humans, most alum-
formulated adjuvants are injected i.m. or s.c. We therefore 
also studied the response to OVA-alum and OVA after i.m. 
injection into the gluteal muscle of mice. In these mice, the 
primary DLN site was the sacral LN. Again, OVA injection 
alone led to transient T cell activation followed by deletion 
of dividing cells, whereas alum injection left behind a persis-
tent and recirculating T cell response, which was most prom-
inent in the sacral node (Fig. S2 A, available at http://www
.jem.org/cgi/content/full/jem.20071087/DC1). 

 Response of innate immune system cells to i.p. injection 

of Ag in adjuvant 

 Having identifi ed the MLN as the most physiological draining 
site after i.p. injection of Ag in alum, we next directed our in-
terest to the innate immune response to adjuvant in the perito-
neum and how cells would take up and translocate Ag from the 
peritoneum to this node. By analogy with other adjuvants, it is 
possible that alum adjuvant is immunogenic because of its in-
duction of infl ammation at the site of injection, thus recruiting 
APCs to the site of Ag exposure ( 7 ). One of the most prominent 
cell types found in the peritoneal cavity of unimmunized mice 
are the resident F4/80 high CD11b high  peritoneal macrophages. 
Within 6 h after injection, there was a dramatic reduction in 
these resident macrophages in mice receiving OVA-alum, but 
not OVA ( Fig. 3 A ).  On the contrary, OVA-alum induced 

  Figure 1.   The mediastinal and ipsilateral ILN drain the peritoneal cavity after i.p. injection.  Mice were injected with CFSE-labeled DO11.10 OVA-

TCR Tg cells 1 d before the i.p. injection of OVA in the right lower quadrant. (A) 2 d after OVA injection, different LNs and spleen were taken and T cell 

proliferation was assessed with fl ow cytometry after CFSE dilution. Only KJ1-26 Ag-reactive T cells divide. (B) Immediately after the administration of 

OVA in the right lower quadrant, a sterile puncture was made at the left lower quadrant. 4 d later, proliferation was measured in the left and right ILN. 

An example is shown of four mice (representative of at least two independent experiments).   
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fi ed in alum and uptake by CD11c +  DCs in the peritoneal cav-
ity was measured 6 and 24 h later. Even in the absence of alum, 
DCs captured the Ag, but the mean fl uorescence intensity rep-
resenting the amount of Ag taken up was higher when alum 
was added ( Fig. 4 A , results at 24 h are shown).  Under the same 
conditions, peritoneal B cells also took up more fl uorescent Ag 

 Ag uptake and processing by recruited DCs 

 The increase in DCs after injection of OVA-alum led us to 
study the eff ects of alum on several functional aspects of DCs, 
including Ag uptake, processing, and functional maturation. 
To investigate if alum had an eff ect on the Ag uptake by DCs, 
OVA-Alexa Fluor 647 was injected i.p. either alone or emulsi-

  Figure 2.   Addition of alum adjuvant to OVA leads to a stronger, more persistent and recirculating Th2 immune response.  Mice were injected 

with CFSE-labeled DO11.10 OVA-TCR Tg cells 1 d before the i.p. injection of OVA or OVA-alum. (A) 4 and 7 d after the injection the DLN (MLN), nondrain-

ing LN (CLN), and the spleen were analyzed for T cell proliferation with fl ow cytometry ( n  = 4 mice; experiment performed three times). (B) CFSE content 

was calculated as described in Materials and methods, and is shown for DLN (MLN) and nondraining LN (ALN). Open symbols represent the OVA-injected 

mice, and the fi lled symbols the OVA-alum injected mice. (C) 7 d after the i.p. injection, LN cells (DLN: MLN, nondraining LN: ALN) were taken and restimu-

lated in vitro for 4 d with OVA. Cytokines were measured in the supernatants by ELISA. Open bars represent OVA-injected mice, and closed bars represent 

the OVA-alum – injected mice. Data are shown as the mean  ±  the SEM, *, P  <  0.05.  n  = 4 – 6 mice per group.   
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that the DC maturation marker CD86 (and CD40; unpub-
lished data) was induced on peritoneal lavage CD11c + MHCII +  
DCs within 6 h, and started to return to baseline from 24 h on-
wards compared with an injection of OVA or saline ( Fig. 4 D ). 
This eff ect of alum on DC maturation was most likely indirect, 
as exposure of purifi ed BM-derived DCs to alum in vitro 
did not lead to any direct DC activation ( Fig. 4 D , right) 
( 20, 21 ). The ultimate defi nition of DC function is the poten-
tial to present Ag to naive T cells. When CD11c + MHCII +  
DCs were sorted from the peritoneum of immunized mice, 
only DCs derived from OVA-alum – immunized mice induced 
T cell proliferation of naive DO11.10 OVA-specifi c T cells ex 
vivo ( Fig. 4 E ), which is best explained by induction of DC 
maturation ( Fig. 4 D ) and more effi  cient Ag processing by these 
cells ( Fig. 4 B ). 

when alum was added, whereas recruited eosinophils and neu-
trophils did not take up OVA-Alexa Fluor 647, even in the 
presence of alum (unpublished data). 

 To analyze Ag processing of internalized Ag, we used 
OVA-DQ, a form of OVA that is highly conjugated to the 
BODIPY fl uorochrome that fl uoresces in the green channel 
when taken up by cells and in the red channel when it accumu-
lates at high densities inside endosomal Ag-processing compart-
ments. CD11c + MHCII +  DCs from OVA-DQ – alum treated 
mice took up and processed more Ag than OVA-DQ – treated 
mice ( Fig. 4 B ). When the CD11c + OVA-DQ double   pos  cells 
were analyzed in the OVA-DQ-alum – treated mice, they ex-
pressed more MHC class II than the OVA-DQ neg  cells, indicat-
ing that the DCs that took up and processed Ag also functionally 
matured ( Fig. 4 C ). After injection of OVA-alum, we observed 

  Figure 3.   Alum recruits innate immune cells to the peritoneal cavity.  Mice were injected i.p. with OVA or OVA alum. (A) 6, 12, and 24 h after 

injection, the peritoneal lavage was taken and the number of macrophages (F4/80 high CD11b + SSC high ), monocytes (CD11b + Ly6C high Ly6G - F4/80 int ), 

myeloid DCs (MHCII high CD11c + F4/80 low ), plasmacytoid DCs (120G8 + CD11b dim CD11c int ), neutrophils (CD11b + Ly6C + Ly6G high F4/80  �  ), and eosinophils 

(CD11b + Ly6C int Ly6G int F4/80 int ) was determined. Open symbols represent the OVA-injected mice, and fi lled symbols the OVA-alum injected mice. (B) 2 h 

after injection, the peritoneal lavage was taken and chemokine levels were determined in the supernatant by ELISA. Data shown are the mean  ±  the SEM. 

*, P  <  0.05.  n  = 4 – 6 mice per group.   
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processing the internalized Ag, Ly6C +  monocytes were sorted 
from MLN, and they induced ex vivo proliferation of DO11.10 
T cells when obtained from OVA-alum – immunized mice 
( Fig. 5 B ). The T cell division induced by sorted monocytes 
was even greater than the one induced by sorted MLN DCs 
(sorted based on classical characteristics). Consistent with the 
induction of T cell proliferation, monocytes arriving in the 
MLN and carrying Ag to these nodes (measured by OVA 
Alexa Fluor 647) acquired costimulatory molecule expression 
(CD86 and CD40), up-regulated MHCII and most impor-
tantly also acquired the CD11c integrin, a classical marker of 
DCs. These changes were most pronounced in monocytes that 
had taken up Ag ( Fig. 5 C ). As these fi ndings were largely de-
scriptive and not excluding the possibility that LN resident 
monocytes acquired the Ag and up-regulated CD11c in situ, 
we performed adoptive transfer experiments of fl ow cytometry 
sorted Ly6C + CD11b + CD31  �   bone marrow monocytes ob-
tained from CD45.2 congenic mice that were injected i.p. into 
CD45.1 recipients, 2 h after injection of OVA or OVA-alum. 
As shown in  Fig. 5 D , CD45.2 monocytes migrated from the 
peritoneal cavity to the MLN, and this migration was strongly 
amplifi ed by the addition of alum. When CD45.2 bone mar-
row monocytes were phenotyped before i.p. injection, they 
were negative for the DC markers CD11c and MHC class II. 
However, CD45.2 monocytes recovered from the MLN 36 h 
after i.p. injection now strongly expressed MHC class II and 
CD11c, and up to 25% of cells expressed both markers, indica-
tive of conversion to DCs. 

 One aspect of DC biology that cannot be overestimated 
is their potential to migrate to the DLN. Uptake studies in 
mice receiving OVA-DQ-alum revealed that within 24 h, 10% 
of CD11c + MHCII +  DCs in the MLN had taken up Ag and 
processed it into immunogenic fragments, as did 2% of 
CD19 + MHCII +  B cells and 10% of 120G8 + CD11c int  pDCs. 
The addition of alum to OVA led to a strong increase in cells 
positive for processed OVA-DQ, from 0.05 to 0.87% of all 
live DLN cells, particularly in DCs and B cells (FACS plots 
not depicted). We could not detect signifi cant OVA-DQ 
processing in any APC population in nondraining nodes. 

 Injection of alum promotes Ag uptake by recruited 

monocytes and induces their migration and conversion 

into CD11c +  DCs in the draining nodes 

 Injection of OVA-alum induced the recruitment of infl amma-
tory CD11b + Ly6G - Ly6C + F4/80 int  monocytes to the perito-
neal cavity ( Fig. 3 A ). When fl uorescent OVA-AF647 was 
mixed with alum, these infl ammatory monocytes massively 
took up more Ag compared with OVA-AF647 injected alone 
( Fig. 5 A , top).  Particularly in OVA-alum immunized mice, 
Ly6C high CD11b + monocytes (identifi ed using the same gating 
strategy as in the peritoneum) carrying fl uorescent OVA-Alexa 
Fluor 647 could also be found in the mediastinal nodes by 24 h 
after immunization ( Fig. 5 A , bottom). Because of incompati-
ble staining reagents, we could not measure OVA-DQ pro-
cessing in this monocyte subset. To prove that they were 

  Figure 4.   Alum adjuvant stimulates DC function in vivo.  (A) Mice were injected i.p. with OVA-Alexa Fluor 647 (OVA-AF647) or OVA-AF647-alum. 24 h 

after injection, the peritoneal lavage was taken and the uptake of OVA-AF647 was assessed in F4/80  �  MHCII + CD11c +  DCs. (B) Mice were injected with 

OVA-DQ or OVA-DQ-alum i.p., and 24 h later, the mDCs (F4/80  �  MHCII + CD11c + ) in the peritoneal lavage were analyzed for the uptake and processing of 

DQ by fl ow cytometry. OVA-DQ fl uoresces green when processed in acidifi ed lysosomes. Red fl uorescence is caused by accumulation of OVA-DQ in endo-

somal processing compartments in the cell. (C) The CD11c +  cells were also analyzed for the expression of MHCII in the DQ-negative or  – double-positive 

gate. Gray-fi lled histograms represent OVA-DQ – negative, and black line histograms represent OVA-DQ – double-positive CD11c +  cells. (D) Maturation of 

mDCs in the peritoneal lavage was assayed 6, 12, and 24 h after injection of OVA or OVA-alum by fl ow cytometry. BM-derived DCs (BM-DCs) were pulsed 

for 16 h with OVA or OVA-alum. Gray fi lled histograms represent naive mice or unpulsed BM-DCs, black dotted line histograms represent OVA-injected 

mice or OVA-pulsed BM-DCs, and black solid line histograms represent OVA-alum – injected mice or OVA-alum – pulsed BM-DCs. (E) Mice were injected 

with OVA or OVA-alum, and 6 h later, the F4/80  �  MHCII + CD11c +  DCs were sorted from the peritoneal lavage and placed in co-culture with CFSE-labeled 

DO11.10 Tg CD4 +  T cells. After 4 d, cells were analyzed for proliferation and gated for CD4 + , KJ1-26 + , and CD25 + .   

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/205/4/869/1899055/jem
_20071087.pdf by guest on 08 February 2026



JEM VOL. 205, April 14, 2008 

ARTICLE

875

of infl ammatory Ag laden monocytes to the mediastinal nodes 
( Fig. 5 ), yet T cell divisions were induced in these nodes by 
OVA ( Figs. 1, 2 , and S1). One possibility would be that i.p. 
injected Ag reaches the LN via the fl ow of aff erent lymph 
from the peritoneum in the absence of cell migration. We 
indeed observed that 2 h after injection of OVA-AF647 with 
or without alum, the MLN subcapsular sinus and B cell area 
became strongly fl uorescent when we imaged sections di-
rectly without hydration (unpublished data), as previously 
shown by others ( 29, 30 ). We therefore hypothesized that in 
the absence of alum, Ag was presented by resident nonmigra-
tory LN APCs that acquired the Ag via the aff erent lymph, 

 When we studied the uptake and transport of fl uorescent Ag 
after i.m. injection into the gluteal muscle, we could similarly 
detect Ag uptake by DCs (Fig. S2 B) and infl ammatory mono-
cytes (Fig. S2 C) in the muscle. When OVA-alum was adminis-
tered, Ag-laden infl ammatory monocytes were especially prone 
to accumulate in higher numbers in the draining sacral nodes. 

 Functional effect of depleting resident or recruited DCs 

on T cell priming and humoral immune response induced 

by OVA or OVA-alum 

 The i.p. injection of OVA by itself did not lead to peritoneal 
DC activation and Ag presentation ( Fig. 4 ), nor recruitment 

  Figure 5.   Infl ammatory monocytes recruited by alum take up Ag, migrate to DLN and acquire a DC phenotype.  Mice were injected with OVA-Alexa 

Fluor 647 (OVA-AF647) or OVA-AF647-alum, and 24 h later, the peritoneal lavage and DLN (MLN) were taken. (A) Presence of OVA-AF647 in infl ammatory 

monocytes (defined as CD11b + Ly6C high Ly6G - F4/80 int ) is shown in the peritoneal lavage and MLN. (B) Inflammatory monocytes and mDCs 

(CD11b + MHCII high Ly6C  �  ) were sorted and placed in co-culture with CFSE-labeled DO11.10 Tg CD4 +  T cells. T cell proliferation was assayed at day 4 and plots 

depict PI-negative CD4 +  cells. (C) Expression of CD11c, MHC II, and CD86 on infl ammatory monocytes determined by nine-color fl ow cytometry. Gray fi lled 

histograms represent the OVA-AF647 – negative monocytes, whereas the black line histogram represents the OVA-AF647-positive ones. An example represen-

tative of four mice is shown. (D) CD45.1 mice were injected with OVA or OVA-alum. 2 h later, they received CD45.2 +  monocytes sorted from bone marrow 

(purity  > 95%). 36 h later, the number of CD45.2 +  cells in the MLN were determined by fl owcytometry. Data shown are the mean  ±  the SEM. **, P  <  0.01.  

n  = 4 – 5 mice per group. (E) The CD11c and MHC II expression was assessed on the CD45.2 +  cells before injection, and 36 h later, in the MLN.   
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experiments were nontransgenic littermates that received a 
similar treatment with DT. DT was administered locally via 
the intratracheal (i.t.) route, leading to a depletion of medias-
tinal-resident LN (Fig. S4, available at http://www.jem.org/
cgi/content/full/jem.20071087/DC1), as well as lung-derived 
migratory DCs, whereas leaving all other DCs unaff ected 
( 32 ). By taking advantage of the unique feature that the 
MLN drains both the lung and peritoneum, we could deplete 

whereas in the presence of alum, Ag was presented by re-
cruited infl ammatory monocytes and DCs that migrated to 
the nodes. To address this hypothesis, we used transgenic 
mice in which DCs can be conditionally depleted by admin-
istration of diphtheria toxin (DT). In these mice the human 
DTR receptor is expressed under the control of the murine 
CD11c promotor, leading to the rapid killing of CD11c hi  
cells upon DT administration ( 31, 32 ). Control mice in these 

  Figure 6.   Contribution of resident versus recruited CD11c +  DCs on Ag presentation and immunopotentiating effect of alum adjuvant. 

 (A) CD11c-DTR Tg mice were depleted of resident MLN DCs by an i.t. injection of 100 ng DT or PBS as a control. 1 d before DT, they received a cohort of 

CFSE-labeled CD4 +  DO11.10 T cells i.v. 1 d after DT, OVA or OVA-alum was given i.p. 3 d after the last injection, proliferation of Tg T cells were determined 

in the draining MLN and draining right ILN. Percentages in the plots are the percentage of Tg cells from total CD4 +  T cells. (B) To deplete all CD11c +  cells 

(resident and recruited) CD11c-DTR Tg mice were injected i.p. with 100 ng DT or PBS as a control. 1 d before DT, they received a cohort of CFSE-labeled 

CD4 +  DO11.10 T cells i.v. OVA or OVA-alum was given i.p. 4 d after the last injection, and proliferation of Tg T cells was determined in the DLN (MLN) and 

nondraining LN (CLN). Percentages in the plots are the percentage Tg cells from total CD4 +  T cells. (C) CD11c-DTR Tg mice were depleted of DCs by an i.p. 

injection of 100 ng DT or PBS as a control. 1 d before DT, they received a cohort of CFSE-labeled CD4 +  DO11.10 T cells i.v. 1 d after DT, OVA, or OVA-alum 

was given i.p. with or without sorted monocytes from BALB/c mice. 4 d after the last injection, proliferation of Tg CD4 +  T cells was determined in the 

draining MLN. An example is shown in 4 mice; the experiment was repeated at least two times. (D) CD11c-DTR Tg mice and non-Tg mice were injected 

with PBS or DT and received an i.p. injection of OVA-alum, and 10 d later, serum samples were taken and OVA-specifi c IgG1 levels were determined by 

ELISA. Data are shown as the mean  ±  the SEM, * P  <  0.05.  n  = 4 – 5 mice per group.   
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To test the functional signifi cance of this induced uric acid, 
we neutralized it by treating mice with the uric acid – degrad-
ing enzyme uricase before administration of OVA – Alexa 
Fluor 647 in the presence or absence of alum. The recruit-
ment of OVA-laden CD11b + Ly6G  �  Ly6C + F4/80 int  infl amma-
tory monocytes to the MLN was completely abolished in mice 
treated with uricase ( Fig. 7 B ), and consequently, T cell divi-
sion that is normally avidly induced in vivo in the presence of 
alum was abolished back to the control level when uricase 
was given ( Fig. 7, C and D ). It was previously shown that the 
peritoneal response to uric acid is heavily dependent on the IL-1 
receptor and downstream MyD88 signaling. To test this possi-
bility, we gave OVA-Alexa Fluor 647 +/ �   alum to MyD88  � / �   
C57BL/6 mice and found that the recruitment of infl amma-
tory monocytes to the MLN was grossly reduced compared 
with WT animals ( Fig. 7 E ). 

  DISCUSSION  

 By carefully studying the kinetics and distribution of the in-
nate and adaptive T cell immune response after i.p. injection 
of OVA in alum, we have uncovered a previously unappreci-
ated role for monocyte-derived DCs in mediating the adju-
vant eff ects of alum on cellular and humoral immunity. This 
is underscored by the fact that infl ammatory monocytes and 
DCs were attracted to the peritoneum after injection of OVA-
alum; that they took up and processed the Ag on their way to 
the MLNs; that they acquired a functional phenotype of 
mature DCs once in the LN; and, fi nally, that removal of 
CD11c +  DCs abolished T cell proliferation in OVA-alum –
 immunized mice, an eff ect that was restored by adoptive trans-
fer of Ly6C hi  monocytes. 

 One of the aspects of our study that allowed us to uncover 
this new mechanism of action of alum was the assessment of the 
precise localization where Ag presentation occurred after i.p. 
injection. The peritoneal route is easily accessible and often 
used as a site for immunization to test the protective eff ect of 
novel vaccines against subsequent infection. The good re-
sorption of drugs from the peritoneal cavity has mislead the 
immunological community, as it is often assumed that i.p. 
administration of a protein Ag leads to rapid systemic resorp-
tion into the bloodstream, leading to the common notion 
that i.p. administered Ags are presented by APCs in the 
spleen, similar to i.v. injected Ags. Therefore, i.p. immuniza-
tion is often equalled to  “ systemic immunization, ”  and inves-
tigators studying the immunogenicity of alum have focused 
on the spleen as a site where immune activation might occur 
( 22, 5 ). We show that i.p. injection of the OVA Ag in the 
right lower quadrant of the peritoneal cavity leads to Ag pre-
sentation and Ag-induced T cell proliferation in the MLN 
and the ipsilateral ILN, but not in the spleen. After T cell di-
visions over time, it was clear that only after 4 d, when T cells 
had undergone at least 3 – 4 divisions, could we detect divided 
cells in nondraining LNs and spleen, very similar to what we 
and others described for immunization with Ags via the skin 
or respiratory mucosa ( 23 ). Therefore, the Ag-specifi c reac-
tivity that can be measured in the spleen ex vivo is the result 

LN-resident DCs also draining the peritoneum without having 
to administer the toxin to the peritoneum. When resident 
DC-depleted mice received an i.p. injection of Ag 1 d later, 
T cell proliferation (measured 3 d after injection of OVA) 
was abolished in the MLN in mice receiving OVA, but not 
those receiving OVA-alum ( Fig. 6 A ).  On the contrary, the 
ipsilateral draining ILN still demonstrated T cell prolifera-
tion in response to OVA, even when DT was administered 
to the lung, illustrating that the toxin did not aff ect resident 
DC function outside the mediastinal node. 

 To fi nally study the function of migratory DCs and 
monocyte-derived DCs in the priming of the immune sys-
tem by OVA-alum, we also administered the DT toxin sys-
temically through the peritoneal route, depleting all CD11c hi  
cells, including the resident ones ( 31 ). When CD11c-DTR 
Tg mice received an i.p. injection of OVA-alum, adoptively 
transferred DO11.10 T cells divided strongly when CD11c +  
cells were present ( Fig. 6 B ). In CD11c-depleted mice, there 
was a very strong reduction in T cell divisions at day 4 of the 
response, and there was no occurrence of recirculating di-
vided T cells in the nondraining nodes. As the population of 
recruited infl ammatory CD11b + Ly6G - Ly6C + F4/80 int  mono-
cytes diff erentiated into DCs in vivo ( Fig. 5 E ), we fi nally 
tested whether sorted BM-derived monocytes injected i.p. 
could restore divisions in mice depleted of CD11c hi  cells. As 
shown in  Fig. 6 C , injection of monocytes 2 h after injection 
of OVA-alum restored T cell divisions in Ag-specifi c T cells 
in the MLN of mice depleted of DCs. 

 Aluminum adjuvant is widely used for its strong induc-
tion of the humoral response, possibly through induction of 
direct priming of B cells by a myeloid IL-4 – producing cell 
type ( 5 ) and by induction of T cell help for class switching. 
To examine if the humoral response would also be depen-
dent on DCs, we treated CD11c-DTR mice or non-Tg lit-
termates with DT and injected them with OVA-alum. 10 d 
after the injection, serum samples were taken and OVA-spe-
cifi c IgG1 and IgE levels were determined. In DC-depleted 
mice (CD11c-DTR Tg mice given DT) a signifi cant reduc-
tion in the levels of OVA-specifi c IgG1 was found ( Fig. 6 D ). 
OVA-specifi c IgE levels in serum also showed this trend, al-
though it did not reach signifi cance (unpublished data). 

 The immunopotentiating effect of alum depends 

on induction of uric acid and signaling through 

the MyD88 pathway 

 The fact that monocytes are recruited to the peritoneum and 
diff erentiate into full-blown Ag-presenting DCs does not ex-
plain how these cells get activated. One striking fi nding was 
that alum induced a strong neutrophilic infl ux, accompanied 
by the production of CXCL1 (KC) and CCL2 (MCP-1;  
Fig. 3 ), as well as IL-1 �  and -18 (not depicted) ( 21 ), akin to 
the response seen when the endogenous danger signal uric acid 
is injected into the peritoneal cavity ( 33, 34 ). We therefore 
measured the level of uric acid in the peritoneal lavage 6 h after 
injection of saline, OVA, or OVA-alum and found that only 
alum induced a strong increase in uric acid levels ( Fig. 7 A ).  
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be mediated by DCs or other APCs that pick up Ag in the 
peritoneal cavity and migrate to these nodes ( 38 ). Both sce-
narios might come into play. By visualizing unhydrated LN 
slides, we could detect a massive amount of fl uorescent Ag 
in the MLN within 2 h after i.p. injection, irrespective of 
whether alum was added or not, which would never be 
caused by cell transport alone. Cell-mediated transport by in-
fl ammatory Ly6C high  monocytes and DCs occurred especially 
when alum was added. 

 What is the reason for the dramatic diff erence in T cell 
outcome when alum adjuvant is added to an Ag? We dem-
onstrated that in the absence of alum, Ag was presented 
predominantly by nonmigratory LN-resident DCs that ac-
quired the Ag via aff erent lymph, as evidenced in experi-
ments in which these resident DCs were depleted locally in 
the mediastinal node before OVA administration ( Fig. 6 A ). 
Itano et al. demonstrated that after skin puncture, there is a 
rapid fl ux of cell-free Ag from the site of injection to the 
skin-draining node, leading to T cell divisions in Ag-specifi c 

of recirculating eff ector and/or memory cells. This fi nding 
does not exclude that there is immune activation occurring in 
the spleen before day 3 – 4 of the response. Within 24 h of in-
jection of OVA-alum, there was induction in the spleen of an 
IL-4 – producing Gr1 +  myeloid cell, as described before by 
others 6 d after injection of alum ( 5 ). The induction of divi-
sions in the ipsilateral ILN was unexpected, but was caused 
by an artifact induced by skin puncture. One important lesson 
is that ILN nodes should not be taken as  “ control nondrain-
ing nodes, ”  as is often done because of their easy accessibility 
for Ags that are injected i.p. 

 It was less surprising that Ag was presented in the MLN 
as previous studies in rat, mice, and sheep have shown that 
the peritoneal cavity has a lymphatic drainage consisting of 
stomata that cross the diaphragm and drain into the parathy-
mic LN and MLN ( 35, 36, 26 ). The transport of Ag could 
be either through free-fl owing lymph, gaining access to the 
subcapsular sinus and conduit system of MLNs and thus to 
resident DCs and to follicular B cells ( 29, 37, 30 ), or it could 

  Figure 7.   The alum response in mice depends on uric acid and MyD88 signaling.  (A) Mice were injected with saline, OVA, or OVA-alum, and after 

2 h, uric acid levels were determined in the peritoneal lavage. Data are shown as the mean  ±  the SEM. **, P  <  0.01.  n  = 5 – 6 mice per group. (B) Mice were 

injected with uricase 1 d and 5 min before OVA-AF647 or OVA-AF647-alum, and 24 h later, the DLNs (MLN) were taken. The number of OVA-AF647 +  in-

fl ammatory monocytes (defi ned as CD11b + Ly6C high Ly6G  �  F4/80 int ) are shown. Data are shown as the mean  ±  the SEM. *, P  <  0.05.  n  = 4 – 5 mice per group. 

(C) At day 0, mice received a cohort of CFSE-labeled DO11.10 T cells i.v. and uricase i.p. At day 1, mice received another injection with uricase, and 5 min 

thereafter OVA or OVA-alum i.p. 4 d after the last injection, proliferation of Tg T cells were determined in the draining MLN. Percentages in the plots are 

the percentage of Tg cells from total CD4 +  T cells. An example is shown from four mice, and the experiment was repeated twice. (D) Quantifi cation of the 

number of Tg cells from 4 and 7 d after OVA or OVA-alum plotted in C. Data are shown as mean  ±  SEM. *, P  <  0.05; **, P  <  0.01.  n  = 4 mice per group. 

(E) MyD88  � / �   and WT mice were injected with OVA-AF647 or OVA-AF647-alum, and 24 h later, the DLN (MLN) were examined. The number of OVA-

AF647 +  infl ammatory monocytes (defi ned as CD11b + Ly6C high Ly6G - F4/80 int ) are shown. Data are shown as mean  ±  SEM. *, P  <  0.05.  n  = 4 mice per group.   
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uricase treatment. Uric acid is released by necrotic cells and alum 
has been shown to induce a considerable degree of necrosis. It 
is well known that alum injection i.p. leads to cell death and, 
when injected into muscle alum, leads to myofascitis. The re-
lease of uric acid could explain the high degree of neutrophilic 
infl ammation, as well as CXCL1 production, as a very similar 
response is seen when uric acid is injected i.p. ( 13, 33 ). More-
over, work by others ( 21 ), along with our own unpublished 
work (unpublished data), demonstrated that alum, like uric 
acid, activates caspase-1 and leads to the release of IL-1 �  and 
-18 ( 33 ). In support of a predominant role for this pathway in 
activating infl ammatory DCs, we found that the alum re-
sponse was abrogated in mice defi cient in the signaling mole-
cule MyD88, involved in transducing signaling from the IL-1 
and -18 receptor. What we cannot presently explain, how-
ever, is the fact that the humoral immune response measured 
several weeks after injection of alum is variably dependent on 
MyD88 and/or IL1 ( 6, 45, 46 ). Although these diff erences 
might depend on timing of analysis and contamination or ad-
dition of diff erent TLR ligands to alum, it could also be that 
for induction of humoral responses, IL-1 signaling via Myd88 
is redundant, whereas for T cell responses it is crucial ( 8 ). 

 Whether uric acid is the only endogenous innate trigger for 
DC activation remains to be shown, but the fact that uricase 
was so eff ective points toward a predominant role for it. Just 
like uric acid, alum adjuvant can activate several other aspects 
of innate immunity, including activation of the coagulation 
and complement cascade, which is known to infl uence DC 
function ( 7, 47 ). As alum does not activate bone marrow – de-
rived DCs in vitro, it is tempting to speculate that nonhema-
topoietic structural cells of the peritoneal cavity might undergo 
necrosis and subsequently release uric acid, although formal 
proof of this is lacking. The rapid recruitment of neutrophils 
and eosinophils within 6 h, along with DCs, could subse-
quently be responsible for the indirect activation of DCs. 
Indeed, neutrophils have been shown to activate DCs through 
CD11b – DC – SIGN interactions, leading to secretion of che-
mokines and cytokines ( 48 ). Whether eosinophils could per-
form the same task is unclear at present, but they could certainly 
represent an early source of Th2-polarizing cytokines, which 
are necessary for Th2 induction by alum ( 28 ). It has been 
shown that alum induces a Gr-1 + IL-4 +  myeloid population 
(eosinophils and monocytes) in the spleen 10 d after injection 
( 5 ). We did see an increase in Gr1 + IL4 +  cells in the peritoneum 
and spleen, but not MLN, within 24 h after injection of alum, 
but do not know at present whether this population could be 
involved in activation of the monocytes and DCs. 

 In conclusion, through a series of in vivo experiments, 
we showed that alum adjuvant promotes adaptive immunity 
by releasing the endogenous danger signal uric acid, thus in-
ducing the diff erentiation of nature ’ s adjuvant, the infl amma-
tory DC, from recruited monocytes. 

  MATERIALS AND METHODS  
 Mice.   BALB/c mice (6 – 8 wk old) were purchased from Harlan. OVA-TCR 

transgenic mice (DO11.10), CD11c-DTR transgenic mice on a BALB/c 

T cells, without generation of T cell eff ector potential ( 37 ). 
We speculate that the physiological drainage of the perito-
neal cavity through the stomata in the diaphragm also leads 
to presentation of Ag in a tolerogenic form by immature resi-
dent DCs, inducing deletional T cell proliferation ( 39, 40 ). 
In contrast, when infl ammation is induced by alum, there is 
additional recruitment of infl ammatory monocytes and acti-
vation of already resident peritoneal DCs that migrate to the 
LN and arrive as CD11c +  mature cells expressing the neces-
sary costimulatory molecules for naive T cell activation and 
generation of memory cells ( 41 ). Several groups have re-
cently shown that CCR2 + Ly6C +  monocytes are the imme-
diate precursors of infl ammatory type DCs, also called 
 “ TIP ” -DCs under conditions of  Listeria monocytogenes  infec-
tion ( 42 ), with an enhanced potential to induce eff ector 
T cells ( 27, 43, 44 ). We believe that our data support the no-
tion that alum boosts immunity by inducing these  “ infl am-
matory ”  DCs. When the resident LN DCs were depleted in 
the MLN using lung application of a selective DC-depleting 
DT ( 32 ), the induction of T cell division by OVA-alum was 
not suppressed, whereas when these infl ammatory mono-
cytes and DCs were depleted using peritoneal administration 
of the toxin ( 31 ), almost all T cell division disappeared ( Fig. 
6 B ) and there was no longer any priming for humoral im-
mune responses ( Fig. 6 D ). The eff ects of DC depletion on 
T cell division were, however, completely restored when we 
performed an adoptive transfer of bone marrow – derived 
Ly6C +  monocytes, cells that acquired a DC phenotype after 
arrival in the MLN. These data suggest that infl ammatory 
DCs are strongly involved in mediating the enhancing eff ects 
of alum on adaptive immunity, and also demonstrate that 
uptake and processing by other APCs is not suffi  cient for 
generating immunity in the absence of DCs. This change of 
function in monocytes could be the result of their phagocy-
tosis of particulate alum particles, as previously shown for 
phagocytosis of latex beads injected into the peritoneal cav-
ity ( 26 ). One striking feature was that all APCs contained 
more intracellular Ag when it was emulsifi ed in alum ( Figs. 
4 and 5,  and not depicted for B cells). Particularly in mono-
cytes, the cells that had internalized Ag demonstrated the 
shift in CD11c, costimulatory molecules, and MHCII, sug-
gesting that Ag uptake was indeed associated with DC dif-
ferentiation. Infl ammatory monocytes in the peritoneum 
contained fl uorescent Ag by 6 h, whereas the same cells 
were found in the MLN only by 24 h, suggesting migration 
to these nodes, a fi nding that is also supported by adoptive 
transfer experiments of CD45.2 congenic donors. 

 As our own in vitro experiments ( Fig. 4 D ) and experi-
ments by others ( 20 ) did not reveal a direct activation of 
monocytes and DCs by alum, we hypothesized that an endog-
enous danger signal might be released after injection of alum 
in vivo. We measured very high levels of the endogenous 
danger signal uric acid when alum was injected and more 
importantly, recruitment of neutrophils, infl ammatory mono-
cytes, and T cell activation induced by alum in the medias-
tinal LN was abolished when uric acid was neutralized by 
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mAb 120G8 (provided by C. Asselin-Paturel, Schering-Plough, Dardilly, 

France). Sorting of CD11c +  MHCII +  DCs, F4/80 int CD11b + Ly6G - Ly6C +  in-

fl ammatory monocytes, and F4/80 + CD11b +  macrophages was performed on 

a FACSAria high-speed sorter (BD Biosciences). 

 For Ag uptake and processing studies, 10  μ g of OVA-Alexa Fluor 647 or 

OVA-DQ (Invitrogen) was coupled or not to Imject alum, injected i.p., and 

detected 24 h later in the peritoneal cavity or various nodes. Peritoneal lavage 

and LN cells were stained for seven or nine color fl ow cytometry using com-

binations of live (DAPI-negative), Ly6C-FITC and Ly6G-PE or CD19-PE, 

mPDCA1-APC, CD8-PerCP-Cy5.5 or CD11b-PerCP-Cy5.5, CD11c-PE-

Texas red, Ly6G-PE-Cy7 or CD8 � -PE-Cy7, MHCII-biotin, or F4/80-bio-

tin, followed by streptavidin-APC-Cy7, CD11b-Pacifi c blue, combined with 

uptake of fl uorescent Ags of OVA-DQ or OVA-Alexa Fluor 647. 

 Acquisition of four color samples was on a FACSCalibur cytometer 

equipped with CellQuest software and seven to nine color samples on a 

FACSAria cytometer equipped with FACSDiva software (all BD Biosci-

ences). Final analysis and graphical output were performed using FlowJo 

software (Tree Star, Inc.). 

 Generation of BM-DCs.   Bone marrow cells were cultured for 9 d in 

DC culture medium (DC-CM; RPMI 1640 containing GlutaMAX-I; Invi-

trogen) supplemented with 5% (vol/vol) FCS (Sigma-Aldrich), 50  μ M 

2-mercaptoethanol (Sigma-Aldrich), 50  μ g/ml gentamicin (Invitrogen), and 

20 ng/ml recombinant mouse GM-CSF (a gift from K. Thielemans, Vrije 

Universiteit Brussel, Brussels, Belgium). 16 h before harvesting, DCs were 

exposed either to 10  μ g/ml of OVA, alum, or OVA-alum suspension. 

 Statistical analysis.   For all experiments, the diff erence between groups was 

calculated using the Mann-Whitney  U  test for unpaired data (GraphPad 

Prism version 4.0; GraphPad Software). Diff erences were considered signifi -

cant when P  <  0.05. 

 Online supplemental material.   Fig. S1 shows time kinetics of T cell divi-

sion occurring in the DLN, nondraining LN, and spleen after an i.p. OVA 

injection. Fig S2 shows the T cell response after an i.m. injection with OVA 

or OVA-alum (A), and the Ag uptake by DCs and infl ammatory monocytes 

in the muscle or DLN (B and C). Fig. S3 shows the Gr-1 + IL-4 +  cell popula-

tions 24 h after injection of OVA or OVA-alum in spleens of 4-Get mice. 

Fig. S4 shows the percentage of CD11c +  cells 24 h after either an i.p. or i.t. 

injection of DT in CD11c-DTR Tg mice. The online version of this article 

is available at http://www.jem.org/cgi/content/full/jem.20071097/DC1. 
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background ( 31 ), CD45.1, and CD45.2 C57BL/6 mice were bred at Eras-

mus University (Rotterdam, Netherlands). MyD88  � / �   mice were provided 

by B. Ryff el (Centre National de la Recherche, UMR6218, Orleans, 

France) and originally made by S. Akira (Osaka University, Osaka, Japan). 

All experiments were approved by the animal ethics committee at the Eras-

mus Medical Centre. 

 Ags and adjuvant.   OVA was purchased from Worthington Biochemical 

Corp. At the dose used in our experiments, the endotoxin level of OVA 

measured by a limulus-amebocyte lysate assay (Biowhittaker) was  < 0.001  μ g/ml. 

Imject alum (Pierce Biochemicals) is a mixture of aluminum hydroxide and 

magnesium hydroxide and was mixed at a 1:20 ratio with a solution of OVA 

Ag in saline, followed by stirring for at least 1 h. For immunization, 500  μ l 

of Imject alum suspension (1 mg) containing 10  μ g of OVA (OVA-alum) 

was injected i.p. in the right lower quadrant using a 26-gauge needle, or 

alternatively, 10  μ g of OVA in 500  μ l saline was injected. 

 Detection of the primary T cell response to i.p. injection of OVA.  

 OVA-specifi c TCR Tg T cells were collected from the lymphoid organs of 

naive 4 – 6 wk old DO11.10 mice and stained with CFSE (Invitrogen) as 

previously described ( 23 ). 10  ×  10 6  cells were injected i.v. in the lateral tail 

vein of BALB/c mice (day  � 1). On day 0, the mice received an i.p. injec-

tion of 10  μ g OVA, OVA-alum, saline, or alum. On day 0, 1, 2, 4, 7, and 

14 cervical LNs (CLN), axillary (A)LNs, ILNs, mesenteric (Mes)LNs, MLNs, 

and spleens were removed, and individual cell suspensions were prepared as 

previously described ( 23 ). 

 In experiments to address the functional role of DCs in peritoneal re-

sponses, CD11c +  cells were depleted by injecting 100 ng of DT either i.t. or 

i.p. in CD11c-DTR Tg mice ( 31, 32 ). In these mice, CD4 +  T cells were purifi ed 

from OVA-specifi c TCR DO11.10 cells using magnetic separation (CD4 +  

T Cell Isolation kit; Miltenyi Biotec), and 2 – 5  ×  10 6  cells were injected i.v. 

 In experiments to address if monocytes could restore the phenotype in 

the DT-treated CD11c-DTR Tg mice, 7.5  ×  10 5  CD11b + Ly6C + CD31  �   

monocytes sorted from bone marrow of BALB/c mice were injected i.p. 

2 h after OVA or OVA-alum injection. 

 In separate experiments, the i.m. route of administration was investi-

gated by giving 10  μ g OVA coupled to 1 mg alum in 50  μ l in the left hind 

limb. 4 and 7 d after the injection, the sacral (S)LNs, popliteal (P)LNs, ILNs, 

and muscles were removed and prepared for single cell suspensions. 

 Eff ector cytokine production.   LN and spleen cells (200,000 cells/well in 

triplicates) were resuspended in culture medium in 96-well plates. 4 d later, 

supernatants were harvested and analyzed for the presence of cytokines by 

ELISA (IL-4 and -5 was obtained from eBioscience; IL-10 and IFN �  was 

obtained from BD Biosciences). 

 Chemokine production.   The peritoneal lavage was taken 2 h after injec-

tion of 10  μ g OVA, OVA-alum, or saline to determine levels of diff erent 

chemokines in the supernatant by ELISA (MCP-1 and KC fro was obtained 

from R & D Systems; eotaxin was obtained from eBioscience). 

 Flow cytometry.   For detection of OVA-specifi c T cell responses, cells 

were gated for live (PI-negative) lymphocytes with CD4-APC and the clo-

notypic anti-OVA TCR antibody KJ1-26-PE. To acquire clear CFSE divi-

sion profi les, 2.5 – 10  ×  10 5  events were collected. The term  “ CFSE content ”  

gives an estimate of the original number of CFSE-labeled donor cells from 

which the donor-derived, divided population has arisen and was calculated 

as previously described ( 23 ). It can be used to calculate whether the number 

of cells at the analyzed site has been aff ected by recruitment, migration, or 

cell death, in addition to division. 

 For detection and sorting of DCs and monocytes, single-cell suspensions 

of LNs or peritoneal lavage were prepared as previously described ( 49 ) or pre-

pared from bone marrow cultures. Cells were subsequently stained with 

mAbs directed against CD11c, CD11b, MHCII, CD80, CD86, CD40 (eBio-

science), F4/80, Ly6C, or Ly6G (BD Biosciences) and with pDC-specifi c 
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