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    Chemokines are small ( � 8 – 14 kD), structur-
ally cytokine-like, secreted proteins that regu-
late cell traffi  cking through interactions with 
a subset of seven-transmembrane, G protein –
 coupled receptors ( 1 ). Members of this molec-
ular superfamily share structural similarities, 
including four conserved cysteine residues that 
form disulphide bonds, which are crucial to the 
tertiary structures. Chemokines can be divided 
into four subclasses: the C, C-C, C-X-C, and 
C-X3-C chemokines, depending on the loca-
tion of the fi rst two cysteine residues in their 
protein sequence. The interaction of these sol-
uble proteins with their specifi c receptors me-
diates their biological eff ects. Most of the attention 
has been devoted to elucidating the key role of 
these mediators in infl ammatory processes ( 2 ), 
with special interest in infl ammatory autoimmune 
diseases, mainly multiple sclerosis (MS) and its 
experimental models ( 2 – 4 ). Except for their 

role in infl ammatory diseases, chemokines are 
also involved in allergic responses and cancer ( 5 ). 

 The CXC chemokine CXCL12 (stromal 
cell – derived factor 1 �  [SDF-1 � ]) was originally 
identifi ed as a growth factor for mouse pre – B 
cells ( 6, 7 ). CXCL12 is constitutively expressed 
by various cells and tissues, and exhibits che-
moattractive activity for monocytes, bone mar-
row neutrophils, and early stage B cell precursors. 
It is also a highly effi  cient and potent chemoat-
tractant for T cells, as well as a co-stimulator 
of their activation ( 8 ). Furthermore, CXCL12 
induces the adhesion of T cells to intercellular 
adhesion molecule 1 (CD54) ( 9 ) by up-regu-
lating the binding activity of lymphocyte func-
tion-associated antigen 1 (CD11a/CD18), and 
also modulates the  � 4- � 7 integrin – mediated 
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 Experimental autoimmune encephalomyelitis (EAE) is a T cell – mediated autoimmune 

disease of the central nervous system induced by antigen-specifi c effector Th17 and Th1 

cells. We show that a key chemokine, CXCL12 (stromal cell – derived factor 1 � ), redirects 

the polarization of effector Th1 cells into CD4 + CD25  �  Foxp3  �  interleukin (IL) 10 high  anti-

gen-specifi c regulatory T cells in a CXCR4-dependent manner, and by doing so acts as a 

regulatory mediator restraining the autoimmune infl ammatory process. In an attempt to 

explore the therapeutic implication of these fi ndings, we have generated a CXCL12-immu-

noglobulin (Ig) fusion protein that, when administered during ongoing EAE, rapidly sup-

presses the disease in wild-type but not IL-10 – defi cient mice. Anti – IL-10 neutralizing 

antibodies could reverse this suppression. The benefi cial effect included selection of anti-

gen-specifi c T cells that were CD4 + CD25  �  Foxp3  �  IL-10 high , which could adoptively transfer 

disease resistance, and suppression of Th17 selection. However, in vitro functional analysis 

of these cells suggested that, even though CXCL12-Ig – induced tolerance is IL-10 depen-

dent, IL-10 – independent mechanisms may also contribute to their regulatory function. 

Collectively, our results not only demonstrate, for the fi rst time, that a chemokine func-

tions as a regulatory mediator, but also suggest a novel way for treating multiple sclerosis 

and possibly other infl ammatory autoimmune diseases. 
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tion–Noncommercial–Share Alike–No Mirror Sites license for the fi rst six months 
after the publication date (see http://www.jem.org/misc/terms.shtml). After six 
months it is available under a Creative Commons License (Attribution–Noncom-
mercial–Share Alike 3.0 Unported license, as described at http://creativecommons
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rophages, and the eff ect on the production of various key 
cytokines was determined 48 h later. A dose-dependent in-
crease in IL-10 production and, at the same time, a decrease 
in TNF- �  and IL-12 were recorded (P  <  0.01 in cultures 
supplemented with 100 ng/ml CXCL12 for all comparisons; 
 Fig. 2 B ). To determine whether CXCL12 directly aff ects IL-10 
production by CD4 +  T cells, we isolated and purifi ed CD4 +  
T cells from spleens of naive C57BL/6 mice (MACS beads) 
and subjected them to anti-CD3 – induced activation in the 
presence of CXCL12.  Fig. 2 C  shows a signifi cant, dose-de-
pendent elevation in IL-10 production (P  <  0.01 in cultures 
supplemented with 100 ng/ml CXCL12), accompanied by a 
signifi cant reduction in TNF- �  (P  <  0.01 in cultures supple-
mented with 100 ng/ml CXCL12), and a dose-dependent 
increase in IL-2 production ( Fig. 2 C ). The increased pro-
duction of IL-2 may suggest that the increased production of 
IL-10 results, in part, because of the diff erential proliferation 
of IL-10 – producing cells, but it cannot explain the reduced 
levels of TNF- �  produced by the cultured cells. These results 
may thus suggest a possible role for this chemokine as a regu-
latory mediator, and they motivated us to determine its po-
tential use for the treatment of ongoing EAE. 

 CXCL12-Ig fusion protein suppresses ongoing EAE 

 Chemokines possess a very short half-life time in vivo, and 
therefore, their potential use as drugs is limited. To overcome 
this, we adopted the strategy of generating Ig-based fusion pro-
teins and constructed a chimeric protein composed of CXCL12 
fused to IgG1 (Fc). The fusion protein was expressed as a 

lymphocyte adhesion to mucosal addressin cell adhesion mol-
ecule 1 and fi bronectin ( 10 ). As a result of these activities, 
it is thought to play an important role in the attraction of 
T cells into specifi c sites. In addition to these observations, 
CXCL12 has been associated with the regulation of rheuma-
toid arthritis and nephritis in a mouse lupus model ( 11, 12 ). 
Interestingly, this chemokine is preferentially expressed in the 
healthy central nervous system (CNS), where it also serves as 
a survival and migratory factor for neuronal and oligodendro-
cyte precursors that express CXCR4 ( 13 ). 

 Experimental autoimmune encephalomyelitis (EAE) is an 
experimentally induced autoimmune disease of the CNS that 
serves as an animal model for MS ( 14 ). The expression of 
CXCL12 within the CNS was found to be up-regulated in 
the MS brain, particularly by astrocytes, which are likely to 
attract dendritic cells, macrophages, and T cells to the peri-
vascular areas of the CNS ( 15 – 17 ). This motivated us to ex-
plore the role of this chemokine in the regulation of EAE and 
its clinical implications. 

  RESULTS  

 Neutralization of CXCL12 during ongoing EAE aggravates 

its manifestation 

 We fi rst explored the possibility that the endogenously pro-
duced CXCL12 participates in the natural regulation of dis-
ease. To test this hypothesis, EAE mice were administered 
with a mAb to CXCL12, or an isotype-matched control IgG, 
after the onset of disease. Our results ( Fig. 1 ) indicate that 
these mice, but not those administered with the control anti-
bodies, developed an exacerbated, long-term form of disease 
(mean maximal score of 3  ±  0.28 vs. 2.166  ±  0.18 in both 
control groups; P  <  0.03).  The data shown represent one out 
of three experiments with very similar observations. These 
results suggest that CXCL12 may function as an antiinfl am-
matory chemokine in regulating an ongoing disease. 

 CXCL12 directs the functional polarization 

of macrophages and T cells into high IL-10, 

low infl ammatory mediator – producing cells 

 How does CXCL12 suppress infl ammation? We explored 
the possibility that this chemokine functions as a potential 
regulatory and antiinfl ammatory mediator. At fi rst, rCXCL12 
was added, in diff erent concentrations, to primary spleen cells 
isolated from EAE mice that were cultured with their target 
antigen (myelin oligodendrocyte glycoprotein [MOG] p35-55 ). 
 Fig. 2 A  shows that supplementing these cultured cells with 
this chemokine induced an increase in IL-10 production (P  <  
0.01 in cultures supplemented with 100 ng/ml CXCL12), 
and at the same time a signifi cant decrease in IL-12 and TNF- �  
production (P  <  0.01 in cultures supplemented with 100 ng/ml 
CXCL12), all in a dose-dependent manner.  Because the 
CXCR4 receptor is expressed on both CD4 +  T cells and 
macrophages ( 1 ), we determined the direct eff ect of this che-
mokine on the production of various cytokines in each cell 
type separately. Initially, rCXCL12 was added in diff erent con-
centrations to freshly isolated, LPS-activated peritoneal mac-

  Figure 1.     Neutralization of CXCL12 during ongoing EAE aggravates 

ongoing EAE.  C57BL/6 female mice ( n  = 6 per group) were subjected to 

active induction of MOG p35-55 -induced EAE, and at the onset of disease 

(day 10) were separated into three equally sick groups ( n  = 6 mice per 

group). On days 11, 13, 15, and 17 after the induction of disease, mice were 

injected i.v. either with PBS (open circles), 50  μ g/mouse of anti-CXCL12 

mAb (closed circles), or control antibody (open squares). An observer blind 

to the experimental protocol monitored the development and progression 

of disease. The results of one out of three independent experiments ( n  = 6 

mice per each group) are shown as the mean maximal score  ±  SE. The 

arrow indicates the fi rst day of anti-CXCL12 antibody administration.   
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fl ammatory mediators, including IL-12 (330  ±  27 vs. 920  ±  80 
and 1,230  ±  140 pg/ml; P  <  0.01), IL-23 (13  ±  1.2 vs. 30  ±  4.3 
and 32  ±  3.1 pg/ml; P  <  0.001), and TNF- �  (780  ±  55 vs. 
1,540  ±  130 and 1,420  ±  60 pg/ml; P  <  0.01), which is also 
largely produced by Th1 cells ( 20 ). No signifi cant changes in 
TGF- �  or IL-4 levels were noted. Thus, therapy with CXCL12-
Ig promotes antiinfl ammatory cytokine production, particularly 
IL-10, whereas blocking the production of proinfl ammatory 
cytokines, including those directing the polarization of Th1 and 
Th17 cells, particularly the cytokine IL-17 (160  ±  22 vs. 820  ±  
115 and 780  ±  95 pg/ml; P  <  0.001). 

 In an attempt to elucidate the long-term eff ect of therapy 
on the manifestation of disease, we have established a chronic 
form of disease by subsequent administrations of the enceph-
alitogenic peptide ( 21 ) and determined the long-term eff ect 
of CXCL12-Ig on the manifestation of disease.  Fig. 4 D  sum-
marizes the results of one out of three independent exper-
iments with similar data, showing a marked, long-lasting 
suppression of disease in treated mice (day 40 mean EAE score 
of 0.33  ±  0.16 in treated mice compared with 2.66  ±  0.3 and 
2.83  ±  0.5 in control groups; P  <  0.001). 

 CXCL12 was found capable of inducing CD4 +  T cell 
apoptosis via up-regulation of the Fas (CD95) – Fas ligand 
(CD95L) pathway ( 22 ). To elucidate whether under our work-
ing conditions the administration of CXCL12-Ig induced 
apoptosis of antigen-specifi c CD4 +  T cells, primary T cells 
from the cervical lymph node of treated and control EAE 
mice ( Fig. 4 D , a) were obtained just before the peak of dis-
ease (day 24) and subjected to in vitro activation in the pres-
ence of their target antigen.  Fig. 4 D  (b) shows no signifi cant 

disulphide-linked homodimer, similar to IgG1, and it had a mo-
lecular mass of  � 72 kD, consisting of two identical 36-kD 
subunits ( Fig. 3 A ).  Next, we determined whether our CXCL12-
Ig maintains the functional properties of the chemokine, in-
cluding its ability to attract human THP-1 monocytic cell 
line cells (P  <  0.001;  Fig. 3 B ), as well as Jurkat cells (not de-
picted), in a Transwell system. CXCL12-Ig was also tested 
for its ability to elicit IL-10 production in LPS-activated peri-
toneal macrophages ( Fig. 3 C ), and in primary T cells under-
going antigen-specifi c in vitro activation ( Fig. 3 D ). Both 
the commercially available rCXCL12 and our fusion protein 
could signifi cantly (P  <  0.01) induce IL-10 production in 
these cells. 

 In an attempt to identify which of the two receptors that 
bind CXCL12 — CXCR4 or CXCR7 — dominates CXCL12-
induced IL-10 production, we have used the commercially 
available CXCR4 antagonist AMD3100 (Sigma-Aldrich), 
which specifi cally blocks CXCR4 ( 18 ). As CXCR4 exclu-
sively mediates CXCL12-induced migration ( 19 ), we fi rst 
determined the optimal concentration of AMD3100 that com-
pletely blocked CXCL12-induced migration of anti-CD3 –
 activated naive T cells.  Fig. 3 E  shows that at AMD3100 
concentrations  > 50 nM, CXCL12-induced migration of anti-
CD3 – activated T cells was entirely blocked. Similar results 
were obtained using mouse and human monocytic cell lines 
(unpublished data). We then determined whether the addi-
tion of 100 nM AMD3100 could block the increase in IL-10 
production induced by CXCL12 in these cells. We clearly 
show that blocking CXCR4 completely reversed IL-10 pro-
duction induced by CXCL12 (879  ±  34 vs. 413  ±  28 pg/ml; 
 Fig. 3 F ) but not IL-2 production (3,153  ±  158 vs. 3,353  ±  
226 pg/ml;  Fig. 3 G ), indicating the pivotal role of CXCR4 
in IL-10 production by these cells. 

 We then explored the ability of this fusion protein to sup-
press ongoing EAE.  Fig. 4 A  shows that repeated administration 
of this fusion protein, but not of a control fusion protein com-
prised from soluble  � -actin – Ig, could eff ectively and rapidly 
suppress the disease.  Although all control mice continued to 
develop a semichronic form of disease that persisted  > 4 wk, all 
CXCL12-Ig – treated mice went into remission within 7 – 8 d 
(day 20 control group mean maximal score of 2.1  ±  0.166 and 
2.3  ±  0.26 vs. 0.166  ±  0.16; P  <  0.001). Histological analysis 
conducted on lumbar spinal cord sections on day 20 verifi ed the 
clinical results (mean histological score of 0.4  ±  0.3 vs. 2.3  ±  
0.3 and 2.1  ±  0.3 in control groups). Representative sections 
were also subjected to immunohistochemical analysis of IL-10, 
showing the existence of IL-10 – producing cells within the few 
perivascular infi ltrates in sections from CXCL12-Ig – treated 
mice but not control groups ( Fig. 4 B ). In a subsequent set of 
experiments, spleen cells from these groups were cultured in 
the presence of their target antigen (MOG p35-55 ), and the levels 
of IL-10, IL-4, IL-12, TGF- � , IL-17, IL-23, and TNF- �  were 
recorded ( Fig. 4 C ). The signifi cantly higher levels of IL-10 de-
tected in cultures from CXCL12-Ig – treated mice (1,450  ±  170 
compared with 750  ±  65 and 790  ±  70 pg/ml; P  <  0.01) was 
accompanied by a reduced production of macrophage proin-

  Figure 2.     CXCL12 directs the functional polarization of macro-

phages and T cells into high IL-10, low infl ammatory mediator –

 producing cells.  (A – C) CXCL12 was added at different concentrations 

to primary whole spleen culture taken from EAE mice and stimulated 

with their target MOG p35-55  antigen for 72 h (A), freshly isolated perito-

neal macrophages stimulated with 0.5  μ g/ml LPS for 48 h (B), or 

purifi ed naive CD4 +  T cells activated with anti-CD3/anti-CD28 for 48 h 

(C). Cytokine concentrations were measured in triplicates using a stan-

dard ELISA method. Results shown in this fi gure represent three inde-

pendent experiments with similar results and are presented as 

means  ±  SE.   
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 CXCL12 therapy selects antigen-specifi c T cells that 

suppress EAE in adoptive transfer experiments 

 The suppression of EAE after CXCL12-Ig therapy could re-
sult from the reduced production of proinfl ammatory media-
tors by macrophages, including those selecting Th17 and 
Th1 eff ector T cells (IL-23 and IL-12;  Fig. 4 C ), and/or from 
possible selection of antigen-specifi c regulatory T cells, po-
tentially capable of suppressing an ongoing disease in adop-
tive transfer experiments. To explore this possibility, mice 
were subjected to active induction of EAE and then to the 

diff erences in IL-2 production or in the proliferative response 
of T cells isolated from CXCL12-Ig – treated mice compared 
with those injected with  � -actin – Ig or PBS, or in the number 
of apoptotic cells, as determined by Annexin V/propidium 
iodide (PI) staining of CD4 +  T cells ( Fig. 4 D , c). Thus, 
CXCL12-Ig therapy suppresses EAE without inducing a sig-
nifi cant alteration in T cell proliferation or apoptosis rates. It 
should be noted that under controlled in vitro conditions, the 
addition of CXCL12 to anti-CD3 – activated naive T cells led 
to a signifi cant increase in IL-2 production ( Fig. 2 C ). 

  Figure 3.     CXCL12-Ig preserves the biological activities of native CXCL12.  (A) Purifi ed CXCL12-Ig was separated on 12% SDS-PAGE and subjected 

to Western blot analysis under reducing and nonreducing conditions (with or without  � -mercaptoethanol) using anti-CXCL12 mAb (clone 79014) as a 

primary antibody (molecular masses are shown). (B) THP-1 cells (human monocytic cell line) were subjected to a migration assay using a Transwell sys-

tem. Lower chambers were supplemented with culture medium, rCXCL12, CXCL12-Ig, CXCL12-Ig plus anti-CXCR4 mAb, or  � -actin – Ig. The number of cells 

migrating to the lower chamber was counted by FACS 3 h later. Results shown represent three independent experiments and are the mean of the migra-

tion percentage (number of cells that migrated to the lower chamber divided by the number of cells originally plated in the upper chamber)  ±  SE. 

(C) Freshly isolated peritoneal macrophages were supplemented with PBS, rCXCL12, or CXCL12-Ig. Supernatants were collected 48 h later, and the IL-10 

concentration was determined by ELISA. The results shown represent three experiments done in triplicates, and are the mean IL-10 concentration  ±  SE. 

(D) Primary spleen cell cultures responding to their target MOG p35-55  antigen were supplemented with PBS, rCXCL12, CXCL12-Ig, or  � -actin – Ig. Supernatants 

were collected 48 h later, and IL-10 levels were determined by standard ELISA. The results represent three experiments done in triplicates, and are the 

mean IL-10 concentration  ±  SE. (E) Dose-dependent inhibition of CXCL12-induced migration of anti-CD3/anti-CD28 – activated spleen T cells from naive 

C57BL/6 mice. Results are shown as the mean  ±  SE of three independent experiments with similar results. (F and G) IL-10 and IL-2 production of anti-

CD3/anti-CD28 – activated spleen T cells in the presence of 100 ng/ml CXCL12, 100 nM AMD3100, or CXCL12 plus 100 nM AMD3100. The results represent 

three experiments done in triplicates and are shown as the mean cytokine concentration  ±  SE.   
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  Figure 4.     CXCL12-Ig suppresses ongoing EAE.  (A) C57BL/6 female mice were subjected to active induction of EAE (MOG p35-55 /CFA), and just 

after the onset of disease (day 11), they were separated into equally sick groups ( n  = 6 mice each). On days 11, 13, 15, and 17, these groups were 

injected i.v. with either PBS (open circles), CXCL12-Ig (closed circles), or  � -actin – Ig (open squares) and were monitored for the progression of dis-

ease by an observer blind to the experimental protocol. Results of one out of three independent experiments ( n  = 6 mice per each group) are 

shown as the mean maximal score  ±  SE. The arrow indicates the first day of CXCL12-Ig administration. (B) On day 20, three representative mice 

from each group were subjected to histological analysis of the lumbar spinal cord (eight sections per sample). A scale ranging from 0 to 3, based 

on the number of perivascular lesions per section, was used to quantify the histological score of disease, as described in Materials and methods. 

The table presents the quantification analysis of these sections, and a representative section from each group is also shown. Representative sec-

tions were also subjected to immunohistochemistry for IL-10. Arrows indicate cells stained positive for IL-10. Bars, 200  μ m. (C) In a subsequent 

experiment, conducted under the same experimental protocol, mice were killed on day 15, and spleen cells from each group were cultured in the 

presence of their target antigen (MOG p35-55 ). After 24 h, levels of IL-10, IL-4, TGF- � , IL-12, IL-17, IL-23, and TNF- �  were recorded by ELISA. Results 

are shown as the mean of triplicates  ±  SE. (D, a) C57BL/6 female mice were subjected to active induction of a long-term form of disease (refer-

ence  21 ), and just after the onset of disease they were separated into equally sick groups ( n  = 6 mice each). Twice a week, these groups were in-

jected i.v. with PBS (closed circles), CXCL12-Ig (open circles), or  � -actin – Ig (open squares) and monitored for the development and progression of 

disease by an observer blind to the experimental protocol. Results of one out of three independent experiments ( n  = 6 mice per each group) are 

shown as the mean maximal score  ±  SE. The arrow indicates the first day of CXCL12-Ig administration. (b) Just before the peak of disease (day 24), 

primary T cells from the cervical lymph nodes of PBS-,  � -actin – Ig – , and CXCL12-Ig – treated mice were subjected to MOG p35-55 -induced activation. 

The proliferative response and levels of IL-2 were recorded. (c) Apoptosis in CD4 +  T cells in these cultures was determined by flow cytometry using 

Annexin V/PI staining (percentages are shown).   
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  Figure 5.     Antigen-specifi c T cells selected in the presence of CXCL12 suppress EAE.  C57BL/6 female mice were subjected to active induction of EAE 

(MOG p35-55 /CFA), and just after the onset of disease (day 11), they were separated into equally sick groups ( n  = 6 mice each). On days 11 and 13, these groups 

were injected i.v. either with PBS, CXCL12-Ig, or  � -actin – Ig. On day 15, the spleens were removed. (A) Spleen sections were subjected to immunohistochemical 

analysis for IL-10 expression. Bars, 200  μ m. (B) Spleen cells from the different groups were cultured with the target antigen for 72 h and were then subjected 

to fl ow cytometry analysis for intracellular staining of IL-10 in macrophages/dendritic cells (CD14 + ) and in CD4 +  T cells (percentages are shown). (C) Spleen 

cells isolated from treated mice (in B) were subjected to antigen-specifi c activation and were injected (20  ×  10 6  cells per mouse) into recipient EAE mice at the 

onset of disease ( n  = 6 mice per group) either with cells isolated from CXCL12-Ig mice (closed squares) or from  � -actin – Ig – treated EAE mice (closed circles). 

A third group of recipients was administered with PBS (open squares). All groups were monitored for the development and progression of disease by an observer 

blind to the experimental protocol. Results of one out of three independent experiments ( n  = 6 mice per each group) are shown as the mean maximal score  ±  SE. 

(D) Before being administered to EAE mice (in C), IL-10 high  T cells selected in CXCL12-Ig – treated mice were tested for the expression of CD25 and FOXp3 

(percentages are shown). (E) Spleen cells from EAE mice that were treated with CXCL12-Ig, as described in C, were subjected to antigen-specifi c in vitro activa-

tion and separated into CD4 +  and CD14 +  (MACS beads). 10  ×  10 6  cells per mouse were injected into recipient EAE mice at the onset of disease ( n  = 6 mice per 

group) as follows: CD4 +  cells isolated from CXCL12-Ig mice (open circles) and CD14 +  cells isolated from CXCL12-Ig mice (closed circles). Control EAE mice were 

administered with PBS (closed squares). All groups were monitored for the development and progression of disease by an observer blind to the experimental 

protocol. Results of one out of three independent experiments ( n  = 6 mice per each group) are shown as the mean maximal score  ±  SE. (F) IL-10 high  T cells 

selected in CXCL12-Ig treated mice were tested for their ability to suppress the proliferative response of antigen-specifi c effector T cells from control EAE mice 
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administration of CXCL12-Ig,  � -actin – Ig, or PBS, as de-
scribed in the legend to  Fig. 4 A . On day 15, when the thera-
peutic eff ect of CXCL12-Ig was highly signifi cant ( Fig. 4 A ), 
spleens were removed. Immunohistochemical analysis of rep-
resentative sections revealed high IL-10 expression in spleen 
sections from CXCL12-Ig – treated mice ( Fig. 5 A ).  Intracel-
lular fl ow cytometry analysis, conducted on samples of cul-
tured cells from these groups, clearly showed a signifi cant 
increase in IL-10 high  CD4 +  T cells (4.2 vs. 1.1 and 0.9%, re-
spectively;  Fig. 5 B ), as well as in IL-10 high  CD14 +  macro-
phages/dendritic cells (7.7 vs. 4.8 and 4.9%, respectively) in 
the CXCL12-Ig – treated mice. T cells from donors treated 
with protective CXCL12-Ig or  � -actin – Ig were then admin-
istered to mice suff ering from active EAE. After antigen-
specifi c activation, these cells were administered to EAE 
recipients (just after the onset of disease).  Fig. 5 C  shows that 
although the administration of spleen cells from EAE donors, 
treated with  � -actin – Ig, aggravated the severity of disease 
(day 18 mean score of 5  ±  0 vs. 3  ±  0.26; P  <  0.01), the ad-
ministration of spleen cells from CXCL12-Ig – treated mice 
led to a rapid recovery (day 18 mean score of 0  ±  0; P  <  
0.001). Further analysis of the transferred cells showed that 
the vast majority of IL-10 – producing T cells from protected 
donors were Foxp3  �   (96%), CD25  �   (86%;  Fig. 5 D ). In an 
attempt to elucidate the possibility that these cells direct dis-
ease suppression, we have repeated the adoptive transfer ex-
periment described in  Fig. 5 C . Hence, spleen cells from 
EAE mice treated with CXCL12-Ig were separated (MACS 
beads, negative selection) to either CD4 +  or CD14 +  cells, 
and only then were they injected into recipient EAE mice 
(10  ×  10 6  cells per mouse). Our results clearly show that un-
der these conditions only CD4 +  T cells could eff ectively (P  <  
0.01) suppress the disease ( Fig. 5 E ). Thus, CXCL12-Ig se-
lects antigen – specifi c regulatory CD4 +  T cells that are IL-
10 high CD25  �  Foxp3  �  , which are capable of suppressing EAE 
in adoptive transfer experiments. 

 To further investigate the mechanistic basis of action of 
these cells, we conducted mixed culture experiments in which 
isolated CD4 +  T cells from protected donors were mixed at 
diff erent ratios with eff ector CD4 +  T cells (eff ector/regulatory 
ratio ranging from 1:0 to 20:1).  Fig. 5 F  shows that these cells 
suppressed the proliferative response of control primary cells 
responding to their MOG p35-55  target antigen in a dose-depen-
dent manner. Careful analysis of the ability of anti – IL-10 mAb 
to reverse this eff ect showed that under saturating conditions, 
anti – IL-10 antibodies could reverse up to 70% of suppression 

( Fig. 5 F ). This implies that although IL-10 is a dominant me-
diator of the regulatory function of these IL-10 high CD25  �  Foxp3  �   
CD4 +  T cells, other mechanisms, yet to be identifi ed, may also 
contribute to their suppressive function. 

 Finally, to determine whether the eff ect of CXCL12-Ig –
 based therapy is IL-10 dependent, we have tested the abil-
ity of our fusion protein to suppress EAE in IL-10  � / �   mice 
( Fig. 5 G , a) compared with wild-type C57BL/6 EAE mice 
( Fig. 5 G , b). We show that although CXCL12-Ig rapidly 
suppresses the disease in control mice (day 23 mean EAE score 
of 3.83  ±  0.18 compared with 0.5  ±  0.13; P  <  0.001), it had 
no eff ect on IL-10  � / �   mice. To further investigate whether 
this suppression was IL-10 dependent, CXCL12-Ig – treated 
EAE mice, as well as control EAE mice, were repeatedly in-
jected with anti – IL-10 mAb.  Fig. 5 G  (c) shows that the sup-
pressive eff ect of CXCL12-Ig could be also reversed in vivo 
by IL-10 blockade. 

 CXCL12-Ig redirects the polarization of antigen-specifi c 

effector (Th1) cells into IL-10 – producing regulatory T cells 

that suppress EAE 

 Primary T cells from EAE donors were subjected to two sub-
sequent stimulation cycles in the presence of recombinant mouse 
IL-12 and anti – IL-4 neutralizing antibodies, and then to a sub-
sequent stimulation in cultures that were or were not supple-
mented with 50  μ g/ml CXCL12-Ig. Intracellular fl ow cytometry 
analysis showed that in the absence of CXCL12-Ig, the vast 
majority of the polarized CD4 +  T cells were IFN- �  high IL-4 low  
Th1 cells, whereas the addition of CXCL12-Ig to the culture 
medium only during the third stimulation cycle redirected the 
polarization of a signifi cant portion of these cells into IL-
10 high IL-4 low  cells (from 1.6 to 23%;  Fig. 6 A ), resulting in 
a  > 10-fold increase in the level of secreted IL-10, as determined 
by ELISA (from 40  ±  5 to 580  ±  25 pg/ml; P  <  0.0001;  Fig. 
6 B ).  Notably, the relative number of IL-4 high IL-10 low  CD4 +  T 
cells was also signifi cantly increased (from 0.1 to 9%), and so 
did the level of IL-4, as determined by ELISA (from 64  ± 6 to 
215  ±  20 pg/ml; P  <  0.001), together with a signifi cant reduc-
tion in the production of IFN- �  (from 5,850  ±  430 to 1,930  ±  
210 pg/ml; P  <  0.001) and TNF- �  (from 440  ±  55 to 180  ±  
24 pg/ml; P  <  0.001). No changes were observed in the 
level of TGF- �  ( Fig. 6 B ). Intracellular analysis of IL-10 
and IFN- �  in these cells clearly showed a highly signifi cant in-
crease in IL-10 high IFN- �  low  CD4 +  T cells (from 1.8 to 22.5%), 
accompanied by a reciprocal decrease in the number of 
IL-10 low IFN- �  high  (from 37 to 7.8%) CD4 +  T cells after 

when added at different effector/regulatory ratios (shaded bars) and in the presence of 50  μ g/ml of neutralizing anti – IL-10 antibody (open bars). (G) IL-10  � / �   

mice (a) and C57BL/6 mice (b) were subjected to the treatment protocol described in  Fig. 4 A . On day 13, mice were injected with either PBS (open squares),  � -

actin – Ig (closed circles), or CXCL12-Ig (closed squares). (c) C57BL/6 female mice were subjected to active induction of EAE, and just after the onset of disease 

(day 9), they were separated into equally sick groups ( n  = 6 mice each). On days 10, 12, and 14, mice were injected i.v. with PBS (open squares), CXCL12-Ig 

(closed circles), anti – IL-10 mAb (closed squares), or CXCL12-Ig followed by anti – IL-10 mAb injected 6 h later (open triangles). Mice were monitored daily for 

the progression of the disease by an observer blind to the treatment protocol. The arrow indicates the fi rst day of CXCL12-Ig administration. Results of one out 

of three independent experiments with similar results ( n  = 6 mice per each group) are shown as the mean maximal score  ±  SE.   
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 This has motivated us to explore the therapeutic compe-
tence of these cells in adoptive transfer experiments.  Fig. 6 C  
shows the results of one out of three experiments with very 
similar results. EAE mice that were treated just after the onset 
of disease with 3  ×  10 6  line cells that were previously selected 
in the presence of CXCL12-Ig went into fast remission 
within 4 – 5 d, whereas those administrated with control line 
cells continued to develop a progressive form of disease (day 
15 mean maximal score of 0.66  ±  0.3 compared with 3.3  ±  
0.6; P  <  0.01). The administration of cells from the same line 
that were not co-cultured with CXCL12-Ig aggravated the 
disease (day 15 mean maximal score of 4  ±  0.3 compared 
with 3.3  ±  0.6; P  <  0.05). 

  DISCUSSION  

 CXCL12 is constitutively expressed, at low levels, in the 
healthy CNS, and its expression is up-regulated in the MS 
brain ( 15 – 17 ), where it is expressed by various cell types, in-
cluding astrocytes, that are likely to attract dendritic cells, mac-
rophages, and T cells to areas of the infl amed CNS ( 15 – 17 ). 
It is likely that in healthy individuals endogenous CXCL12, 
produced by various resident cells within the CNS, is involved 
in modulating the migration of leukocytes that are essential 
for the regular  “ policing ”  of this partially immune-privileged 
area. The development of progressive multifocal leucoenceph-
alopathy after anti – very late antigen 4 therapy ( 23 ) may serve 
as an example for the importance of such policing of the CNS 
by T cells and macrophages. Our earlier working hypothesis 
was therefore that CXCL12 functions as a proinfl ammatory 
chemokine and, as such, neutralization of its activity during 
ongoing EAE would be benefi cial for the host. Our data 
show that the administration of anti-CXCL12 antibodies ag-
gravated EAE ( Fig. 1 ), which motivated us to revise our work-
ing hypothesis. We show in this paper that a chemokine may 
function as an antiinfl ammatory mediator, which not only 
attracts T cells to the site of infl ammation but also polarizes 
them, including infl ammatory Th1 cells, into antiinfl amma-
tory regulatory T cells. 

 Depending on their cytokine profi le, the CD4 +  T cells 
can be categorized into diff erent subsets, including (a) Th1 
cells that produce large amounts of IFN- �  and TNF- �  and 
low levels of IL-4; (b) Th2 cells that mostly produce IL-4, 
IL-5, and IL-13, and to a much lesser extent, IFN- �  and 
TNF- �  ( 24 ); (c) Th3 cells producing high levels of TGF- �  
and to a much lesser extent other cytokines ( 25 ); and (d) Tr1 
cells that produce high levels of IL-10 ( 26 ), CD4 + CD25 +  
regulatory T cells ( 27, 28 ), and the recently defi ned Th17 
cells, selected in the presence of IL-6 and TGF- �  ( 29 ), and 
that in response to IL-23 produce high levels of the infl am-
matory cytokine IL-17 ( 30 ). The infl ammatory process dur-
ing EAE is driven by at least two types of eff ector cells: the 
newly discovered IL-17 – producing Th17 cells, and the IFN-
 �  –  and TNF- �  – producing Th1 cells. Of these eff ector cell 
subtypes, the Th17 cells are likely to be more potent initiators 
of the infl ammatory process in the CNS than Th1 cells ( 31 ). 
Their activity is later suppressed, in part by IFN- � , which is 

reselection in the presence of CXCL12-Ig ( Fig. 6 A ). These 
data further demonstrate the apparent shift from Th1- to IL-10 –
 producing regulatory T cells in the presence of CXCL12. 

  Figure 6.     CXCL12-Ig redirects the polarization of antigen-specifi c 

effector (Th1) cells into IL-10 – producing regulatory T cells that 

suppress EAE.  (A) The MOG p35-55  CD4 +  T cell line was selected during two 

subsequent stimulation cycles in the presence of the target antigen and 

the combination of recombinant mouse IL-12 and anti – IL-4 – neutralizing 

antibodies, and were activated in the third cycle in the presence or ab-

sence of 50  μ g/ml CXCL12-Ig. Cells were subjected to intracellular cyto-

kine staining (percentages are shown). (B) Cytokine levels in the culture 

media were also recorded using a standard ELISA method. (C) 3  ×  10 6  T 

cells per mouse from the CXCL12-Ig – supplemented MOG p35-55  line 

(closed squares), the MOG p35-55  line (open squares), or PBS (open circles, 

no cells) were administered to EAE mice on day 12. Mice were monitored 

daily for the progression of the disease. Results of one out of two inde-

pendent experiments with similar data ( n  = 6 mice per each group) are 

shown as the mean EAE score  ±  SE. The arrow indicates the day of 

cell therapy.   
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CXCL12-Ig – treated mice, to inhibit eff ector T cell prolifera-
tion ( Fig. 5 F ), it is plausible that other mechanisms that are 
IL-10 independent also contribute to their function. This is-
sue is further discussed in the last paragraph of this section. 

 An alternative interpretation for our data could be that by 
creating a strong chemokine gradient, which could poten-
tially direct activated T cells away from the CNS, the traffi  ck-
ing of infl ammatory cells into the CNS may be altered. This 
eff ect might also exist in addition to the selection of IL-10 –
 producing regulatory T cells and IL-10 – producing macro-
phages. However, the results showing that CXCL12-Ig exerts 
no therapeutic eff ect on IL-10  � / �   mice ( Fig. 5 G ) emphasize 
the IL-10 – dependent function of this chemokine as its major, 
but not necessarily exclusive, mechanism of action. 

 The function of CXCL12 as a regulatory mediator that 
suppresses immune activity extends beyond the regulation of 
infl ammation and infl ammatory autoimmune diseases. More 
specifi cally, this chemokine is preferentiality produced by 
various cancer cells and, therefore, serves as a potential target 
for treating these diseases ( 45, 46 ). It has been previously pro-
posed that this chemokine assists in suppressing immunity 
against ovarian cancer by attracting myeloid dendritic cells that 
produce IL-10 at the tumor site ( 47 ). Our results show that 
CXCL12 is not only involved in attracting antigen-present-
ing cells and T cells but also in directing their antiinfl amma-
tory properties, and may also explain how tumors that largely 
produce CXCL12 escape antitumor immunity. 

 At least two diff erent receptors bind CXCL12 on macro-
phages and T cells, CXCR4 and CXCR7 ( 19 ). Of these re-
ceptors, only CXCR4 mediates CXCL12-induced migration 
( 19 ). We show in this paper that the blockade of CXCR4 
completely blocked CXCL12-induced production of IL-10, 
and thereby the selection of antigen-specifi c IL-10 – pro-
ducing regulatory T cells. Recently, McCandless et al. ( 48 ) 
showed that in vivo administration of the CXCR4 antagonist 
AMD3100 aff ects the mobilization of hematopoietic precur-
sor cells to the CNS, thus aggravating EAE. Our data clearly 
show that a major role of CXCR4 in the regulation of EAE 
is to direct CXCL12-induced IL-10 production by CD4 +  T 
cells and macrophages, and by so doing to select antigen-spe-
cifi c regulatory T cells that transfer disease resistance. 

 Notably, in vivo administration of CXCL12 signifi cantly 
increased IL-10 but not IL-4 production in primary T cells 
( Fig. 4 ). Yet in vitro selection in the presence of CXCL12-Ig 
also led to the selection of IL-4 – producing Th2 cells ( Fig. 6 A ) 
and an elevated level of IL-4 ( Fig. 6 B ). It is thus plausible 
that CXCL12, as an antiinfl ammatory chemokine, is also in-
volved in directing the Th1/Th2 balance in favor of Th2. 
However under our in vivo conditions this type of selection 
is not dominant, as it is under in vitro selective conditions. 

 We have previously shown that IL-10 – producing Tr1 
cells participate in the regulation of EAE, including limiting 
the consequences of disease during determinant spread, and 
that administering the soluble form of the target determinant 
leading to the spread amplifi es this benefi cial function ( 49 ). 
Based on this study and the present one, we suggest that a 

largely produced by Th1 cells ( 32, 33 ). Although IL-12 is in-
volved in selecting Th1 cells, IL-23 has been reported to be 
dominant in selecting Th17 cells ( 34, 35 ). We show a signifi -
cant reduction in the levels of both IL-23, which drives Th17 
polarization, and IL-12, which promotes Th1 polarization 
( Fig. 4 ) after CXCL12-Ig therapy. This may well explain the 
signifi cant reduction in IL-17 and TNF- �  in primary cul-
tures ( Fig. 4 ), and the function of CXCL12 as an antiinfl am-
matory chemokine. Several studies have previously shown 
that by altering their Th1/Th2 balance, C-C chemokines 
may aff ect the polarization of antigen-specifi c T cells ( 36 – 38 ). 
In addition to these studies, we have shown that of the three 
CXCR3 ligands — CXCL9, CXCL10, and CXCL11 — only 
CXCL10 directs the polarization of antigen-specifi c T cells 
into Th1 cells, and therefore its neutralization eff ectively sup-
presses EAE ( 39 ) and adjuvant-induced arthritis ( 40 ). Our re-
cent observations suggest that CXCL11, which eff ectively 
competes with CXCL10 in binding their common CXCR3 
receptor, antagonizes this function, and thus acts as an antiin-
fl ammatory chemokine (unpublished data). The possibility that 
CD4 + CD25  �  Foxp3  �   Th1 cells could potentially be converted 
into IL-10 – producing regulatory T cells has been very re-
cently raised by Anderson et al. ( 41 ), showing that Th1 cells 
redirect their polarization during chronic cutaneous leishmani-
asis (for review see O ’ Garra and Vieira [ 42 ]). We show in this 
paper, for the fi rst time, that a chemokine may alter the polar-
ization of antigen-specifi c eff ector Th1 cells into IL-10 – pro-
ducing T cells. This may explain the rapid eff ect of CXCL12-Ig 
therapy on ongoing EAE ( Fig. 4, A and D ), and it could also 
suggest a novel way of targeted cell therapy in which eff ector 
T cells from patients are being activated in vitro in the pres-
ence of CXCL12-Ig and returned back to the patient. 

 The current study shows, for the fi rst time, that a well-
defi ned chemokine functions as a regulatory mediator during 
the course of diseases in two complementary ways: (a) down-
regulation of infl ammatory cytokine production and up-reg-
ulation of IL-10 production in macrophages, and (b) selection 
of IL-10 – producing regulatory T cells capable of transferring 
the benefi cial eff ect of therapy ( Figs. 5 and 6 ). Both mecha-
nisms are related because IL-10 directly suppresses proinfl am-
matory mediator production by activated macrophages ( 43 ). 
To determine whether disease suppression is mostly IL-10 
dependent, we have conducted three sets of experiments. 
The fi rst shows that primary T cells from protected mice sup-
press the MOG p35-55 -specifi c proliferative response of pri-
mary T cells from EAE donors in an IL-10 – dependent manner 
( Fig. 5 F ). The second shows that IL-10 – defi cient mice, 
which develop a more severe form of disease ( 44 ), are resis-
tant to CXCL12-Ig – induced therapy ( Fig. 5 G , a and b), 
whereas the third experiment shows that disease suppression, 
induced by CXCL12-Ig, could be reversed in vivo by anti –
 IL-10 antibodies ( Fig. 5 G , c). These experiments are com-
plementary and emphasize the pivotal role of IL-10 and 
IL-10 – producing regulatory T cells in disease suppression. 
Nevertheless, as IL-10 neutralization could not fully recover 
the ability of antigen-specifi c regulatory T cells, selected in 
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mass was checked by mass spectroscopy. Purifi cation of the peptide that was 

used in the current study was  > 95%. 

 Antibodies and recombinant proteins.   Anti-mCXCL12 mAb, anti – mIL-

4 mAb, anti – mIL-10 mAb, anti-hCXCR4 mAb, recombinant mCXCL12, 

and recombinant mouse IL-12 were all purchased from R & D Systems. Anti-

CD3 �  mAb and anti-CD28 used for T cell activation were purchased from 

BD Biosciences. 

 Induction of active and adoptively transferred disease.   EAE was in-

duced by immunizing mice with MOG p35 – 55 /CFA, as described by Tompkins 

et al. ( 51 ). Animals were then monitored daily for clinical signs by an observer 

blind to the treatment protocol. Adoptive disease was induced as described 

previously ( 52 ). EAE was scored as follows: 0, clinically normal; 1, fl accid tail; 

2, hind limb paralysis; 3, total hind limb paralysis, accompanied by an apparent 

front limb paralysis; 4, total hind and front limb paralysis; and 5, death. 

 Construction of CXCL12-Ig.   cDNA encoding the constant region of Fc 

(Hinge-CH2-CH3) of mouse IgG1 was constructed from RNA extracted 

from mouse splenocytes that were cultured for 96 h in the presence of LPS 

and mIL-4. The primers used for this reaction were 5 � -CTCGAGGTGCC-

CAGGGATTGTGGTTG-3 �  (sense) and 5 � -GGGCCCTTTACCA GGAG-

A GTGGGAGA-3 �  (anti-sense). The PCR product was then digested with 

XhoI and ApaI, and ligated into the mammalian expression/secretion vector 

pSecTag2/Hygro B (Invitrogen). A diff erent set of primers, 5 � -GCTAG-

CATGGACGCCAAGGTCGTCGC-3 �  (sense) and 5 � -CTCGAGCT-

TG TTTAAGGCTTTGTCC-3 �  (anti-sense), was used to amplify cDNA 

encoding mCXCL12. Because alterations in the amino acid sequence at the 

N-terminus of chemokines might change their properties, by using NheI for 

the second cloning procedure, the original mouse  �  chain leader sequence 

found in the pSecTag2/Hygro B vector was replaced by a mCXCL12 leader 

sequence. Hence, the second PCR product was digested with NheI and 

XhoI and subcloned into the vector containing the mouse IgG1 fragment. 

The fused fragments were sequenced by dideoxynucleotide sequencing in 

our facility (Sequenase version 2; Millipore). 

 Expression and purifi cation of CXCL12-Ig fusion protein.   Expression 

and purifi cation of CXCL12-Ig fusion protein was done using Chinese 

hamster ovary dhfr  � / �   (DG44) cells (provided by L. Chasin, Columbia Uni-

versity, New York, NY) according a previously described method ( 53 ). The 

fusion protein was purifi ed from the culture medium by a High-Trap pro-

tein A affi  nity column (GE Healthcare). 

 Western blot analysis.   Purifi ed protein were separated on 12% SDS-PAGE, 

transferred to a nitrocellulose membrane, and subjected to Western blot analy-

sis, using anti-CXCL12 (R & D Systems) as a primary antibody. Donkey anti –

 mouse horseradish peroxidase – conjugated antibody was used as a secondary 

antibody (Jackson ImmunoResearch Laboratories). Signals were detected 

with a electrochemiluminescence detection kit (Biological Industries). 

 Cell cultures.   Primary spleen cells were collected from mice 15 d after induc-

tion of EAE. Cells were cultured for 72 h in stimulation medium supplemented 

with DMEM, 5% FBS, 2 mM  � -mercaptoethanol, Na pyruvate, MEM nones-

sential amino acids, and Pen-Strep (Biological Industries) in a humidifi ed 7.5% 

CO 2  atmosphere at 37 ° C and stimulated with 50  μ g/ml MOG p35-53  peptide. 

 Human monocytic (THP-1) cells were diff erentiated into macrophage-

like cells by culturing 10 6  cells in 24-well plates in RMPI 1640 (Biological 

Industries) supplemented with 10% FCS (Biological Industries) and 30 nM 

PMA for 96 h in a humidifi ed 7.5% CO 2  atmosphere at 37 ° C. Cells were 

washed three times with PBS and were cultured in RMPI 1640 supple-

mented with 5% FCS for an additional 24 h. Human macrophage-like cells 

were stimulated with 0.5  μ g/ml LPS. 

 Cell separation.   CD4 +  T and CD14 +  cells were separated from whole 

spleen culture using MACS magnetic beads (Miltenyi Biotec), according to 

the manufacturer ’ s instructions. 

combined therapy that would include soluble peptide therapy 
together with CXCL12-Ig could be considered. Such a ther-
apeutic approach may be useful for rapidly selecting antigen-
specifi c regulatory T cells that would provide selective tolerance. 
One should not ignore the possibility that because of its role 
in attracting T cells and monocytes for the regular  “ policing ”  
of the CNS, a targeted expression of CXCL12 in the CNS at 
preclinical stages of MS might increase the recruitment of in-
fl ammatory cells into the CNS, and thus put in risk patients 
subjected to CXCL12-Ig – based therapy. However, it is likely 
that, at that particular stage of the disease, the blood – brain 
barrier is not activated enough to allow the entry of molecules 
as large as CXCL12-Ig into the CNS. 

 Finally, if the suppressive eff ect of CD4 +  T cells from pro-
tected donors is solely mediated by IL-10, why then does 
simply adding rIL-10 to eff ector T cell cultures not mediate 
the same suppression as shown in  Fig. 5 F ? ( 50 ) Moreover, if 
this suppression was solely directed by IL-10, then antibodies 
to IL-10 could completely reverse the suppressive eff ect of 
regulatory T cells in mixed culture experiments. It is there-
fore likely that even though IL-10 is a dominant mediator of 
the regulatory function of CD25  �  Foxp3  �  IL-10 high  CD4 +  T 
cells, and that anti – IL-10 antibodies reverse the in vivo thera-
peutic eff ect of CXCL12-Ig, other yet to be identifi ed mech-
anisms also contribute to their suppressive function. 

 Our data, showing that on one hand IL-10  � / �   mice are 
resistant to CXCL12-Ig based therapy ( Fig. 5 G , a and b) and 
anti – IL-10 antibodies reverse tolerance in CXCL12-Ig treated 
mice ( Fig. 5 G , c), whereas IL-10, even though a key player in 
CXCL12-induced tolerance, is not the solitary mean by which 
IL-10 – producing regulatory T cells, selected by CXCL12-Ig, 
suppress eff ector T cell activity ( Fig. 5 F ), are confl icting. 
These observations strongly suggest that IL-10, even though 
being a major component in IL-10 – producing regulatory T 
cell – induced tolerance, is not solely responsible for the protec-
tion induced by these cells, and that other mechanisms, yet to 
be identifi ed, contribute to their function. It is likely that the 
dynamics of EAE result from the balance between proinfl am-
matory activities and antiinfl ammatory activities, some of which 
are directed by CXCL12 that selects IL-10 – producing regula-
tory T cells to suppress infl ammation by various means. Thus, 
the blockade of the IL-10 – directed suppression does not eradi-
cate all IL-10 – producing regulatory T cell activities, but it is 
suffi  cient to shift the antiinfl ammatory/infl ammatory balance 
and reverse CXCL12-induced tolerance. 

 MATERIALS AND METHODS 
 Mice.   6-wk-old female C57BL/6 mice were purchased from Harlan 

and were maintained under specifi c pathogen-free conditions in our ani-

mal facility. 

 Breeders of IL-10  � / �   C57BL/6 mice were purchased from the Jackson 

Laboratory, from which our colony was set under pathogen-free conditions. 

All animal handling was approved by the Technion ethics committee for 

experiments in animals. 

 Peptides.   MOG p35 – 55  was constructed by the Protein and Nucleic Acid Fa-

cility of the Beckman Center of Stanford University. After purifi cation by 

HPLC, the sequence was confi rmed by amino acid analysis, and the correct 
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tories). Slides were subjected to immunohistochemistry analysis using goat 

anti – IL-10 antibody (R & D Systems). Donkey anti – goat biotinylated anti-

body (Jackson ImmunoResearch Laboratories) was used as a secondary anti-

body, and streptavidin-conjugated peroxidase (Invitrogen). Aminoethyl 

carbazole (Invitrogen) was used as a substrate. 
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