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       Systemic lupus erythematosus (SLE) is a chronic 
autoimmune disease characterized by the pro-
duction of antibodies against an array of self-
antigens such as double-stranded (ds) DNA and 
components of small nuclear ribonucleopro-
teins (snRNPs), including the Sm/RNP anti-
gens (U1, U2, U4-6, and U5 snRNPs), Ro/SS-A 
antigens (Y RNAs), and other antigens ( 1 ). Re-
cent evidence strongly suggests that type I IFNs 
(IFN-Is), a family of antiviral cytokines, are in-
tegral to the pathogenesis of SLE. Elevated 
serum levels of IFN-I and overexpression of 
IFN-stimulated genes (ISGs) in the peripheral 
blood of SLE patients have been demonstrated 
by several groups ( 2 – 4 ). This  “ IFN signature ”  is 

associated with more active disease and the pres-
ence of autoantibodies against dsDNA and the 
Sm/RNP and Ro/SS-A antigens ( 5, 6 ). 

 The etiology of excess IFN-I in SLE is in-
completely understood. Research on innate im-
munity has led to the identifi cation of several 
pathways mediating IFN-I production in mam-
malian cells. Toll-like receptor (TLR) 3, a sen-
sor for viral dsRNA, and TLR4, the receptor for 
LPS, both stimulate IFN-I secretion through 
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 Increased type I interferon (IFN-I) production and IFN-stimulated gene (ISG) expression are 

linked to the pathogenesis of systemic lupus erythematosus (SLE). Although the mecha-

nisms responsible for dysregulated IFN-I production in SLE remain unclear, autoantibody-

mediated uptake of endogenous nucleic acids is thought to play a role. 

2,6,10,14-tetramethylpentadecane (TMPD; also known as pristane) induces a lupus-like 

disease in mice characterized by immune complex nephritis with autoantibodies to DNA and 

ribonucleoproteins. We recently reported that TMPD also causes increased ISG expression 

and that the development of the lupus is completely dependent on IFN-I signaling (Nacio-

nales, D.C., K.M. Kelly-Scumpia, P.Y. Lee, J.S. Weinstein, R. Lyons, E. Sobel, M. Satoh, and 

W.H. Reeves. 2007.  Arthritis Rheum.  56:3770 – 3783). We show that TMPD elicits IFN-I 

production, monocyte recruitment, and autoantibody production exclusively through a Toll-

like receptor (TLR) 7 –  and myeloid differentiation factor 88 (MyD88) – dependent pathway. 

In vitro studies revealed that TMPD augments the effect of TLR7 ligands but does not 

directly activate TLR7 itself. The effects of TMPD were amplifi ed by the Y-linked autoim-

mune acceleration cluster, which carries a duplication of the  TLR7  gene. In contrast, defi -

ciency of Fc �  receptors (Fc � Rs) did not affect the production of IFN-I. Collectively, the 

data demonstrate that TMPD-stimulated IFN-I production requires TLR7/MyD88 signaling 

and is independent of autoantibody-mediated uptake of ribonucleoproteins by Fc � Rs. 

© 2008 Lee et al. This article is distributed under the terms of an Attribu-
tion–Noncommercial–Share Alike–No Mirror Sites license for the fi rst six months 
after the publication date (see http://www.jem.org/misc/terms.shtml). After six 
months it is available under a Creative Commons License (Attribution–Noncom-
mercial–Share Alike 3.0 Unported license, as described at http://creativecommons
.org/licenses/by-nc-sa/3.0/).
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required to trigger IFN-I production by TLR3 and TLR4 
( 7 ), whereas MyD88 mediates TLR7/8 and TLR9 signaling 
( 8 – 10 ). We have previously shown that within 2 wk of TMPD 
treatment, an accumulation of IFN-I – producing CD11b + Ly6C hi  
monocytes can be detected in the peritoneal cavity in wild-
type mice concurrent with increased IFN-I production and 
ISG expression ( 27 ). Compared with wild-type mice, the to-
tal number of peritoneal exudate cells (PECs) was signifi cantly 
reduced in MyD88  � / �   mice after TMPD treatment ( Fig. 1 A ).  

Toll/IL-1 receptor domain – containing adaptor inducing 
IFN- �  (TRIF) ( 7 ). In contrast, TLR7/8 and TLR9 mediate 
IFN-I production via myeloid diff erentiation factor 88 (MyD88) 
in response to single-stranded (ss) RNA and unmethylated CpG 
DNA, respectively ( 8 – 10 ). In addition, cytoplasmic receptors 
that recognize intracellular nucleic acids and induce IFN-I 
have been described recently. Retinoic acid – inducible gene I 
(RIG-I) and melanoma diff erentiation-associated gene 5 
(MDA5) recognize cytoplasmic RNA and trigger IFN-I by 
activating IFN- �  promoter stimulator 1 (IPS-1; also known as 
MAVS, VISA, and CARDIF) and IFN regulatory factor (IRF) 3 
( 11 – 14 ). Cytoplasmic DNA binds to a newly described cyto-
plasmic sensor and triggers IFN-I production via a pathway re-
quiring TANK-binding kinase 1 (TBK-1) and IRF3 ( 15, 16 ). 

 It has been hypothesized that nucleic acids from dying cells 
may act as ligands for TLR7/8 and TLR9 to trigger IFN-I 
production in SLE. Immune complexes (ICs) formed by auto-
antibodies to DNA and snRNPs help to transport these  “ en-
dogenous ligands ”  to endosomes where TLR7, 8, and 9 are 
normally found ( 17 ). Activation of these TLRs then induces 
the production of IFN-I by plasmacytoid DCs (PDCs). This 
hypothesis is supported by numerous in vitro studies ( 18, 19 ). 
However, therapeutic administration of recombinant IFN- �  
can directly trigger the production of anti-dsDNA antibodies 
( 20 ), and in several mouse model of lupus, IFN-I production is 
required for the induction of autoantibodies ( 21 – 23 ), suggest-
ing that IFN-I dysregulation may occur upstream of autoanti-
body development. Therefore, it remains controversial whether 
nucleic acid – containing ICs in SLE initiate IFN-I production 
or act to perpetuate a positive feedback loop of IFN produc-
tion initiated by another factor, such as a viral infection. 

 Experimental lupus induced by the hydrocarbon oil 
2,6,10,14-tetramethylpentadecane (TMPD; also known as 
pristane) displays many key immunological and clinical features 
of human SLE, including the presence of the IFN signature 
and lupus autoantibodies such as anti-dsDNA, -Sm, and -RNP 
( 24 – 26 ). Importantly, IFN-I play an essential role in this model, 
as the development of glomerulonephritis and production 
of autoantibodies (anti-Sm/RNP, -dsDNA, and -Su) are 
abolished in IFN-I receptor – defi cient (IFNAR  � / �  ) mice ( 22 ). 
Unexpectedly, a population of Ly6C hi  immature monocytes 
that accumulates in the peritoneal cavity after TMPD treat-
ment, rather than DCs, is the major source of the excess IFN-I 
seen in this model ( 27 ). The persistent infl ux of Ly6C hi  mono-
cytes and production of IFN-I occur within 2 wk of TMPD 
treatment, long before the appearance of autoantibodies against 
snRNPs and dsDNA (3 – 5 mo), indicating that the initial wave 
of IFN-I production may be independent of the presence of 
RNA-containing ICs. In this study, we aimed to elucidate the 
mechanism of IFN-I production in TMPD-induced lupus. 

  RESULTS  

 TMPD-induced IFN-I production requires MyD88 

 To identify the mechanism of IFN-I induction by TMPD, 
we fi rst analyzed the eff ect of TMPD on mice with defi -
ciency of the adaptor molecules TRIF or MyD88. TRIF is 

  Figure 1.     TMPD-induced IFN-I production requires MyD88.  

(A) Comparison of the number of total PECs, Ly6C hi  monocytes, and granulo-

cytes 2 wk after TMPD treatment in wild-type ( n  = 5), MyD88  � / �   ( n  = 6), 

TRIF  � / �   ( n  = 4), and IFNAR  � / �   mice ( n  = 4). (B) Flow cytometry of perito-

neal cells (box indicates Ly6C hi  monocytes and dashed oval indicates 

granulocytes). (C) RT-PCR analysis of  Mx1  and  IRF7  expression in PECs 

(normalized to peritoneal cells from an untreated wild-type mouse). 

(D) ELISA quantifi cation of MCP-1 in the peritoneal lavage fl uid of TMPD-

treated mice. (E) Flow cytometry analysis of Sca-1 expression on periph-

eral blood mononuclear cells. Mean fl uorescence intensity (MFI) of Sca-1 

on B220 +  cells is shown. Each bar represents the mean, and error bars 

indicate SE. Data are representative of two or more independent experi-

ments. *, P  <  0.05 using the Student ’ s  t  test.   
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Both Ly6C hi  monocytes and granulocytes (defi ned as CD11b + 
Ly6G + Ly6C mid ) were decreased by  > 90% ( Fig. 1, A and B ). 
Importantly, we found that IFN-I induction by TMPD was 
completely dependent on MyD88, because elevated expres-
sion of the ISGs  myxoma response protein 1  ( Mx1 ) and  IRF7  in 
PECs was abolished in MyD88  � / �   mice, as also seen in 
IFNAR-defi cient mice ( Fig. 1 C ). The levels of the IFN-
inducible chemokine monocyte chemoattractant protein 1 
(MCP-1; also known as CCL2) in the peritoneal lavage fl uid 
were also reduced in the absence of MyD88 ( Fig. 1 D ). In 
contrast, TRIF defi ciency did not aff ect the accumulation of 
PEC populations or the increased expression of ISGs ( Fig. 1, 
A – D ). Although we were unable to detect signifi cant changes 
in serum IFN- � / �  levels by ELISA, IFN-I secretion was re-
quired for the response to TMPD, as the up-regulation of 
ISGs and recruitment of Ly6C hi  monocytes were abolished in 
IFNAR  � / �   mice ( Fig. 1, A – D ). The absence of IFN-I signal-
ing, however, did not aff ect the infl ux of granulocytes ( Fig. 1, 
A and B ). 

 The increase in IFN-I after TMPD treatment is not lim-
ited to the peritoneal cavity, as the IFN signature is also de-
tectable in the peripheral blood ( 22 ). We found that surface 
expression of the IFN-inducible gene Sca-1 (Ly6A/E) on B 
cells was dramatically up-regulated in wild-type mice treated 
with TMPD ( Fig. 1 E ). Although Sca-1 is naturally expressed 
by certain lymphocyte subsets and hematopoietic stem cells 
( 28 ), TMPD induced Sca-1 expression in virtually all B cells 
in wild-type, but not IFNAR  � / �  , mice ( Fig. 1 E ). Increased 
Sca-1 expression was also evident on CD8 +  and CD4 +  T cells 
(unpublished data). Similar to the pattern of ISG expression in 
PECs, the up-regulation of Sca-1 was reduced in MyD88  � / �   
but not TRIF  � / �   mice ( Fig. 1 E ), further supporting an es-
sential role of MyD88 in IFN-I production in this model. 

 To address whether the cytoplasmic nucleic acid sensors 
also contribute to TMPD-induced IFN-I production, we tested 
the eff ect of TMPD on IPS-1  � / �   and TNF  � / �  TBK1  � / �   mice 
(TBK-1  � / �   is embryonically lethal unless crossed with mice 
defi cient of TNF- �  [ 29 ]). IPS-1 is a required adaptor for in-
tracellular viral RNA detection via RIG-I and MDA5 ( 12 ), 
whereas TBK-1 is required for cytoplasmic DNA-induced 
IFN-I secretion ( 30 ). The expression of  Mx1  and  IRF7  in PECs 
was comparable in wild-type, IPS-1  � / �  , TNF  � / �  TBK-1  � / �  , 
and TNF  � / �   mice ( Fig. 2 ), suggesting that the intracellular 
nucleic acid – sensing pathways are not required for IFN-I 
production in this model.  The patterns of peritoneal cell 
infl ux and Sca-1 expression on peripheral blood lympho-
cytes were also similar among these strains (unpublished data). 
Collectively, our data indicate that TMPD-elicited IFN-I 
production was strictly MyD88 dependent. 

 TMPD-induced IFN-I production is TLR7 dependent, 

IC independent 

 Because MyD88 mediates IFN-I induction by TLR7 and 
TLR9, we next investigated which of these innate receptors 
is responsible for the eff ect of TMPD. 2 wk after TMPD treat-
ment, the number of PECs in TLR9  � / �   mice was reduced by 

 � 20% compared with TLR7  � / �   and wild-type controls. The 
numbers of Ly6C hi  monocytes and granulocytes were also 
reduced in the absence of TLR9, whereas the pattern of the 
cellular infl ux remained similar to wild-type animals ( Fig. 3, 
A and B ).  

 Interestingly, TLR7  � / �   mice exhibited a specifi c reduc-
tion of Ly6C hi  monocytes in the peritoneal cavity ( Fig. 3 A ). 
Despite the decrease in these immature monocytes, total PEC 
counts in TLR7  � / �   mice were comparable to wild-type con-
trols because of a signifi cant increase in the number of granu-
locytes ( Fig. 3, A and B ). An accumulation of CD11b + Ly6C  �   
residential macrophages was also evident in the absence of 
TLR7 ( Fig. 3 B ). These patterns are strikingly similar to those 
observed in IFNAR  � / �   mice ( Fig. 1, A – D ). Indeed, the in-
creased  Mx1  and  IRF7  expression and MCP-1 production 
were abrogated in TLR7  � / �   mice ( Fig. 3 C ). Up-regulation 
of Sca-1 expression on B cells was also reduced in these mice 
after TMPD treatment ( Fig. 3 D ), recapitulating the fi ndings 
in MyD88  � / �   and IFNAR  � / �   mice. On the contrary, ISG 
expression in PECs and surface expression of Sca-1 were similar 
in TLR9  � / �   mice compared with wild-type controls. These 
fi ndings suggest that although TLR9 may contribute to the 
infl ammatory response, IFN-I induction by TMPD was me-
diated primarily by TLR7. 

 To further defi ne the role of TLR7 in the infl ammatory 
response to TMPD, we compared the expression of various 
cytokines and chemokines in wild-type and TLR7  � / �   ani-
mals using a PCR array. After TMPD treatment, perito-
neal cells from wild-type mice displayed dramatically higher 

  Figure 2.     Cytoplasmic nucleic acid sensors do not contribute to 

IFN-I production.  RT-PCR analysis of  Mx1  and  IRF7  expression in PECs 

from wild-type ( n  = 5), IPS-1  � / �   ( n  = 5), TNF  � / �   ( n  = 2), and TNF  � / �  TBK-

1  � / �   ( n  = 4) animals (normalized to peritoneal cells from an untreated 

wild-type animal). Each bar represents the mean, and error bars indicate 

SE. Data are representative of two independent experiments.   
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production in the TMPD lupus model. Interestingly, consis-
tent with the increased number of peritoneal granulocytes in 
TMPD-treated TLR7  � / �   mice ( Fig. 3 A ), the neutrophil 
chemoattractant  CXCL5  was up-regulated in the absence of 
TLR7, whereas the expression of other infl ammatory media-
tors was comparable between the groups (Table S1). 

 Several studies have demonstrated that self-RNA present 
in ICs may act as an endogenous TLR7 ligand causing the 
production of IFN-I ( 18, 19 ). Fc � Rs have been reported to 
play an essential role in this process by enhancing the inter-
nalization of ICs, thereby allowing RNA to interact with 
TLR7 in endosomes ( 32 ). Defi ciency of either TLR7 or Fc � R 
 �  chain, an integral component of Fc � RI and Fc � RIII, ren-
ders mouse DCs unable to produce IFN-I in response to lu-
pus ICs ( 33 ). Because TMPD induces IFN-I production long 
before the onset of lupus autoantibodies and ICs ( 27 ), we ex-
amined the potential role of Fc � R in the IFN-I response to 
TMPD. Surface expression of Fc � RI (CD64) and Fc � RII/III 
(CD32/CD16) in TMPD-induced PECs was prominent on 
Ly6C hi  monocytes ( Fig. 4 A ).  Fc � Rs were also expressed by 
a fraction of granulocytes, whereas lymphocytes and DCs in 
the peritoneal cavity displayed little surface expression of these 
receptors ( Fig. 4 A ). 

 We next analyzed the eff ects of TMPD on Fc � R  �  chain –
 defi cient (Fc � R  � / �  ) mice. The accumulation of Ly6C hi  mono-
cytes and up-regulation of ISG expression were comparable 
in Fc � R  � / �   and wild-type mice ( Fig. 4, B and C ). Elevated 
surface expression of Sca-1 on peripheral blood lympho-
cytes was also similar between the groups (unpublished data). 
Collectively, these fi ndings suggest that TMPD elicits IFN-I 
production through a TLR7-dependent but Fc � R-indepen-
dent pathway. 

 Ly6C hi  monocytes express high levels of TLR7 

 Next, we examined the distribution of  TLR7  expression in 
the infl ammatory infi ltrate induced by TMPD. PECs from mice 
treated with TMPD 2 wk earlier were sorted into four dis-
tinct populations based on surface marker phenotype: Ly6C hi  
monocytes (CD11b  +  Ly6C hi ;  � 30% of PECs), granulocytes 
(CD11b  +  Ly6G  +  ;  � 30% of PECs), DCs (CD11c  +  ;  � 2% of 
PECs), and a negative fraction containing mainly B and T 
lymphocytes. As reported previously ( 27 ), the DC fraction 
consisted of  > 80% CD11b  +   myeloid DCs, and few PDCs 
(CD11c  +  CD11b  �  B220  +  ) were present. 

 Quantitative PCR revealed that Ly6C hi  monocytes ex-
pressed higher levels of  TLR7  than other peritoneal cell subsets 
( Fig. 5 A ).  Prominent expression of the chemokine receptor 
CCR2 is consistent with their immature monocytic pheno-
type, as reported previously ( 34 ). In striking contrast, elevated 
expression of  TLR7  was not a feature of Ly6C hi  monocytes in 
the spleen or bone marrow. Although  TLR7  expression also 
was found on other PEC subsets, DCs displayed greater ex-
pression of  TLR3  and  TLR9 , whereas  TLR4  transcripts were 
predominantly found in granulocytes ( Fig. 5 A ). 

 In line with these fi ndings, when peritoneal Ly6C hi  mono-
cytes were depleted by i.p. injection of clodronate-containing 

expression of several IFN-stimulated chemokines, including 
 CCL2 ,  CCL12 ,  CCL7 , and  CXCL10 , in comparison with 
TLR7  � / �   mice (Table S1, available at http://www.jem.org/
cgi/content/full/jem.20080462/DC1). This pattern of che-
moattractant production is similar to the chemokine signa-
ture recently described in SLE patients ( 31 ). These observations 
support the role of TLR7 as the primary mediator of IFN-I 

  Figure 3.     IFN-I production induced by TMPD is TLR7 dependent.  

(A) Comparison of the number of total PECs, Ly6C hi  monocytes, and gran-

ulocytes 2 wk after TMPD treatment in wild-type ( n  = 5), TLR7  � / �   ( n  = 5), 

and TLR9  � / �   ( n  = 5) mice. (B) Flow cytometry analysis of peritoneal cells 

(box indicates Ly6C hi  monocytes and dashed oval indicates granulocytes). 

(C) RT-PCR analysis of  Mx1  and  IRF7  expression in PECs (normalized to 

peritoneal cells from an untreated wild-type animal) and ELISA quantifi ca-

tion of MCP-1 in the peritoneal lavage fl uid. (D) Flow cytometry of Sca-1 

surface expression on peripheral blood mononuclear cells. MFI of Sca-1 on 

B220 +  cells is shown. Each bar in A and C represents the mean ( n   >  4 per 

group), and error bars indicate SE. Data are representative of two indepen-

dent experiments. *, P  <  0.05 using the Student ’ s  t  test.   
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to the peritoneal cavity after TMPD treatment expressed high 
levels of  TLR7  and actively responded to TLR7 ligands. 

 The Y-linked autoimmune accelerating (Yaa) locus amplifi es 

the effects of TMPD 

 The Yaa locus is essential for the spontaneous development 
of autoantibodies and glomerulonephritis in the BXSB model 
of mouse lupus ( 35 ). Yaa also accelerates disease onset in other 
lupus-prone strains ( 36, 37 ). Interestingly,  TLR7  is among the 
17 genes found in the Yaa locus ( 38, 39 ). Because  TLR7  is 
normally located on the X chromosome in both humans and 
mice, males possess one copy of the gene, whereas a similar 
gene dosage is achieved in females through X inactivation. 
Male mice with the Yaa locus, however, have two functional 
copies of the gene ( 38, 39 ). A recent study showed that the 
 TLR7  gene duplication alone was responsible for the autoim-
mune features associated with the Yaa mutation ( 40 ). 

 Because TMPD induces IFN-I production via TLR7, we 
asked whether the eff ects of the adjuvant oil are more pro-
nounced in the presence of the Yaa locus. Compared with fe-
male controls (designated TLR7 +/+ ), BXSB  ×  B6 male mice 
carrying the Yaa mutation (TLR7 +/Yaa ) exhibited greater ac-
cumulation of Ly6C hi  monocytes in the peritoneal cavity 2 wk 
after TMPD treatment ( Fig. 6 A ).  Importantly, increasing the 
gene dosage of TLR7 was associated with signifi cantly higher 
production of IFN-I, assessed by measuring ISG expression 
( Fig. 6 B ). In contrast, the IFN-I response to TMPD was simi-
lar between males and females in wild-type strains, including 
C57BL/6, BALB/c, and 129Sv (unpublished data). 

 We further examined the long-term eff ect of TMPD 
treatment in the BXSB model. Consistent with previous 
studies ( 35 ), BXSB males died prematurely beginning at 5 mo 
of age ( Fig. 6 C ). Mortality was signifi cantly accelerated when 
a single dose of TMPD was administered i.p. at 8 – 10 wk of 
age. 60% of TMPD-treated animals succumbed by 5 mo of 
age compared with 20% in the control group. Although 5 out 
of 10 PBS-treated animals survived until 7 mo, only 1 out of 
10 in the TMPD-treated group remained. Thus, not only was 
the induction of IFN-I accentuated by the Yaa mutation, TMPD 
treatment also hastened disease progression in the BXSB 
model of lupus. 

 TLR7 is essential for the development of autoantibodies 

against RNA-associated antigens 

 A recent study using MRL- lpr  mice showed that TLR7 is re-
quired for the development of anti-Sm antibodies ( 41 ). To 
assess whether TLR7 is also involved in autoantibody produc-
tion in the TMPD model of lupus, we compared the long-term 
response to TMPD in wild-type BALB/c and BALB/c.
TLR7  � / �   mice. No mortality was found in either group and 
only mild proteinuria was detected by 24 wk after treatment 
(Fig. S1, available at http://www.jem.org/cgi/content/full/
jem.20080462/DC1). Comparable to previous observations 
( 42 ), BALB/c mice displayed signifi cant hypergammaglobu-
linemia 24 wk after TMPD treatment ( Fig. 7 A ).  The in-
crease in serum IgG was reduced by 50% in TLR7  � / �   mice, 

liposomes (clo-lip), the expression of  TLR7  by PECs was 
greatly reduced, whereas the levels of  TLR9  transcripts re-
mained unaff ected ( Fig. 5 B ). We further analyzed the re-
sponse of Ly6C hi  monocytes to various TLR ligands in vitro. 
Sorted Ly6C hi  monocytes secreted large amounts of MCP-1 
and IL-6 when co-cultured with the synthetic TLR7 ligand 
R848 ( Fig. 5 C ). They also responded to the TLR4 ligand 
LPS, albeit less strongly even at the highest dose of LPS tested 
(10  μ g/ml). Consistent with their low levels of TLR3 and 
TLR9 expression, Ly6C hi  monocytes exhibited weak re-
sponses to poly I:C and CpG DNA ( Fig. 5 C ). In contrast, 
isolated granulocytes did not produce measurable amounts of 
MCP-1 or IL-6 in response to any TLR ligands used in this 
study (unpublished data). Hence, Ly6C hi  monocytes recruited 

  Figure 4.     Fc � RI and Fc � RIII are dispensable for IFN-I induction 

by TMPD.  (A) Flow cytometry analysis of Fc � RI (CD64) and Fc � RII/III 

(CD32/CD16) in PEC populations in TMPD-treated wild-type mice (open 

histograms). Shaded histograms represent staining with isotype control 

antibodies. (B) Peritoneal cell infl ux and (C) ISG expression in wild-type 

mice and Fc � RI/III  � / �   ( �  chain – defi cient) mice ( n  = 3 per group) 2 wk 

after TPMD treatment. Dashed boxes in B indicate Ly6C hi  monocytes. 

Each bar in C represents the mean, and error bars indicate SE. Data are 

representative of two independent experiments.   
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mice ( 26 ), were not induced in TLR7  � / �   mice ( Fig. 8 A ).  
A recent study identifi ed the Su antigen as an RNA-binding 
component of the microRNA pathway known as argonaute 
2 (ago2) ( 44 ). ELISA using recombinant ago2 confi rmed that 
the development of autoantibodies against Su/ago2 was TLR7 
dependent ( Fig. 8 B ), suggesting that the autoimmune re-
sponse to microRNA-associated antigens is also mediated by 
TLR7. Collectively, in addition to its role in mediating IFN-I 
production, TLR7 is essential for the generation of autoan-
tibodies against RNA-associated antigens (nRNP/Sm and 
Su/ago2) in TMPD-induced lupus. 

 TMPD enhances TLR7 stimulation in vitro 

 To further investigate the link between TMPD treatment 
and TLR7 activation, we studied the eff ect of TMPD in vitro. 
Although TMPD has been used for decades, mechanistic 
studies on its cellular eff ects have been limited by the hydro-
carbon ’ s poor immiscibility in aqueous solutions. We found 
that this problem could be circumvented by fi rst mixing TMPD 
with fetal bovine serum before the addition of culture medium 
(unpublished data). Unlike stimulation with R848, a TLR7 
ligand that elicits IL-6 production and co-stimulatory mole-
cule up-regulation in mouse J774 macrophages, the addition 
of TMPD in vitro did not induce these responses ( Fig. 9 A  
and not depicted).  TMPD solubilized in nonphysiological 
solvents such as ethanol, DMSO, mannide monooleate, or 

whereas IgM levels were similar between the groups. Consistent 
with the prominent role of IFN-I in IgG2a isotype switch ( 43 ), 
a profound reduction of IgG2a was found in TLR7  � / �   mice 
( Fig. 7 B ). IgG1 and IgG2b levels were also mildly reduced in 
the absence of TLR7, whereas IgG3 was slightly increased. 

 As early as 12 wk after TMPD treatment, 8 out of 12 wild-
type mice developed detectable serum levels of antinuclear anti-
bodies (ANAs) and anti-nRNP/Sm autoantibodies ( Fig. 7, 
C and D ). In contrast, only one animal in the TLR7  � / �   group 
showed a low titer ANA and none developed autoantibodies 
to nRNP/Sm ( Fig. 7, C and D ). Similar to IFNAR  � / �   ani-
mals ( 22 ), most TLR7  � / �   mice exhibited low levels of ANAs of 
unknown specifi city by 24 wk after treatment, but their titers 
remained signifi cantly lower than BALB/c controls ( Fig. 7 C ). 
A single TLR7  � / �   animal with a high ANA titer (1:1,280) 
produced autoantibodies against DNA/chromatin (unpublished 
data). In contrast, autoantibodies against nRNP-Sm remained 
undetectable in all TLR7  � / �   mice at this time point ( Fig. 7 D ). 
We further confi rmed the autoantibody profi le by immuno-
precipitation using nuclear extracts from  35 S-labeled K562 
cells. Consistent with the fi ndings by ELISA, autoantibodies 
against various components of nRNP/Sm (A-G) were found 
in wild-type but not TLR7  � / �   mice ( Fig. 7 E ). 

 Immunoprecipitation studies also revealed that autoanti-
bodies against the Su antigen, which develops in  � 20% of 
lupus patients ( 26 ) and  � 50% of TMPD-treated BALB/c 

  Figure 5.     Ly6C hi  monocytes express high levels of TLR7.  (A) RT-PCR analysis of TLR expression in sorted PEC populations, splenic Ly6C hi  monocytes, 

and bone marrow monocyte precursors from wild-type TMPD-treated mice. (B) RT-PCR analysis of TLR7 and TLR9 expression in PECs from TMPD-treated 

mice 48 h after i.p. injection of PBS or clo-lip. Each bar represents the mean, and error bars indicate SE. (C) ELISA for MCP-1 and IL-6 produced by sorted 

peritoneal Ly6C hi  monocytes (5  ×  10 4  cells/well) 24 h after TLR ligand stimulation. Wedges denote increasing concentrations of LPS, R848, and CpG DNA 

(100 ng/ml, 1  μ g/ml, and 10  μ g/ml), and poly I:C (200 ng/ml, 2  μ g/ml, and 20  μ g/ml). Data are representative of two independent experiments.   
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inability to reach the endosomal compartment where TLR7 
and TLR9 are localized. When they form ICs with lupus au-
toantibodies (anti-Sm/RNP or anti-dsDNA), endogenous nu-
cleic acids may be delivered more effi  ciently to endosomes 
because of uptake by Fc � Rs, stimulating IFN-I production 
by PDCs ( 17, 47 ). This model for IFN-I induction in human 
SLE is supported by numerous in vitro studies ( 19, 32, 48 ). 
Although Fc � RIIa mediates the activation of human PDCs, 
ICs trigger IFN-I production by mouse PDCs in a TLR7- 
and Fc � RI/III-dependent manner ( 33 ). 

 However, it is not known whether the development of 
antiribonucleoprotein autoantibodies is a cause of IFN-I dys-
regulation or a consequence of it. Therapeutic use of IFN- �  
can induce many features of SLE, including anti-dsDNA an-
tibodies, suggesting that IFN-I dysregulation occurs upstream 
of IC formation. Consistent with that view, IFN-I up-regula-
tion in the TMPD model occurs within the fi rst 2 wk of treat-
ment, more than 2 mo before the onset of lupus autoantibodies 
( 27 ). Fc � RI and Fc � RIII were not required for the IFN-I 

 � -cyclodextrin was also ineff ective in triggering TLR7 acti-
vation ( Fig. 9 A ), suggesting that TMPD itself is not a ligand 
for TLR7. 

 However, exposure to TMPD dramatically enhanced the 
response to subsequent stimulation with TLR7 ligands. R848-
induced IL-6 production and co-stimulatory molecule up-
regulation were augmented in J774 cells pretreated overnight 
with TMPD ( Fig. 9 B ). Similar enhancement of chemokine 
and cytokine production was found in bone marrow – derived 
macrophages stimulated with R848 but not the TLR9 ligand 
ODN 2395 ( Fig. 9 C ). Importantly, these observations were 
specifi c to TMPD, as treatment with other hydrocarbon oils 
that do not induce lupus, such as medicinal mineral oil and 
squalene, did not enhance stimulation by R848 ( Fig. 9 D ). 
We further examined whether TMPD augments the response 
to TLR7 ligands by altering the expression or location of 
TLR7. TLR7 remained exclusively intracellular regardless of 
TMPD treatment, and its expression levels were not aff ected 
at the protein or mRNA level ( Fig. 9 E ). Moreover, TMPD 
treatment did not enhance endocytosis of FITC-dextran or 
phagocytosis of latex beads or apoptotic cells (Fig. S2, available 
at http://www.jem.org/cgi/content/full/jem.20080462/DC1), 
suggesting that accelerated uptake of ligands is also unlikely 
to explain our fi ndings. Collectively, these data indicate that 
TMPD is not a direct ligand for TLR7 but instead acts to 
enhance the response to TLR7 stimulation. 

  DISCUSSION  

 Recent studies strongly suggest a link between elevated 
IFN-I production and the pathogenesis of SLE. More than 
half of SLE patients display increased expression of ISGs, of-
ten in association with active disease and autoantibodies against 
snRNPs and DNA, as well as renal involvement and endo-
thelial dysfunction ( 2 – 6, 45 ). However, the exact cause of IFN-I 
dysregulation in lupus remains controversial, and it is un-
clear whether IFN-I overproduction promotes autoantibody 
production or vice versa. 

 The TMPD model of lupus recapitulates many features of 
human SLE, including glomerulonephritis, arthritis, and au-
toantibodies against dsDNA and snRNPs ( 25, 26 ). Moreover, 
like SLE, TMPD-induced lupus is more severe in females 
than males ( 46 ). We recently found that TMPD-treated mice 
exhibit the IFN signature and that their lupus is dependent 
on IFN-I signaling ( 22 ). The major IFN-I – producing cells in 
TMPD lupus are Ly6C hi  monocytes rather than PDCs ( 27 ). 
In this study, we show that TMPD triggers IFN-I production 
via the TLR7 – MyD88 pathway. Our data also exclude a major 
role of other pathways of IFN-I production, including TLR9, 
TLR3 – TLR4 – TRIF, RIG-I – Mda5 – IPS-1, and DAI – TBK1. 
Although there was a strict requirement for TLR7 and MyD88, 
expression of ISGs and recruitment of Ly6C hi  monocytes in 
response to TMPD was unexpectedly independent of Fc � Rs. 

 The innate sensors TLR7 and TLR9 have been impli-
cated in SLE because of their ability to recognize endogenous 
nucleic acids and trigger IFN-I production ( 47 ). Mammalian 
nucleic acids are generally weak TLR ligands because of their 

  Figure 6.     Yaa mutation amplifi es the effects of TMPD.  (A) Flow cy-

tometry of peritoneal cells and (B) RT-PCR analysis of ISG expression in 

BXSB  ×  B6 female (TLR7 +/+ ) and male (TLR7 +/ Yaa ) mice. Dashed boxes in A 

indicate Ly6C hi  monocytes. Each bar in B represents the mean, and error 

bars indicate SE. Data are representative of two independent experiments. 

*, P  <  0.05 using the Student ’ s  t  test. (C) Survival curve for male BXSB mice 

after PBS or TMPD treatment (arrow denotes treatment at 8 – 10 wk of age).   
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toantibodies against ssRNA in 564Igi transgenic mice ( 53, 54 ). 
The connection between TLR7 and the generation of RNA-
associated autoantibodies is further illustrated by the recent 
demonstration of a duplication of the TLR7 gene in Yaa mice. 
The presence of the Yaa cluster was suffi  cient to induce produc-
tion of RNA-associated autoantibodies in C57BL/6 Fc � IIB  � / �   
and C57BL6.Sle1 mice, two autoimmune strains that nor-
mally lack these antibody specifi cities ( 38, 39 ). TLR7, and not 
the other 16 genes aff ected by the Yaa mutation, is responsible 
for the autoimmune pathology ( 40 ). However, increased IFN-I 
production has not been reported in these models. Our fi nd-
ings indicate that TLR7 also plays an essential role in TMPD 
lupus. Similar to the MRL- lpr  model ( 41 ), TLR7 is required 
for the generation of anti-nRNP/Sm autoantibodies in TMPD-
treated mice. Importantly, the IFN signature in TMPD-treated 
mice, which is established within 2 wk of treatment (long be-
fore the appearance of anti-nRNP autoantibodies), was abol-
ished in the absence of TLR7. In contrast, the eff ects of TMPD 
were amplifi ed in the presence of the Yaa locus. Therefore, 
this study provides evidence for direct in vivo involvement of 
TLR7 in the induction of IFN-I, even in the absence of auto-
antibodies and ICs. 

 We have previously shown that Ly6C hi  monocytes are a 
major source of IFN-I in the TMPD model ( 27 ). Depletion 
of monocytes but not DCs reduced IFN-I production and 
ISG expression. In this study, we found that Ly6C hi  mono-
cytes also express higher levels of TLR7 and display a greater 
response in vitro to R848 than to other TLR ligands. Al-
though TLR7 is normally found on monocytes and macro-
phages, its expression on peritoneal Ly6C hi  monocytes in 
TMPD-treated mice was several fold higher than on splenic 

response to TMPD because it was unaff ected in  �  chain – de-
fi cient mice. Moreover, a previous study also showed that the 
absence of Fc � RI/III or Fc � RIIb does not aff ect anti-Sm/
RNP autoantibody production in TMPD-treated mice ( 49 ). 
Although IC formation and Fc � Rs are not required to initiate 
IFN-I production, we cannot exclude the possibility that they 
amplify IFN-I secretion and accelerate disease progression 
subsequent to the development of autoantibodies. 

 A pathogenic role of TLR7 has been described in several 
mouse models of SLE. In MRL- lpr  mice, TLR7 ligands ac-
celerate the onset of glomerulonephritis, whereas deletion of 
TLR7 abrogates the development of anti-Sm autoantibodies 
and lessens the severity of kidney disease ( 41, 50 ). Lupus in 
MRL- lpr  mice has been reported to be ameliorated, not ex-
acerbated, by IFN-I ( 51 ), and the  lpr  defect prevents induc-
tion of TMPD lupus ( 52 ). 

 Dual engagement of TLR7 and the B cell receptor can di-
rectly activate autoreactive B cells in the AM14 model, and 
TLR7 is also required for the spontaneous production of au-

  Figure 8.     TLR7 is required for the development of anti-Su/ago2 

autoantibodies.  (A) Immunoprecipitation of serum autoantibodies 24 wk 

after TMPD treatment (8% polyacrylamide gel;  n  = 6 per group). Arrows 

indicate the 100-kD Su antigen, and numerical values denote the molecu-

lar mass (kD). (B) Anti-Su/ago levels at baseline and 24 wk after TMPD 

treatment measured by ELISA using recombinant ago2 protein. Horizontal 

lines indicate medians. *, P  <  0.05 using the Mann-Whitney U test.   

  Figure 7.     TLR7 promotes hypergammaglobulinemia and mediates 

the development of anti-nRNP/Sm autoantibodies.  (A) Total IgM and 

IgG and (B) IgG subclass levels in BALB/c.TLR7  � / �   ( n  = 8) and wild-type 

BALB/c ( n  = 12) mice before and 24 wk after TMPD treatment. Bars repre-

sent the mean, and error bars indicate SE. *, P  <  0.05; and **, P  <  0.001 

using the unpaired  t  test. (C) Fluorescent ANA titers (titration emulation) 

and (D) anti-nRNP/Sm IgG levels (antigen-capture ELISA) at 12 and 24 wk 

after TMPD treatment. Horizontal lines indicate medians. *, P  <  0.05 using 

the Mann-Whitney U test. (E) Immunoprecipitation of serum autoanti-

bodies ( n  = 6 per group) using nuclear extracts from  35 S-labeled K562 

cells (12.5% polyacrylamide gel). Arrows indicate components of nRNP/Sm, 

and numerical values denote the molecular mass (kD).   
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 It is noteworthy that besides activating IFN-I production 
via TLR7, TMPD also induced the recruitment of granulocytes 
via an MyD88-dependent but TLR7-independent pathway. 
The number of peritoneal granulocytes actually increased in 
the absence of IFN-I production, as seen in TLR7  � / �   and 
IFNAR  � / �   mice. MyD88 is used in the signaling pathways 
of other cytokines (IL-1 and IL-18) and TLRs (except TLR3), 
which are potential mediators of granulocyte recruitment in 
this model. 

 Finally, our fi ndings may shed light on other pathology 
induced by TMPD. The development of plasmacytomas after 
i.p. injection of TMPD in BALB/cAnPt mice was fi rst de-
scribed more than three decades ago ( 61 ). Subsequently TMPD 
was used to enhance monoclonal antibody production by hy-
bridomas ( 62 ). How TMPD elicits these eff ects is incompletely 
understood, although IL-6 has been implicated. Interestingly, 

or bone marrow monocytes. In contrast, DCs in the perito-
neal exudate displayed lower levels of TLR7 and more prom-
inent TLR3 and TLR9 expression. The high expression level 
of TLR7 by Ly6C hi  monocytes may be of critical importance 
in the pathogenesis of TMPD lupus, as a recent study demon-
strated that increased gene dosage of TLR7 is suffi  cient to 
trigger anti-RNA antibodies and glomerulonephritis in C57BL/6 
mice ( 40 ). Interestingly, the recruitment of Ly6C hi  mono-
cytes to the peritoneum seems to be partially dependent on 
IFN-I, as seen in TLR7  � / �  , MyD88  � / �  , and IFNAR  � / �   
mice. TLR7 signaling also induces the expression of several 
IFN-stimulated chemokines ( CCL2 ,  CCL7 , and  CCL12 ), 
suggesting that the mechanism may involve enhanced pro-
duction of monocyte chemoattractants, creating an amplifi -
cation loop of Ly6C hi  monocyte recruitment and IFN-I 
production. The recruitment of DCs and granulocytes, on 
the other hand, was not dependent on IFN-I or TLR7. 

 The mechanism linking TMPD to the activation of TLR7 
has been partially elucidated by our studies. The hydrocarbon 
structure of TMPD is distinct from known TLR7 ligands, 
including ssRNA, R848, loxoribine, and other guanosine 
analogues. Indeed, our in vitro studies showed that TMPD 
did not activate TLR7 directly but instead augmented the in-
fl ammatory response to TLR7 ligands such as R848. The 
ability of hydrocarbon oils to enhance TLR7 stimulation in 
vitro seems related to their ability to induce lupus-like disease 
in vivo. Unlike TMPD, squalene and medicinal mineral oil 
were ineff ective in augmenting the response to R848. Mice 
treated with squalene and mineral oil do not display the IFN 
signature and few develop lupus autoantibodies ( 27, 55 ). 
TMPD appears to enhance activation via the TLR7 pathway 
in at least two ways: (a) by augmenting the recruitment of 
Ly6C hi  monocytes, which express high levels of TLR7, and 
(b) by enhancing the intrinsic responsiveness of TLR7 to its 
ligands. Additional studies will be needed to elucidate whether 
TMPD causes increased uptake of apoptotic/necrotic mate-
rial, enhancing the recognition of TLR7 ligands, or if TMPD 
interacts with components of the TLR7 signaling pathway, 
augmenting the response to receptor – ligand interactions. 

 Although the underlying mechanisms are distinct, the 
pathological consequences of excess TLR7 activation are 
shared by TMPD-induced lupus and the Yaa model. An im-
portant unanswered question that encompasses both models 
is the nature of the exogenous or endogenous ligands re-
sponsible for activating the TLR7 pathway. It is possible that 
chronic TMPD-stimulated infl ammation provides a persis-
tent source of autoantigens from apoptotic cells and that en-
dogenous TLR7 ligands such as the U1 RNA component of 
the Sm/RNP antigen ( 56 – 58 ) trigger the fi rst wave of IFN-I 
production. Downstream signaling events may elicit further 
IFN-I production ( 59 ) and  TLR7  expression ( 60 ), culminat-
ing in a positive feedback cycle that promotes autoimmunity 
by persistently activating TLR7. It remains to be verifi ed 
experimentally whether or not RNA-associated autoanti-
gens from apoptotic cells are key mediators of Yaa- and TMPD-
induced lupus in vivo. 

  Figure 9.     TMPD enhances TLR7 stimulation in vitro.  (A) ELISA for IL-6 

production in J774 cells cultured in the presence of 1  μ g/ml R848, 1  μ g/ml 

TMPD incorporated in serum, or 300  μ M TMPD solubilized in ethanol, 

DMSO, mannide monooleate (MM), or  � -cyclodextrin ( � -CyD). ND, not 

detectable. (B) ELISA (IL-6 and MCP-1) and fl ow cytometric analysis (CD80 

and CD86) in J774 cells or (C) bone marrow-derived macrophages cultured 

for 20 h with or without TMPD and stimulated with PBS, 1  μ g/ml R848, or 

2  μ g/ml ODN 2395 for 24 h. MFI values are provided. Shaded histograms 

represent J774 cells cultured in medium alone, whereas open histograms 

represent cells treated with TMPD. (D) Comparison of IL-6 production and 

CD80 expression (MFI) in J774 cells cultured with various hydrocarbon oils 

and stimulated with PBS or R848. (E) Flow cytometry and RT-PCR analysis 

of TLR7 expression in J774 cells cultured with or without TMPD for 20 h. 

Each bar represents the mean, and error bars indicate SE. Data are represen-

tative of three or more independent experiments.   
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plus 10 U/ml heparin) were seeded on 96-well cell-culture plates (5  ×  10 4  

cells/well). Cells were stimulated with the doses indicated in the fi gures of 

peptidoglycan, poly I:C, R848, CpG ODN2395 (InvivoGen), or LPS (from 

 Salmonella typhimurium ; Sigma-Aldrich) and were incubated at 37 ° C in a 5% 

CO 2  atmosphere for 24 h before collecting the supernatant. MCP-1 and IL-6 

ELISAs (BD) were performed according to the manufacturer ’ s instructions. 

Optical density was converted to concentration using standard curves based 

on recombinant cytokines analyzed by a four-parameter logistic equation 

(Softmax Pro 3.1 software; MDS Analytical Technologies). 

 Cell culture with TMPD.   1 ml TMPD, mineral oil or squalene was added 

to 9 ml of fetal bovine serum in a 15-ml polypropylene tube and was rotated 

for 48 h at 4 ° C. The surface layer of unincorporated hydrocarbon oil was re-

moved by aspiration at the end of the incubation. The amount of TMPD 

incorporated using this method was  � 1  μ g/ml, as determined by gas chroma-

tography/mass spectroscopy (not depicted; Analytical Toxicology Core, Uni-

versity of Florida). J774 cells or bone marrow – derived macrophages were 

seeded on 24-well plates (5  ×  10 5  cells/well) and cultured overnight in com-

plete DMEM containing 10% FCS with or without hydrocarbon oils. For sub-

sequent stimulation, cells were washed with PBS, and fresh complete medium 

was added before the addition of TLR ligands. Incorporation of TMPD in 

DMSO and  � -cyclodextrin (Sigma-Aldrich) has been described previously 

( 68 ). TMPD (10% vol/vol) also was added to ethanol or mannide monooleate 

(5% in PBS; Sigma-Aldrich). Solvent alone was used as a control, and a range 

of TMPD concentrations (3 – 300  μ M) was tested. Endocytosis was quantifi ed 

by uptake of 5  μ g/ml FITC-dextran (Sigma-Aldrich), and phagocytosis by in-

ternalization of FITC-labeled microbeads (10:1 beads/cells ratio; Invitrogen) or 

tetramethylindodicarbocyanine perchlorate (DiD) – labeled apoptotic BW5147 

cells (10:1 apoptotic cell/ target cell ratio) after overnight incubation of J774 

cells in complete medium with or without TMPD. Apoptosis of BW5147 cells 

was induced by heat shock in a 45 ° C water bath for 10 min. After 4 h of incu-

bation at 37 ° C, apoptotic cells ( > 80% annexin V positive; not depicted) were 

labeled with the fl uorescent dye DiD (Invitrogen). J774 Cells were washed and 

incubated with the fl uorescent substrates for 30 min at 37 ° C (in PBS with 0.5% 

BSA), washed three times, and analyzed by fl ow cytometry. ELISA, fl ow cy-

tometry, and RT-PCR were performed as described. Bone marrow – derived 

macrophages were generated from BALB/c mice as previously described ( 8 ). 

 Autoantibody analysis.   Serum ANAs in BALB/c.TLR7  � / �   and wild-

type BALB/c mice were determined 12 and 24 wk after TMPD by indi-

rect immunofl uorescence using HEp-2 cells (Innova). Sera were diluted 

1:40, and titers were determined using a titration emulation system (Image 

Titer; Rhigene, Inc.). Immunoprecipitation and antigen-capture ELISA to 

detect serum autoantibodies against nRNP/Sm were performed as previ-

ously described ( 26, 69 ). Determination of anti-Su/ago2 by ELISA has also 

been previously described ( 44 ). Recombinant ago2 protein was a gift from 

E. Chan and K. Ikeda (University of Florida, Gainesville, FL). 

 Statistical analysis.   For quantitative variables, diff erences between groups 

were analyzed by the unpaired Student ’ s  t  test. Survival curves were analyzed 

using the log-rank test. ANA titers and autoantibody levels were compared 

using the Mann-Whitney U test. Data are presented as means  ±  SD. All tests 

were two-sided, and P  <  0.05 was considered signifi cant. Statistical analyses 

were performed using Prism 4.0 software (GraphPad Software, Inc.). 

 Online supplemental material.   Table S1 provides PCR array analysis of 

cytokine/chemokine expression in PECs from wild-type and TLR7  � / �   

mice. Table S2 provides the sequence of all PCR primers used in this study. 

Fig. S1 shows the levels of proteinuria in BALB/c and TLR7  � / �   mice 24 wk 

after TMPD treatment. Fig. S2 shows the eff ect of TMPD on endocytosis of 

FITC-dextran and phagocytosis of FITC-coated latex beads or apoptotic 

lymphocytes in J774 cells. Online supplemental material is available at 

http://www.jem.org/cgi/content/full/jem.20080462/DC1. 

 We thank Dr. E. Sobel for helpful discussion, M. Xu for assistance with manuscript 

preparation, Drs. E. Chan and K. Ikeda for providing recombinant ago2 protein, and 

although TLR7 can trigger B cell activation and antibody 
production ( 53 ), IFN-I plays an important role in antibody 
class switching and promotes plasma cell diff erentiation in the 
presence of IL-6 ( 63 ). Whether TLR7 activation and IFN-I 
production are involved in the pathogenesis of plasmacyto-
mas and enhancement of antibody production by hybridomas 
warrants further investigation. 

 MATERIALS AND METHODS 
 Mice.   MyD88  � / �  , TRIF  � / �  , TLR7  � / �  , TLR9  � / �  , and IFNAR  � / �   mice 

(backcrossed  > 7 generations to the C57BL/6 background), and IPS-1  � / �  , 

TNF  � / �  , TNF  � / �  TBK1  � / �   mice (on a mixed 129Sv/B6 background) have 

all been described previously ( 7, 8, 29, 64 – 66 ). Wild-type C57BL/6 and 

heterozygous littermates were used as controls. BALB/c.TLR7  � / �   (back-

crossed  > 8 generations to the BALB/c background) and wild-type BALB/c 

mice were used for long-terms studies of autoantibody production. Animals 

were bred and maintained in a specifi c pathogen-free facility of the Re-

search Institute for Microbial Diseases, Osaka University. C57BL/6 wild-

type and Fc � RI/III  � / �   mice (Taconic) and BXSB mice (The Jackson 

Laboratory) were maintained in a specifi c pathogen-free facility at the Uni-

versity of Florida. BXSB  ×  B6 F1 mice were generated by breeding BXSB 

males with C57BL/6 females. 12 – 16-wk-old animals received a single i.p. 

injection of 0.5 ml TMPD (Sigma-Aldrich). Blood samples were obtained 

before TMPD treatment and weekly thereafter. Peritoneal cells, spleen, and 

blood were harvested 2 wk after treatment. Monocyte depletion was per-

formed by i.p. injection of 200  μ l clo-lip, as previously described ( 67 ). 

These studies were approved by the University of Florida Institutional Ani-

mal Care and Use Committee and the Osaka University Animal Care and 

Use Committee. 

 Real-time quantitative PCR (RT-PCR).   RT-PCR was performed as 

previously described ( 24 ). In brief, total RNA was extracted from 10 6  peri-

toneal cells using TRI zol  reagent (Invitrogen), and cDNA was synthesized 

using the Superscript II First-Strand Synthesis kit (Invitrogen) according to 

the manufacturer ’ s protocol. SYBR green RT-PCR analysis was performed 

using a thermocycler (Opticon II; MJ Research). Amplifi cation conditions 

were as follows: 95 ° C for 10 min, followed by 45 cycles of 94 ° C for 15 s, 

60 ° C for 25 s, and 72 ° C for 25 s. After the fi nal extension (72 ° C for 10 min), 

a melting-curve analysis was performed to ensure specifi city of the products. 

Primers used in this study are listed in Table S2 (available at http://www

.jem.org/cgi/content/full/jem.20080462/DC1). Cytokine/chemokine PCR 

array (Superarray) analysis was performed using a sequence detector (ABI 

7700; Applied Biosystems) according to the manufacturer ’ s protocols. 

 Flow cytometry and cell sorting.   The following conjugated antibodies 

were used: anti – CD11b-PE, anti – CD8-allophycocyanin (APC), anti – CD4-

FITC, anti – CD11c-PE, anti – B220-PerCPCy5.5, anti – Sca-1 – PE, anti – CD64-

PE, anti – CD32/16-PE (all from BD), anti – Ly6C-FITC, anti – Ly6C-biotin, 

and avidin-APC (all from eBioscience). Before surface staining, peritoneal or 

peripheral blood cells were incubated with anti – mouse CD16/32 (Fc block; 

BD) for 10 min. Cells were then stained with an optimized amount of primary 

antibody or the appropriate isotype control for 10 min at room temperature 

before washing and resuspending in PBS supplemented with 0.1% BSA. Intra-

cellular staining for TLR7 was performed as previously described ( 50 ) using 

rabbit anti – mouse TLR7 or rabbit IgG isotype control (eBioscience) and goat 

anti – rabbit IgG-FITC (SouthernBiotech). 50,000 events per sample were ac-

quired using a FACSCalibur (BD) and analyzed with FCS Express 3 software 

(De Novo Software). Cell sorting was performed using a fl ow cytometer 

(FACSDiva; BD). Peritoneal, splenic, and bone marrow Ly6C hi  monocytes 

(CD11b + Ly6C hi ), peritoneal DCs (CD11c + ), and granulocytes (CD11b + Ly6G + ) 
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