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       Recognition of foreign antigens by BCRs ex-
pressed on the surface of mature naive B cells 
triggers their massive proliferation, which is 
critically important for the eff ective defense of 
the organism against invading pathogens ( 1 ). 
Antigen-activated B cells undergo clonal ex-
pansion in dynamic structures called germinal 
centers (GCs) where much of the diversity of 
the Ig genes is generated by somatic hyper-
mutation and class-switch recombination ( 2 ). 
These molecular processes require frequent 
DNA strand breaks that can, when deregulated, 
provide a rich source for the genesis of B cell 
lymphomas ( 3 ). For instance, the hallmark of 
Burkitt ’ s lymphoma and some cases of diff use 
large B cell lymphoma (DLBCL) is a reciprocal 
chromosomal translocation where the  MYC  
protooncogene comes under the control of an 
active Ig locus, resulting in constitutive expres-
sion of  MYC  ( 4 ). However, although this and 
other translocations are thought to cause many 
types of B cell lymphoma, additional trans-
forming events that override the normal mech-
anisms controlling B cell proliferation are 

needed for malignant transformation. Indeed, 
mutations aff ecting the expression level or the 
activity of tumor suppressor genes, as well as 
genomic amplifi cations and hypermutations of 
multiple protooncogenes have also been impli-
cated in the pathogenesis of B cell lymphomas 
(for review see reference [ 3 ]). 

 Despite the aggressive behavior of several 
types of B cell lymphoma, data gathered over 
the past few years have demonstrated that BCR 
signaling is essential for the survival of neoplastic 
B lymphoma cells, which also holds true for 
their nonmalignant counterparts ( 5 – 8 ). Obser-
vations that the majority of non-Hodgkin ’ s lym-
phomas persistently express BCR and that IgH 
translocations almost never aff ect the functional-
ity of Ig alleles, as well as the discovery of auto-
reactive BCR in certain neoplasms, indirectly 
suggests the need for BCR-derived survival and 
proliferation signals ( 3 ). Correspondingly, BCR 
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 B cell receptor (BCR) signaling contributes to the pathogenesis of B cell malignancies, and 

most B cell lymphomas depend on BCR signals for survival. Identifi cation of genes that 

restrain BCR-mediated proliferation is therefore an important goal toward improving the 

therapy of B cell lymphoma. Here, we identify  Ptger4  as a negative feedback regulator of 

proliferation in response to BCR signals and show that its encoded EP4 receptor is a princi-

pal molecule conveying the growth-suppressive effect of prostaglandin E2 (PGE2). Stable 

knockdown of  Ptger4  in B cell lymphoma markedly accelerated tumor spread in mice, 

whereas  Ptger4  overexpression yielded signifi cant protection. Mechanistically, we show that 

the intrinsic activity of  Ptger4  and PGE2 – EP4 signaling target a similar set of activating 

genes, and fi nd  Ptger4  to be signifi cantly down-regulated in human B cell lymphoma. We 

postulate that  Ptger4  functions in B cells as a candidate tumor suppressor whose activity is 

regulated by PGE2 in the microenvironment. These fi ndings suggest that targeting EP4 

receptor for prostaglandin may present a novel strategy for treatment of B cell 

malignancies. 
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 To investigate the role of  Ptger4  in peripheral B cell acti-
vation, we fi rst examined the gross phenotypes of B cells ex-
tracted from spleen of  Ptger4   � / �   mice ( 16 ). We observed that 
knockout mice consistently harboured signifi cantly increased 
numbers of B cells that showed greater resistance to sponta-
neous cell death in vitro compared with wild-type controls 
( Fig. 1, E and F ). In addition, cell cycle analysis and ATP 
content measurements revealed an augmented mitogenic 
response of  Ptger4 -defi cient B cells upon BCR ligation, in-
dicating that the early induction of  Ptger4  may serve to coun-
terbalance antigen-induced proliferation in mouse B cells 
( Fig. 1, G and H ). To check whether the endogenously 
produced PGE2 may have infl uenced the growth of BCR-
activated B cells, we examined the levels of PGE2 in culture 
supernatants and saw that these remained below the detec-
tion limit of 15 pg/ml during the course of the experiment 
(unpublished data). In addition, cotreatment with COX in-
hibitors indomethacin or NS-398 had no signifi cant eff ect on 
proliferation or viability of BCR-stimulated cultures, suggest-
ing that de novo – produced PGE2 may not be a major factor 
in suppressing the growth of activated wild-type compared 
with  Ptger4 -defi cient B cells in culture (Fig. S3, available at 
http://www.jem.org/cgi/content/full/jem.20081163/DC1). 
In summary, these observations suggested that  Ptger4  func-
tions as a delayed-early gene upon BCR-triggering, and 
prompted us to further investigate the mechanism used by 
 Ptger4  to attenuate BCR-signaled proliferation. 

  Ptger4  acts as a negative feedback regulator 

of BCR-signaling 

 First, to understand how lack of  Ptger4  may have enhanced 
BCR-driven proliferation, we examined the early transcrip-
tional response of both  Ptger4 -defi cient and wild-type mouse 
B cells to stimulation with anti-IgM F(ab � ) 2  in culture. We 
were surprised by the regulation of genes known to aff ect lym-
phocyte proliferation, which showed two functionally coher-
ent groups of genes defi ned by the presence or absence of 
 Ptger4  ( Fig. 2 A ).  In line with the aforementioned observations, 
11 out of 13 genes (85%) that had higher expression levels in 
knockout relative to wild-type B cells were found to promote 
proliferation, whereas all (5 out of 5) genes overexpressed 
in wild-types had an inhibitory role. Surprisingly, signaling 
through the BCR in wild-type cells resulted in a profound 
down-regulation of most genes encoding components of the 
proximal BCR-signaling cascade itself, suggesting the exis-
tence of a potent negative feedback mechanism ( Fig. 2 B ). Al-
though triggering of  Ptger4 -defi cient B cells also repressed the 
majority of these genes, several crucial genes of the upper BCR 
pathway, including  Ptprc  coding for CD45 (also known as 
B220) ( 17 ) and  Ighm  coding for the immunoglobulin heavy 
chain of the B cell receptor itself, were induced nearly twofold 
in  Ptger4   � / �   cells compared with wild-type controls ( Fig. 2 B ). 
This indicates that by maintaining the relatively high expres-
sion of certain signaling components, the lack of  Ptger4  may 
prolong the duration of signaling via the BCR, cumulatively 
delivering a stronger proliferative stimulus. 

signaling was found to promote growth of DLBCL and 
chronic lymphocytic leukemia B cells ( 5, 7 ), whereas follicu-
lar lymphoma B cells displayed potentiated BCR signaling 
versus tumor-infi ltrating normal B cells ( 6 ). Most recently, a 
direct link between BCR signaling and B lymphomagenesis 
was established by demonstrating that  PAX5  promotes neo-
plastic growth by activating BCR signaling ( 8 ). These fi nd-
ings, together with the recognition that the survival of many 
B cell tumors depends on signals provided by their micro-
environment, might lead to novel treatment options for 
B cell lymphoma. 

 More than three decades have passed since the fi rst de-
scription of macrophage-derived PGE2 as a potent suppressor 
of splenic B cell colony formation ( 9 ), and it was later dem-
onstrated that the inhibitory eff ect of PGE2 was caused by its 
direct infl uence on B cell proliferation ( 10 ). Further studies 
identifi ed tingible body macrophages as a major source of 
prostaglandins in the GC microenvironment, and proposed 
that these scavengers of apoptotic lymphocytes may use pros-
taglandin to down-regulate the GC reaction ( 11 ). However, 
since these seminal observations, no further insight into the 
mechanism or relevance of the attenuating eff ect of PGE2 on 
B cell proliferation has been provided. In this study, we in-
vestigated how, mechanistically, PGE2 and its receptors may 
regulate B cell proliferation triggered by BCR signaling, and 
evaluated the potential contribution to B cell lymphoma 
growth in mice and humans. 

  RESULTS  

  Ptger4  is a delayed-early gene that inhibits 

B cell proliferation 

 BCR-triggered activation of mature B cells leads to tran-
scriptional reprogramming, which can be observed by a str-
ong induction of immediate-early genes within minutes after 
mitogenic stimulation, preparing a cell to quickly respond 
with proliferation ( Fig. 1 A ; see also Fig. 2 C) ( 12 ).  In an at-
tempt to identify negative regulators of B cell proliferation, 
we performed transcriptome analysis at 2 h after BCR stim-
ulation and looked for putative delayed-early genes, which 
are generally known to function as negative feedback regula-
tors of growth factor signaling (GEO database accesion no. 
 GSE9215 ) ( 13 ). Among the most strongly induced genes, we 
found  Ptger4 , whose expression kinetics appeared similar to a 
wave of delayed-early genes ( Fig. 1 B ). In addition to its high 
induction upon BCR cross-linking,  Ptger4  also seemed in-
teresting as a candidate regulator of B cell activation because 
it encodes an EP4 subtype of receptor for prostaglandin E2 
(PGE2) ( 14 ), and PGE2 is known for its potent yet poorly 
understood immunosuppressive role ( 15 ). Notably, none of 
the other genes coding for PGE2 receptors showed altered 
expression after BCR triggering ( Fig. 1 B ). We found the 
induction of  Ptger4  to be conserved in mouse A20 and hu-
man P493-6 B cell lines, and confi rmed that it resulted in 
protein expression by Western blotting and immunofl uores-
cence ( Fig. 1, B – D  and Fig. S1, available at http://www.jem
.org/cgi/content/full/jem.20081163/DC1; see also Fig. S2). 
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 Because B cells use antigen-presenting MHC class II 
molecules to attract activating help from helper T cells ( 23 ), 
endogenous control of the MHC-encoding genes by  Ptger4  
may thus provide another means to keep B cell activation in 
check. Indeed, as we demonstrate in this study, signaling via 
the EP4 receptor potently repressed the expression of mul-
tiple MHC components essential for eff ective antigen pre-
sentation by B cells (see also  Fig. 5 B ). Interestingly, it has 
been reported that PGE2 and EP2/EP4 agonists signifi -
cantly inhibit the expression of MHC class II molecules in 

 Among the genes most signifi cantly up-regulated in the 
absence of  Ptger4 , we found three potent cell cycle – regulating 
genes,  Cdk4 ,  Plagl2 , and  Nfkb1 , which are all known to 
promote G1 to S phase transition ( 18 – 20 ), as well as  Cd74  
and  H2-DMa , which are both members of the MHC class 
II family (Table S1, available at http://www.jem.org/cgi/
content/full/jem.20081163/DC1). Notably, CD74 has been 
shown to promote B cell lymphoma progression, and an 
anti-CD74 antibody is currently being clinically evaluated 
for the therapy of human B cell malignancies ( 21, 22 ). 

  Figure 1.      Ptger4  is a delayed-early gene that inhibits B cell proliferation.  (A) Mouse splenic B cells stimulated with (BCR) or without (ctrl) 

anti-IgM F(ab � ) 2  for 72 h in culture. (B) BCR-induced expression of  Ptger4  in mouse and human B cells as measured by qPCR at the indicated times. The 

relative abundances of each  Ptger  mRNA compared with  Hprt  transcripts in primary mouse B cells at time 0 h were as follows:  Ptger4  (0.0068; 100%), 

 Ptger2  (0.0013; 19.1%),  Ptger1  (0.0009; 13.2%), and  Ptger3  (2.2  ×  10  � 6 ; 0.0003%). Western blotting (C) and immunofl uorescence (D; at 48 h) of EP4 in 

BCR-stimulated mouse B cells. See Fig. S1 for higher protein loading and longer exposure immunoblot analysis, and Fig. S6 for higher quality immuno-

fl uorescence images. (E) Numbers of B cells isolated from spleen of  Ptger4  +/+  and  Ptger4   � / �   mice. (F) ATP content of unstimulated and (H) BCR-stimulated 

mouse B cells in culture. (G) Cell cycle analysis at 60 h after BCR-triggering of mouse B cells of the indicated genotypes. Error bars are the SD of six to 

eight independent experiments. Bars, (A) 200  μ m; (D) 100  μ m. Figs. S1 and S2 are available at http://www.jem.org/cgi/content/full/jem.20081163/DC1.   
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 Ptger4  ORF region repressed BCR-driven transcription 
through NF- � B, complementing the results from loss-of-
function studies.  Ptger4  exerted a similar inhibitory eff ect on 
transcriptional activity of the AP-1 components FOS and 
JUN, and potently decreased expression from IL-2 promoter 
known to contain critically important AP-1 and NF- � B sites 
( Fig. 2 D ) ( 27 ). On the other hand, neither silencing nor 
overexpression of  Ptger4  infl uenced transcriptional activity 
of EGR1 or transcription through cAMP-response element 
(CRE), both of which greatly increase upon BCR ligation 
( Fig. 2 D  and Fig. S4, available at http://www.jem.org/cgi/
content/full/jem.20081163/DC1) ( 28, 29 ). Together, these 
data indicate that  Ptger4  negatively regulates BCR-mediated 
gene expression and B cell proliferation, primarily by inhibit-
ing NF- � B and AP-1 transcriptional activity. 

B lymphocytes stimulated with IL-4 and/or lipopolysaccha-
ride ( 24, 25 ), suggesting that the inhibition of MHC class II 
by EP4 may occur independently of the stimulus used to 
activate B cells. 

 To verify the regulatory function of  Ptger4  in BCR-
driven gene transcription, we focused on a set of immediate-
early genes induced by antigen-receptor signaling ( Fig. 2, 
C and D ). Transient micro RNA (miRNA) – mediated knock-
down of  Ptger4  in the A20 B cell lymphoma line resulted in 
increased transcriptional activity of NF- � B, in line with the 
observation from primary  Ptger4   � / �   B cells, where genes 
coding for essential components of the NF- � B signaling 
pathway, including  Traf5 ,  Nfkb1 ,  Nfkbie , and  Fbi1 , have been 
found signifi cantly induced over controls (GEO accession no. 
 GSE9847 ) ( 20, 26 ). In contrast, ectopic expression of the 

  Figure 2.      Ptger4  is a negative feedback regulator of BCR-triggered proliferation.  (A) Relative expression values and functions of genes known to 

affect lymphocyte proliferation, according to Ingenuity Pathway Analysis database (IPA; see URLs in Materials and methods). For each gene, the expres-

sion ratio in BCR-stimulated (BCR) versus control (ctrl) sample at 2 h is shown (fi lled bars, wild-type [wt] B cells; open bars,  Ptger4   � / �   [KO] B cells). Genes 

were ranked according to their absolute ratios in descending order. (B) Proximal part of the BCR-signaling canonical pathway. The molecules whose en-

coding genes showed at least a twofold change in expression upon BCR-triggering of wild-type B cells are colored (green, down-regulation; red, up-

regulation). Black arrows indicate genes that showed at least a 50% difference in expression between  Ptger4   � / �   and wild-type B cells. Numbers indicate 

fold induction caused by the lack of  Ptger4 . (C) BCR-induced expression of the immediate-early genes  Egr1 ,  Fos , and  Jun  in A20 cell line. (D) A20 cells 

were cotransfected with plasmids encoding GFP cocistronic with nontargeting miRNA (miCTRL) or miRNA targeting  Ptger4  (miPtger4b) or the  Ptger4  ORF, 

together with the indicated luciferase reporter plasmid. The knockdown effi ciency was similar to that achieved in stable cell lines ( Fig. 3 A ). Luminescence 

was determined after BCR stimulation as detailed in Materials and methods. Error bars are the SD of triplicates. To exclude the possibility of saturation, 

the assay for EGR1 and CRE activity was also performed at a lower concentration (5  μ g/ml) of anti-IgG F(ab � ) 2  (Fig. S4). Fig. S4 is available at http://www

.jem.org/cgi/content/full/jem.20081163/DC1.   
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 We then asked whether vigorous in vitro proliferation of 
A20 cells could have obscured the eff ect of over- or underex-
pressed  Ptger4  by setting up a more sensitive in vivo system. Be-
cause A20 cells are known to induce tumor formation when 
introduced into syngeneic mice, we injected 200,000 viable cells 
from each of the generated A20 lines in the BALB/c strain and 
monitored tumor development over time ( Fig. 3 C ). Stable co-
expression of GFP in the injected cells allowed us to easily track 
tumor origin by fl uorescence microscopy of the dissected or in-
tact tumor tissue. Stunningly, although most of the control mice 
injected with nontargeting miRNA (miCTRL)-carrying cells 
succumbed to disseminated B-lymphoma development over the 
fi rst two-month period, as expected, overexpression of  Ptger4  
yielded signifi cant protection against lymphoma spread, and the 
majority (70%) of mice survived beyond the monitoring period 
with no adverse symptoms ( Fig. 3 C ). In contrast, A20 cells with 
stably silenced  Ptger4  potently aggravated tumor burden, which 
frequently manifested as liver and neck region metastasis, as well 
as hind limb paralysis, and the mice quickly became terminally 
ill. Additionally, the more effi  cient miRNA, miPtger4b, trig-
gered a more severe phenotype than the less effi  cient miPtger4a, 
as was also evident from a separate experiment in which a higher 
number of injected cells induced tumor formation at the site of 
injection in the eye, with the size of the tumor corresponding to 
the  Ptger4  knockdown effi  ciency ( Fig. 3 D ). Collectively, these 
data demonstrate that  Ptger4  negatively regulates B cell survival 

  Ptger4  is a candidate tumor suppressor in mouse 

B cell lymphoma 

 As primary  Ptger4   � / �   B cells resisted rapid cell death in vi-
tro in the absence of activating stimuli, we next set out to 
determine how altering the  Ptger4  gene dosage would af-
fect B cell growth and survival. To this end, we designed 
lentiviral vectors containing either GFP cocistronic with 
miRNA targeting  Ptger4  (miPtger4) or the cloned  Ptger4  
ORF region to generate stable A20 B cell lines. Quantita-
tive PCR (qPCR) and immunoblotting confi rmed the ef-
fi ciency of the stably integrated  Ptger4  knockdown and 
overexpressing cassettes ( Fig. 3 A ).  Interestingly, although 
the introduced changes did not seem to infl uence the in 
vitro growth of A20 cells, which have a doubling time of 
 < 12 h, the slower growing P493-6 human B cell line was 
signifi cantly impacted by a silencing construct that tar-
geted both mouse and human  Ptger4  and achieved compa-
rable gene knockdown levels in both cell lines ( Fig. 3 B  
and unpublished data). The modifi ed human B cells showed 
a similar rate of proliferation at low cell concentrations 
compared with controls, but later resisted overgrowth and 
reached about twice the density of viable control cells in 
the medium. This is in agreement with increased ex vivo 
survival of  Ptger4   � / �   cells and indicates that reducing 
the levels of  Ptger4  enhances survival of mouse and human 
B cells. 

  Figure 3.      Ptger4  is a candidate tumor suppressor in B cells.  (A) Stable A20 cell lines were generated by lentiviral infection as described in Materials 

and methods.  Ptger4  expression was determined by qPCR and confi rmed by Western blotting. (B) ATP content and viability of stable P493-6 cell lines in 

culture. RLU, relative luminescence units. Error bars are the SD of triplicates. (C) Survival of BALB/c mice injected with 2  ×  10 5  A20 cells stably expressing 

the indicated constructs. 10 mice were used to derive each survival curve. Logrank test comparing two survival curves was used to derive P values, as 

indicated. (D) Tumor formation at the site of injection of the indicated stable A20 cell line at 20 d after injection (5  ×  10 5  cells were injected per mouse; 

top), and a fl uorescence micrograph showing GFP-expressing tumor tissue in the eye region (bottom).   
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actions of PGE2 in B cells. We fi rst checked the infl uence 
of PGE2 on BCR-triggered proliferation of wild-type cells 
in vitro and saw that PGE2 at a concentration as low as 
1 nM eff ectively prevented B cell cluster formation and 
proliferation ( Fig. 4 A ).  In contrast, EP4-null B cells were 
completely insensitive to the inhibition by PGE2, forming 
massive clusters of proliferating cells similar to the vehicle-
treated controls, even at high doses of PGE2 ( Fig. 4 B ). This 
strongly suggested that EP4 was the major, if not the 
only receptor transmitting the PGE2-delivered signal to 
block B cell growth. In addition, treatment with the EP4-
specifi c agonist PGE1-OH faithfully mimicked the inhibi-
tory activity of PGE2 in wild-type, but not EP4-null, cells, 
as opposed to stimulating the closest EP4-related receptor, 
EP2, which did not infl uence proliferation of either cell 
type ( Fig. 4 C ). 

and proliferation, and suggest that  Ptger4  may function as a tu-
mor suppressor in B cells. 

 PGE2 suppresses B cell proliferation by targeting 

the EP4 receptor 

 We next examined the potential physiological relevance of 
the inhibitory role of  Ptger4  on B cell growth by focusing 
on the eff ects of the only known but extremely potent en-
dogenous ligand for EP4 receptor, prostaglandin E2 (PGE2). 
Several reports have documented a repressive role of PGE2 
on immune responses and B cells in particular ( 10, 30 – 32 ), 
but no study to date has identifi ed the exact mechanism by 
which this inhibition occurs. Because we identifi ed  Ptger4  
as a delayed-early gene and the only BCR-induced gene of 
the  Ptger  series ( Fig. 1 B ), we speculated that the EP4 recep-
tor may be important for conveying the growth-regulatory 

  Figure 4.     The suppressive effect of PGE2 on B cell proliferation is mediated by the EP4 receptor.   Ptger4  +/+  (A) and  Ptger4   � / �   (B) splenic B cells 

were incubated in vitro for 60 h with anti-IgM F(ab � ) 2  and cotreated with PGE2 at the concentrations as indicated (ctrl, vehicle-treated control). Bar, 200  μ m. 

(C) BCR-stimulated splenic B cells were cotreated as indicated for 60 h, followed by determination of ATP content. Final concentrations of PGE1-OH and 

AH-13205 were adjusted to compensate for the differences between inhibitory constants for the mouse EP4 receptor ( 56 ). RLU, relative luminescence 

units. Error bars are the SD of triplicates. (D) The CFSE staining method was used to follow proliferation of  Ptger4  +/+  and  Ptger4   � / �   mouse B cells. Flow 

cytometry analysis of viable cells is shown (see Materials and methods).   
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activated wild-type B cells in a time- and dose-dependent 
manner (Fig. S5), suggesting that PGE2 signaling via the EP4 
receptor promoted the apoptosis of replicating progeny. The 
greater proportion of undivided cells at 96 h compared with 
60 h in cultures supplemented with 10 nM PGE2 ( Fig. 2 D ) 
is thus a likely consequence of a preferential death of the di-
vided population at the later time point. 

 PGE2 – EP4 signaling results in general repression 

of activating genes 

 We next asked how, mechanistically, PGE2 – EP4 signaling 
antagonizes the proliferative burst of B cells triggered by 
antigen receptor cross-linking. Therefore, we inspected the 
transcriptional status of activated wild-type B cells incubated 
with or without PGE2 in comparison to EP4-null cells at 
24 h after BCR triggering, a time point at which the inhib-
ited phenotype started to become apparent and when EP4 
protein was fi rst readily detected by immunoblotting. Inter-
estingly, of the 263 genes whose expression was altered by 
more than twofold in wild-type B cells because of the pres-
ence of PGE2, 91% (240 genes) were down-regulated, indi-
cating a general repressive eff ect of PGE2 on gene transcription 
in activated B cells ( Fig. 5 A ).  To the contrary, only 10 of 
the  � 22,000 genes examined were either induced or re-
pressed in knockout cells, suggesting that EP4 was indeed the 
primary receptor through which PGE2 exerted its attenua-
tion of the BCR-induced response. This fi nding was con-
fi rmed by an independent direct comparison of activated and 

 To more closely examine how triggering of EP4 by 
PGE2-aff ected B cell activation, we used time-lapse micros-
copy to follow cell growth and cluster development of BCR-
triggered  Ptger4  +/+  and  Ptger4   � / �   B cells in the presence of 
PGE2 over several days. Although the two cell populations did 
not diff er during the initial phase (the fi rst 18 – 24 h) of cluster 
formation, the eff ect of PGE2 became progressively more 
apparent, as the wild-type cells were less effi  cient at forming 
bigger groups of cells. Once  Ptger4   � / �   cells entered a cluster, 
they stayed associated with it until the activation reaction was 
terminated, as opposed to wild-type cells, which dynamically 
shuttled in and out of clusters, resulting in a smaller net size 
of the clusters and in more cells found dispersed through-
out the culture plate (Videos S1 and S2, available at http://
www.jem.org/cgi/content/full/jem.20081163/DC1). Notably, 
this time-dependent activity of PGE2 was in line with the 
kinetics of BCR-induced EP4 expression, as revealed by 
immunoblotting ( Fig. 1 C ). To discern the impact of signal-
ing through EP4 on cell proliferation, we used the CFSE 
method to follow cell division of BCR-activated B cells 
( Fig. 4 D ). In agreement with a previous study ( 10 ), PGE2 
allowed wild-type B cells to undergo only one round of cell 
division, but signifi cantly inhibited further proliferation of 
daughter B cells. In contrast,  Ptger4 -defi cient cells displayed 
complete protection against the proliferation-limiting eff ects 
of PGE2, confi rming the suggestion that EP4 is the primary 
molecule mediating the negative infl uence of PGE2 on B cell 
activation. The addition of PGE2 diminished the viability of 

  Figure 5.     PGE2 – EP4 signaling results in general repression of activating genes.  (A) Genes regulated at least twofold in BCR-triggered  Ptger4  +/+  

and/or  Ptger4   � / �   B cells by 1 nM PGE2 at 24 h. For each genetic background, log expression ratios of PGE2-treated (BCR+PGE2) versus vehicle-treated 

(BCR+vehicle) activated B cells are shown for each gene. The x axis denotes number of genes. (B) Genes that are induced when EP4 is absent are re-

pressed when EP4 is abundant and activated. Shown are the log expression ratios of 128 genes commonly regulated in conditions designated as  “ lack of 

EP4 ”  ( Ptger4   � / �   versus  Ptger4  +/+  BCR-triggered B cells at 2 h) and  “ PGE2 – EP4 ”  ( Ptger4  +/+  versus  Ptger4   � / �   BCR-triggered and 1 nM PGE2 cotreated B cells 

at 24 h). The identity of genes and their values are listed in Table S2. (C, D) Genes from the  “ PGE2 – EP4 ”  condition in (B) were connected using the IPA 

knowledge database. Two most signifi cant and coherent networks consisted of genes associated with the NF-kB pathway (C) and MHC class I and II mol-

ecules (D). Green, down-regulated genes; red, up-regulated genes.   
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for molecules of the NF- � B pathway, ribosomal proteins, 
translation-initiation factors, and ATP-producing molecules, as 
well as components of the MHC and (immuno)proteasome, 
most of which are known to be mandatory for effi  cient B cell 
activation ( Fig. 5, C and D , and Table S2). These data validate 
and complement the observations from  Ptger4 -defi cient B cells, 
indicating that EP4 functions to prime the inhibitory activity of 
its endogenous ligand PGE2 by repressing transcription of a 
functionally coherent set of activating genes, eventually leading 
to a systemic attenuation of B cell proliferation. 

  Ptger4  antagonizes GC B cell development 

 To verify the implications of our fi ndings beyond the model 
of in vitro BCR-stimulated cells, we fi rst screened the pub-
lished data for potential diff erences in  Ptger4  expression levels 

PGE2-treated wild-type and  Ptger4   � / �   B cells, which revealed 
EP4-mediated 85% (527 out of 623 genes aff ected) attenua-
tion of gene transcription (unpublished data). 

 We then examined the identity of the genes regulated 
by the PGE2 – EP4 pathway, and observed that a signifi cant pro-
portion ( � 21%) of these genes were also impacted in  Ptger4   � / �   
B cells early after triggering of the BCR ( Fig. 5 B  and Table 
S2, available at http://www.jem.org/cgi/content/full/
jem.20081163/DC1). However, genes that changed expres-
sion in both models had a reciprocal pattern of change; genes 
that were up-regulated because of the lack of EP4 were down-
regulated in conditions where EP4 was abundant and stimu-
lated by PGE2, confi rming that this set of genes was specifi cally 
controlled by the EP4 receptor. PGE2 – EP4 signaling most 
profoundly attenuated the expression of several genes coding 

  Figure 6.      MYC  down-regulates the expression of  PTGER4  in human B cell lymphoma.  (A)  PTGER4  is signifi cantly down-regulated in human 

DLBCL cells relative to normal B cells. Data were analyzed from reference  30 . The P value from Wilcoxon rank sum test is shown. (B)  MYC  inhibits BCR-

triggered induction of  PTGER4  in the human P493-6 B cell line. Cells were incubated with (Tet ON) or without Tet (Tet OFF) for 3 d, and the expression of 

 PTGER4  after BCR-triggering was determined by qPCR. Tet-dependent  MYC  expression is shown in the insert. Error bars are s.d. of triplicates. (C)  PTGER4  

and several known tumor suppressors are coordinately down-regulated in multiple human B cell lymphomas with  MYC  translocation ( 38 ). Data were 

analyzed from a comprehensive study, including samples of 220 mature aggressive B cell lymphomas using the algorithm of the human cancer-profi ling 

database Oncomine (see URLs in Materials and methods) ( 57 ). Shown is the heat map comprising the microarray results, where red indicates induction of 

genes and blue indicates repression of genes. Samples were classifi ed according to the presence (or absence) of  MYC  translocations, as indicated. Genes 

showing the lowest P values were selected and ranked in ascending order. The selected genes, except  PTGER4 , have been described as tumor suppressors 

in B cell lymphoma according to Pubmed (see URLs in Materials and methods). The scheme om the bottom presents the interaction between  MYC  and 

 PTGER4  in a lymphoma-relevant context.   
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clinical cases of Burkitt ’ s lymphoma, DLBCL, and some other 
types of mature aggressive B cell lymphomas with or with-
out  MYC  translocations ( 38 ). We observed that this set of 
tumor-suppressor genes, including  PTGER4 , was coordinately 
down-regulated in cases with  MYC  translocations compared 
with cases without  MYC  translocations, irrespective of mor-
phological, clinical, or immunohistochemical characteristics 
of the investigated B cell lymphomas ( Fig. 6 C ). These fi nd-
ings are consistent with a tumor-suppressive role of  PTGER4  
in human B cell cancer, and implicate the  MYC  oncogene as 
a potent negative regulator of  PTGER4  expression. Although 
our data allow for a causative correlation, the extent to which 
the reduced  PTGER4  expression contributes to the origin of 
these malignancies remains speculative, and further studies 
will be required to evaluate the potential of  PTGER4  and its 
encoded EP4 receptor as a target for the therapy of human 
B cell lymphoma. 

  DISCUSSION  

  Ptger  series of genes have traditionally been viewed and stud-
ied in light of the interactions of their encoded receptors with 
PGE2 as the natural ligand, whereas kinetics of gene expres-
sion or the intrinsic functioning of EP receptor subtypes has 
received little attention. In this study, we identify  Ptger4  as a 
typical delayed-early gene negatively regulating the robust 
proliferative response of B cells to antigen receptor triggering 
and use transcriptome analysis to delineate the attenuating 
mechanism used by  Ptger4 . 

 The observation that  Ptger4  knockout B cells display a 
more activated genotype compared with wild-type controls 
early after BCR-stimulation in vitro suggests an inherent 
growth-suppressing activity of  Ptger4  that is independent of 
PGE2 – EP4 interactions. This is supported by the fi nding that 
BCR-stimulated mouse B cells do not secrete any substantial 
amounts of PGE2 in culture and that incubation of wild-type 
B cells with COX inhibitors to block the potential PGE2 
biosynthesis does not augment proliferation of activated 
B cells, excluding the possible infl uence of de novo – produced 
PGE2. In addition, stable knockdown of  Ptger4  promoted 
growth of a human B cell line in culture, suggesting that the 
intrinsic growth-limiting role of  Ptger4  is conserved between 
mouse and human B cells. Although there is evidence for the 
secretion of relatively high amounts of PGE2 by quiescent 
and activated human B cells ( 40, 41 ), we are not aware of any 
studies supporting the production of PGE2 by mouse B lym-
phocytes, with the exception of a study by Graf et al. ( 42 ) 
showing that a biphenotypic B/macrophage population of 
cells produces substantial amounts of PGE2 upon stimulation 
with lipopolysaccharide, CD40, or BCR ligand. In contrast, 
it has been noted that the expression of COX-1 and -2 is not 
observed in mouse B cells ( 41, 42 ), and the lack of induction 
of COX-2 is confi rmed by our microarray analysis of mouse 
B cells after BCR engagement (GSE9215 and GSE9847). In-
terestingly, although controversy exists regarding the net ef-
fect of PGE2 on proliferative responses of activated human 
B cells ( 10, 40, 41, 43 – 45 ), there appears to be a consensus on 

between naive follicular B cells and activated GC B cells in 
mice and humans ( 33, 34 ). In accord with the expectations, 
GC B cells exhibited profoundly reduced levels of  Ptger4  
compared with naive controls, confi rming the in vitro obser-
vation that low  Ptger4  expression favors B cell proliferation 
(Fig. S6, A and B, available at http://www.jem.org/cgi/
content/full/jem.20081163/DC1). We then examined the 
expression of EP4 protein and saw that GC B cells expressed 
it at a much lower level compared with naive B cells, support-
ing the data from the aforementioned transcriptional analyses 
(Fig. S6 C). Furthermore, the analysis of GC B cell content 
in  Ptger4   � / �   mice immunized with a T cell – dependent anti-
gen found a signifi cant increase compared with wild-type 
controls, indicating that the lack of  Ptger4  was causative for 
the enhanced activation of B cells in vivo (Fig. S6 D). The 
importance of these fi ndings is underscored by the fact that 
many B cell malignancies in humans show expression patterns 
of diff erentiation markers and global gene-expression profi les 
characteristic of GC B cells ( 35 ), thus most types of B cell 
lymphoma are thought to originate from GC B cells. It should 
be noted, however, that the higher proportion of GC B cells 
in  Ptger4   � / �   mice may have resulted, at least in part, as a con-
sequence of altered functioning of other EP4-expressing cell 
types, such as T cells ( 31 ) and dendritic cells ( 36 ), which also 
participate in T cell – dependent immune responses. 

 The protooncogene  MYC  down-regulates  PTGER4  in human 

B cell lymphomas 

 To investigate the relevance of  PTGER4  to human disease, 
we fi rst looked for altered expression of  PTGER4  in normal 
versus malignant B cell populations by mining the GEO ex-
pression database ( 37 ). Interestingly, the analysis showed that 
 PTGER4  is markedly down-regulated in the most commonly 
occurring, aggressive form of B cell malignancy, DLBCL, in-
dicating that the reduction of proliferation-attenuating func-
tion of  PTGER4  may indeed contribute to human B cell 
lymphoma growth ( Fig. 6 A ).  We then asked about the pos-
sible mechanism leading to the observed decrease in  PTGER4  
expression in human neoplasia by focusing on the  MYC  gene. 
Because of chromosomal breakpoints at the  MYC  locus, in-
creased transcription of  MYC  is a frequent cause of B lym-
phomagenesis, and has been associated with an adverse clinical 
outcome in several cases of aggressive B cell lymphoma ( 38 ). 
To that end, we used a human B cell line (P493-6) carrying a 
conditional tetracycline (Tet)-regulatable  MYC  allele that al-
lows for abundant expression of  MYC  in the absence of Tet, 
but only weak  MYC  expression when Tet is present ( 39 ). We 
saw that the presence of Tet markedly infl uenced BCR-
induced expression of  PTGER4 ; in the high- MYC  condi-
tion, the induction of  PTGER4  was moderate, whereas low 
amounts of  MYC  transcripts greatly facilitated  PTGER4  up-
regulation, suggesting that  MYC  represses  PTGER4  expres-
sion ( Fig. 6 B ). To examine whether the association between 
 MYC  and  PTGER4  is relevant in vivo, we selected  PTGER4  
and several known tumor suppressors with established roles in 
human B cell lymphoma, and examined their expression in 

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/205/13/3091/1901992/jem
_20081163.pdf by guest on 09 February 2026



3100   PTGER4    IS A TUMOR SUPPRESSOR IN B CELLS   | Murn et al. 

type. Several of these genes mapped to the most signifi cantly 
aff ected NF- � B pathway, indicating that the latter could play 
a key role in the EP4 – phenotype correlation. Importantly, ge-
netic studies in mice have confi rmed the essential role of NF- � B 
in promoting B cell activation ( 18 ), and activated B cell – like 
DLBCL cells depend on constitutive NF- � B activity for sur-
vival ( 48 ). The EP4-attenuated expression of cell-cycling 
genes, as well as genes coding for components of the energy-
producing and protein-translation machinery might have, at 
least in part, come as a consequence of the aberrant upstream 
NF- � B activity, together leading to a proliferation shutdown. 

 Another functionally coherent network consisted of MHC 
class I and II members, which B cells use to present antigens 
to and thus stimulate T cells, thereby ensuring appropriate 
immune response to foreign antigens. This suggests that EP4 
not only functions to negatively regulate the activation of the 
B cell in which it is expressed, but may also limit the responses 
of other immune cells in its vicinity. Nevertheless, one of the 
genes most signifi cantly up-regulated by the lack of  Ptger4  
and repressed by PGE2 – EP4 signaling, the MHC class II 
chaperone CD74, was found to directly stimulate B cell sur-
vival and promote malignant B cell proliferation ( 21 ). The 
expression of  PTGER4  may thus be relevant to the effi  ciency 
of the anti-CD74 monoclonal antibody LL1, which is cur-
rently under evaluation as a novel therapeutic agent to treat 
B cell lymphoma ( 22 ). 

 Activation of the  MYC  protooncogene by chromosomal 
translocations or hypermutation is a key event in the patho-
genesis of many B cell lymphomas, and  MYC  breakpoints 
in lymphomas with a high chromosomal complexity score 
strongly correlate with a poor survival rate ( 38 ). Given that 
the critical mechanisms by which  MYC  contributes to malig-
nant transformation are not clear, it is tempting to speculate 
that the coordinate down-regulation of multiple tumor sup-
pressor genes, including  PTGER4 , plays an important role in 
 MYC -induced lymphomagenesis. It is noteworthy that  PT-
GER4  has also been identifi ed as one of a few genes targeted 
by the transcription factor and candidate tumor suppressor 
ETV6, deletions of which are observed in up to 47% of child-
hood pre – B acute lymphoblastic leukemia ( 49 ), implying a 
diff erent mechanism of  PTGER4  down-regulation in B cell 
malignancy. Regardless of the primary genetic lesion leading 
to reduced expression of  PTGER4 , our fi ndings support the 
possibility that regulation of B cell proliferation is a contrib-
uting mechanism by which  PTGER4  could hold human 
B cell lymphoma formation in check. 

 Collectively, our data postulate  Ptger4  as a delayed-early 
gene and a negative feedback regulator of BCR-signaled ac-
tivation of B cells. This gene functions via its encoded EP4 
receptor, which is also the principal molecule transmitting 
the inhibitory message of PGE2 to proliferating B cells. Regula-
tion of  Ptger4  inversely correlates with the expression of many 
genes that promote growth and survival of B cell lymphoma, 
such as  MYC , members of the NF-kB pathway, and  Cd74 , 
but appears to be coordinated with several tumor suppressors. 
Varying the  Ptger4  expression level signifi cantly aff ects B cell 

the inhibitory function of PGE2 on mouse B cell prolifera-
tion ( 9, 24, 46, 47 ). Depending on the mitogenic stimulus 
studied, reports have documented inhibition ( 10 ), no infl u-
ence ( 43 ), stimulation ( 45 ), or concentration-dependent ef-
fect ( 41 ) of PGE2 on proliferation of human B cells. It is 
possible that the various stimuli diff erently regulate the ex-
pression of or signaling through each of the four distinct 
PGE2 receptors, some of them with opposing functions, thus 
critically infl uencing the net result of PGE2 action on hu-
mans B cells. Further studies will be required to show whether 
PGE2 – EP4 signaling is inhibitory in each of these B cell – 
activating conditions. 

 Two main observations lead us to assume that  Ptger4  acts 
as a feedback regulator to attenuate BCR-signaling pathway. 
First,  Ptger4  counteracted the transcriptional activity of early-
induced NF- � B and AP-1 complexes, which are both essen-
tial for propagating B cell growth and proliferation, and, second, 
it facilitated down-regulation of several proximal BCR-sig-
naling components. Given the  “ natural ”  tendency of the BCR 
to undergo autoinactivation upon signal transmission, the 
negative feedback regulation by  Ptger4  may thus shorten the 
activation period of the BCR, ultimately resulting in a weaker 
proliferative response of wild-type compared with  Ptger4 -
defi cient B cells. 

 A striking fi nding of our study is the reduced in vivo tu-
morigenic potential of the aggressive A20 B-lymphoma cells 
overexpressing  Ptger4 . Regardless of whether the diminished 
tumorigenicity resulted from the enhanced cell-intrinsic ef-
fects of  Ptger4 , increased PGE2 – EP4 signaling, or both, the 
over-present  Ptger4  was clearly causative for protection of 
mice against lymphoma spread. Conversely, the aggravated 
symptoms caused by tumor development and the increased 
mortality imposed by the  � 40 – 45% silenced expression of 
 Ptger4  demonstrate the inhibitory potential of  Ptger4  and indi-
cate that its defi cit was, indeed, the primary genetic lesion 
leading to the elevated rate of tumor invasion. We were there-
fore not surprised to fi nd  PTGER4  signifi cantly down-regu-
lated in DLBCL, the most common subtype of non-Hodgkin ’ s 
lymphoma that accounts for 30 – 40% of all lymphoma cases 
and that frequently shows a poor prognosis in humans ( 3, 38 ). 
Together, these data further establish  Ptger4  as a negative reg-
ulator of BCR-signaling and identify it as a candidate tumor 
suppressor in mouse and human B cells. 

 Consistent with previous reports, PGE2 potently inhib-
ited B cell activation, and we for the fi rst time provide defi ni-
tive proof that the EP4 receptor is the principal molecule 
responsible for the repressive activity of PGE2 in B cells. This 
fi nding indicates that PGE2 potentiates the existing intrinsic 
inhibition by EP4, which is supported by the progressively 
greater negative infl uence of PGE2 on B cell proliferation 
and viability correlating with the expression level of EP4, 
and, importantly, by the reciprocal EP4-related gene regula-
tion between activated  Ptger4   � / �   and PGE2-treated wild-
type B cells. Transcriptional profi ling of PGE2 – EP4 signaling 
uncovered a systemic down-regulation of numerous prosur-
vival genes that likely accounted for the impacted pheno-
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and luminescence was determined using Dual-Luciferase Reporter Assay 

System (Promega) according to the manufacturer ’ s instructions. The lucifer-

ase reporter plasmids were gifts, as follows: NF- � B reporter plasmid from 

K.A. Reedquist (University of Amsterdam, Amsterdam, Netherlands), FOS 

and JUN reporter plasmids from H. van Dam (Leiden University, Leiden, 

Netherlands), IL-2 reporter plasmid from G.R. Crabtree (Stanford Univer-

sity, Stanford, CA), EGR1 reporter plasmid from J. Milbrandt (Washington 

University School of Medicine, St. Louis, MO), and CRE reporter plasmid 

from V.C. Manganiello (National Institutes of Health, Bethesda, MD). 

 Expression vectors, lentiviruses, and stable cell lines.   Expression vec-

tors to silence or overexpress mouse  Ptger4  were constructed using Gateway 

technology and Block-iT Lentiviral Pol II miR RNAi Expression System 

(Invitrogen). For the silencing vectors, seven diff erent premiRNAs target-

ing  Ptger4  were designed using the manufacturer ’ s RNAi Designer program, 

cloned into pcDNA 6.2-GW/EmGFP-miR vectors, and tested by qPCR 

for  Ptger4  knock-down effi  ciency upon transfection into NIH3T3 cells with 

Lipofectamine 2000 (Invitrogen). The most effi  cient premiRNA expression 

cassette (miPtger4b) a less effi  cient cassette targeting both mouse and human 

 Ptger4  (miPtger4a), and a nontargeting control cassette (miCTRL) were se-

lected and recombined into pLenti6/V5-DEST destination vector. For the 

overexpression construct, the ORF region of mouse  Ptger4  was amplifi ed by 

PCR from total cDNA of A20 cells and transferred into pLenti6/V5-DEST 

vector. Lentiviruses were generated by cotransfecting each recombined desti-

nation vector with ViraPower packaging mix (Invitrogen) into 293FT cells as 

recommended by the manufacturer. A20 and P493-6 cell lines stably expressing 

silencing or control cassettes were generated by in vitro transduction with the 

appropriate lentiviral particles, followed by selection of GFP +  cells by FACS 

at 12 d after transduction. Similarly, A20 cells with stably integrated overex-

pressing cassette were generated using the blasticidin-selection method. The 

expression of  Ptger4  in stable cells lines was verifi ed by qPCR and immuno-

blotting. All synthetic oligonucleotide sequences used are listed in Table S3 

(available at http://www.jem.org/cgi/content/full/jem.20081163/DC1). 

 Lymphoma injection and immunization of mice.   Cells of each gener-

ated A20 stable cell line were intravenously injected into BALB/c mice, and 

tumor development was followed over a period of 120 d. The mice were 

killed when they showed excessive tumor growth. GFP expression analysis 

by fl uorescence microscopy was used to validate the mutated A20-origin of 

tumors. The results are presented as Kaplan-Meier survival curves. To analyze 

GC B cell development in response to a T cell – dependent antigen,  Ptger4   � / �   

mice and wild-type controls were injected intraperitoneally with 100  μ g of 

4-hydroxy-3-nitrophenylacetyl chicken  � -globulin (NP-CGG; Biosearch 

Technologies) mixed with Imject Alum (Thermo Fisher Scientifi c) as an ad-

juvant. At day 14 after immunization, mice were killed and GC B cell con-

tent in splenic single-cell suspensions was determined by fl ow cytometry as 

the percentage of CD19 + CD38 low CD95 high  cells ( 52 ). This strategy was also 

used to sort wild-type GC and naive B cells for the immunoblot analysis. 

 Microarray analysis.   For the initial screen to identify negative regulators of 

B cell proliferation, we used microarrays containing 15,247 cDNA clones for the 

analysis of  � 11,000 mouse genes ( 53 ). RNA was isolated from BCR-stimulated 

or vehicle-treated mature B cells from pooled spleens of 10 C57BL/6 mice 

using Trizol reagent (Invitrogen), followed by one round of ampli fi cation with 

MessageAmp kit (Ambion). The amplifi ed RNA was reverse-transcribed, 

labeled, and hybridized to the arrays as previously described ( 54 ). Each sam-

ple was hybridized to the arrays in 6 replicates using a dye-swap strategy. 

Slides were scanned with Genepix 4000B array scanner and feature extraction 

was performed with Genepix Pro 6.0 software (Axon Instruments). For transcri-

ptome analysis of  Ptger4   � / �   and  Ptger4  +/+  control B cells, microarrays with 

24,109 spotted mouse oligonucleotides were used ( 55 ). RNA was isolated us-

ing RNeasy Mini kit (QIAGEN), amplifi ed, labeled, and hybridized follow ing 

a published protocol ( 55 ). Oligonucleotide arrays were scanned with Agilent 

G2565AA Microarray Scanner (Agilent Technologies). Data analysis, includ-

ing intensity-dependent Lowess normalization of raw data, was performed 

lymphoma spread in mice and we fi nd it down-regulated in 
human B cell malignancy, indicating that  Ptger4  is a tumor 
suppres sor in B cells. Finally, because EP4 is expressed as an 
easily accessible membrane receptor, interfering with the 
PGE2 – EP4 signaling pathway may present a clinically useful 
alternative or supplement to chemotherapy in the treatment 
of B cell lymphoma. 

  MATERIALS AND METHODS  
 Mice and reagents.   We obtained female C57BL/6 and BALB/c mice from 

The Jackson Laboratory. Female  Ptger4   � / �   mice and  Ptger4  +/+  littermate con-

trols were generated as previously described ( 16 ). All mice were housed in the 

Exploration and Experimental Functional Research Center (CERFE; Evry, 

France), and all experiments and protocols using animals were approved by the 

CERFE direction committee and the Institut de Radiobiologie Cellulaire et 

Mol é culaire (CEA) animal research committee. Mice used for experiments 

were 8 – 12 wk old. PGE2, AH-13205, indomethacin, and tetracycline were 

purchased from Sigma-Aldrich. Prostaglandin E1 alcohol (PGE1-OH) and NS-

398 were obtained from Cayman Chemical. FITC-, PE-, APC-, or biotin-

conjugated antibodies to CD19, CD23, CD38, CD93, CD95, or B220 were 

obtained from eBioscience. F(ab � ) 2  anti – human IgM was purchased from 

SouthernBiotech, F(ab � ) 2  anti – mouse IgM was purchased from Jackson 

Immuno Research Laboratories, and F(ab � ) 2  anti – mouse IgG was purchased 

from Caltag Laboratories. 

 Cells, cell sorting, and culture.   Single-cell suspensions were prepared 

from spleen of mice according to standard protocols. Negatively depleted 

B cells were recovered using B cell Isolation kit (Miltenyi Biotec) and mature 

B cells were further sorted as CD93  �  CD23 +  by FACS using a MoFlo cell 

sorter (Dako) ( 50 ). Sorted cells were  ≥ 95% pure. B cells were cultured at a 

density of 2  ×  10 6  cells/ml in IMDM supplemented with 5% heat-inacti-

vated FCS, 100 U/ml of penicillin, 100  μ g/ml of streptomycin, 2 mM  

l- glutamine ,  and 50  μ M  � -mercaptoethanol. To trigger the BCR, cells were 

stimulated with F(ab � ) 2  anti – mouse IgM at 20  μ g/ml. A20, a mature B lym-

phoma cell line of BALB/c origin (American Type Culture Collection 

[ATCC]), and P493-6, a human B lymphoma cell line containing a Tet-

regulatable  MYC  gene (provided by G.W. Bornkamm, GSF Research Cen-

tre, Neuherberg, Germany) were cultivated in RPMI-1640 supplemented 

with 10% heat-inactivated FCS, 100 U/ml of penicillin, 100  μ g/ml of strep-

tomycin, 2 mM  l- glutamine and 50  μ M  � -mercaptoethanol. To inhibit the 

expression of MYC, P493-6 cells were incubated with 0.1  μ g/ml Tet for 

3 d. For BCR triggering, A20 cells were incubated with F(ab � ) 2  anti – mouse 

IgG and P493-6 cells with F(ab � )2 anti – human IgM, both at 20  μ g/ml. 

NIH3T3 cells were cultivated as recommended by the ATCC. All cells were 

maintained at 37 ° C in a humidifi ed atmosphere containing 5% CO 2 . 

 Proliferation and viability assays.   The ATP content of B cells was measured 

using a bioluminescence assay (ViaLight Plus; Cambrex). Tests were performed 

in 96-well plates at 10 5  cells/well according to the manufacturer ’ s instructions. 

Cell cycle was analyzed using fl ow cytometry according to standard protocols. 

The CFSE method to follow B cell proliferation over time was performed ac-

cording to a previously published protocol ( 51 ). Cell viability was monitored by 

the exclusion of 0.4% trypan blue solution visualized by light microscopy. 

 Transfection and luciferase reporter assays.   A20 cells were transfected 

by electroporation using Nucleofector II (Amaxa Biosystems) according to 

the manufacturer ’ s instructions. NF- � B, FOS, JUN, IL-2, EGR1, and CRE 

activities were measured after electroporation of cells with plasmids (2  μ g) 

encoding the indicated response element or promoter fused to a fi refl y lucif-

erase reporter gene together with the indicated Ptger4-expression vectors 

(2  μ g) and pRL-TK as an internal control (200 ng; Promega). 48 h after trans-

fection, cells were incubated with 20  μ g/ml F(ab � ) 2  anti – mouse IgG for 8 h, 
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