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    IL-4 and -13 are related cytokines, encoded by 
closely linked genes ( 1 ). IL-4 can signal through 
either the type I (IL-4R � / � c) or the type II (IL-
4R � /-13R � 1) IL-4 receptor, whereas IL-13 
signals exclusively via the type II IL-4 receptor 
( 2 ). IL-4 binds to IL-4R �  with high affi  nity, 
triggering receptor heterodimerization either 
with  � c or with IL-13R � 1. Downstream intra-
cellular signaling from the IL-4 – IL-4R �  –  � c 
complex involves activation of the Jak1 and Jak3 
kinases, phosphorylation of the Stat6 transcrip-
tion factor, and activation of the insulin receptor 
substrate (IRS)-2 –  and Dok2-signaling inter-
mediates ( 3 ). IL-13 initially binds to IL-13R � 1 
with intermediate affi  nity, and then heterodi-
merizes with IL-4R � . The IL-13 – IL-13R � 1 –
 IL-4R �  complex activates the Tyk2, Jak2, and 
Jak1 kinases and Stat6 ( 2, 4, 5 ). IL-13 can also 
bind with high affi  nity to IL-13R � 2, which is 
generally regarded to act as a decoy receptor, 
inhibiting IL-13 binding to IL-13R � 1, and thus 
the formation of the functional type II receptor 

complex ( 6 ), although it has been reported that 
the IL-13R � 2 can transduce signals under cer-
tain conditions ( 7 ). Because  � c expression is 
mainly restricted to hematopoietic cells, in non-
hematopoietic cells both IL-4 and -13 are be-
lieved to use the type II receptor exclusively. 
However, it was recently discovered that fi bro-
blasts from IL-13R � 1  � / �   mice are responsive to 
IL-4; these cells expressed  � c mRNA, suggest-
ing that low levels of type I IL-4 receptor may 
be expressed in some types of fi broblasts ( 8 ). 

 Despite the many similarities of IL-4 and 
-13, their principal functions are quite diff erent. 
In the mouse, priming for Th2 diff erentiation 
and immunoglobulin class switching are exclu-
sive properties of IL-4, presumably because 
mouse T and B cells, lacking IL-13R � 1, ex-
press type I but not type II receptors. In con-
trast, many eff ector functions, including airway 
hypersensitivity and mucus metaplasia in response 
to challenge with an antigen to which T cells 
have been sensitized, can be blocked by anti –
 IL-13, but not by anti – IL-4 ( 9 – 11 ), indicating 
that IL-13 is the dominant eff ector cytokine. 
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 Interleukin (IL)-4 and -13 are related cytokines sharing functional receptors. IL-4 signals 

through the type I (IL-4R � /common  � -chain [ � c]) and the type II (IL-4R � /-13R � 1) IL-4 

receptors, whereas IL-13 utilizes only the type II receptor. In this study, we show that 

mouse bone marrow – derived macrophages and human and mouse monocytes showed a 

much greater sensitivity to IL-4 than to IL-13. Lack of functional  � c made these cells 

poorly responsive to IL-4, while retaining full responsiveness to IL-13. In mouse peritoneal 

macrophages, IL-4 potency exceeds that of IL-13, but lack of  � c had only a modest effect 

on IL-4 signaling. In contrast, IL-13 stimulated greater responses than IL-4 in fi broblasts. 

Using levels of receptor chain expression and known binding affi nities, we modeled the 

assemblage of functional type I and II receptor complexes. The differential expression of IL-

4R � , IL-13R � 1, and  � c accounted for the distinct IL-4 – IL-13 sensitivities of the various 

cell types. These fi ndings provide an explanation for IL-13 ’ s principal function as an  “ effec-

tor ”  cytokine and IL-4 ’ s principal role as an  “ immunoregulatory ”  cytokine. 
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possibly analogous to monocytes. To study IL-4 –  and IL-
13 – induced responses in BMDMs, we chose to investigate 
the activation of Stat6, a key transcription factor activated by 
these cytokines. An indispensable event in Stat6 activation 
upon cytokine stimulation is the phosphorylation of tyrosine 
residue 641 ( 19 ). BMDMs showed markedly greater sensitiv-
ity to IL-4 than to IL-13 in the induction of phosphorylation 
of Y641 of Stat6, as detected by fl ow cytometry ( Fig. 1 A , 
top).  BMDMs responded to 0.1 ng/ml of IL-4, and 1 ng/ml 
of IL-4 caused close to maximal Stat6 Y641 phosphorylation, 
whereas 10 ng/ml of IL-13 was required to obtain detectable 
phosphorylation and 100 ng/ml to match the phosphoryl-
ation induced by 1 ng/ml of IL-4. The relative diff erence 
of IL-4 –  and IL-13 – induced Stat6 Y641 phosphorylation in 
BMDMs that we measured by intracellular fl ow cytometry 
was verifi ed by immunoblotting (Fig. S1, available at http://
www.jem.org/cgi/content/full/jem.20080452/DC1). 

 To better understand how the type II IL-4 receptor trans-
duces IL-4 signals in BMDMs, we used  � c  � / �   mice as a 
source for these cells because these cells are unable to form 
type I IL-4 receptor complexes. BMDMs derived from WT 
or  � c  � / �   animals were similar in numbers generated and in 
phenotype ( 20 ). Approximately 95% of both WT and  � c  � / �   
BMDMs were CD11b +  and F4/80 +  (unpublished data). 
However, in  � c  � / �   BMDMs, Y641 phosphorylation of Stat6 
was fi rst detected at 10 ng of IL-4/ml, and there was no 
greater phosphorylation at 100 or 200 ng/ml ( Fig. 1 A , bot-
tom, and not depicted). IL-13 – induced Stat6 phosphoryla-
tion was equivalent in  � c  � / �   and WT BMDMs. In  � c  � / �   
BMDMs, 10 ng/ml of IL-13 induced Stat6 phosphorylation 
to the same extent as IL-4 at 10 ng/ml, and it exceeded that 
induced by IL-4 at 100 and 200 ng/ml. The diff erence of 
Stat6 phosphorylation in response to cytokine stimulation in 
WT and  � c  � / �   cells was quantifi ed by subtracting the median 
fl uorescence intensity (MFI) of the unstimulated sample from 
the MFI of the stimulated sample ( Fig. 1 B ).  Fig. 1 B  shows 
results from fi ve independent experiments. Furthermore, 
DNA-binding of Stat6 as measured by electrophoretic mo-
bility shift assay (EMSA) was virtually absent in  � c  � / �   BM-
DMs stimulated with IL-4 at concentrations ranging from 0.1 
to 10 ng/ml, whereas the DNA-binding response to IL-13 at 
10 ng/ml was unimpaired in  � c  � / �   BMDMs ( Fig. 1 C ). De-
fective IL-4 – induced signaling in  � c  � / �   BMDMs was not 
caused by an inability of IL-4 to bind IL-4R �  because IL-4 
blocked the capacity of anti – IL-4R �  to bind to IL-4R �  
equally in WT and  � c  � / �   BMDMs. ( Fig. 1 D ). 

 Jak3 is associated with  � c, and is critical in mediating sig-
nals from the type I, but not the type II, IL-4 receptor ( 21 ). 
BMDMs were prepared from Jak3  � / �   mice. As shown in  Fig. 
1 E , IL-4 – induced Stat6 DNA binding is undetectable in 
Jak3  � / �   cells at 10 ng/ml, whereas IL-13 – elicited Stat6 DNA 
binding is intact in Jak3  � / �   BMDMs. Thus, these results fur-
ther emphasize that BMDM responses to IL-4 are highly de-
pendent on the type I receptor. As expected, IFN- �  has 
no eff ect on Stat6 DNA-binding activity in either WT or 
Jak3  � / �   cells. 

Thus, it can be argued that IL-4 acts mainly as a regulatory cyto-
kine and IL-13 largely as an eff ector cytokine. 

 Macrophages are among the few cell types that express 
both type I and II receptors. They are involved in both innate 
and adaptive immune responses by expressing cytokines, by 
functioning as antigen-presenting cells, and by phagocytosing 
antigen-bearing entities. M-CSF induces macrophage diff er-
entiation from BM myeloid stem cells into blood monocytes, 
and subsequently into tissue macrophages ( 12 ). In peripheral 
tissues, tight control of macrophage activation and deactiva-
tion is crucial for maintenance of homeostasis. Classical macro-
phage activation during Th1 responses by IFN- �  and LPS is 
well characterized, but recently, macrophage activation by IL-
4 and -13 has been studied in detail ( 13, 14 ). This type II (also 
termed  “ alternative ” ) macrophage activation by IL-4 and -13 
is essential for clearance of  Schistosoma mansoni  infection be-
cause mice lacking IL-4R �  expression in macrophages suc-
cumb to this helminth ( 15 ). In the mouse, type II macrophage 
activation induces expression of genes that are important for 
granuloma formation ( 16 ) or digesting chitin, which is widely 
expressed on yeast, arthropods, and nematodes ( 17, 18 ). 

 Here, we studied the eff ects of IL-4 and -13 on various 
monocyte/macrophage populations. We show that BM-de-
rived macrophages (BMDMs), as well as human and mouse 
monocytes, are far more sensitive to IL-4 than to IL-13. The 
heightened IL-4 sensitivity of these cell types is totally depen-
dent on the type I IL-4 receptor because the lack of func-
tional  � c renders the cells less responsive to IL-4 than to 
IL-13. Like BMDMs, resident peritoneal macrophages (PMs) 
from WT mice are more sensitive to IL-4 than to IL-13, but 
show relatively modest changes in their response to IL-4 in 
the absence of  � c. Thus, these two macrophage cell types, 
when expressing only the type II receptor, nonetheless diff er 
in their relative sensitivity to IL-4 and -13. We show that this 
diff erence can be explained by diff erential expression of IL-
13R � 1 between BMDMs and PMs and by the diff erences in 
affi  nity of IL-4 and -13 for the components of their recep-
tors. Among human monocytes, those with an  “ infl amma-
tory ”  precursor phenotype (CD14 hi , CD16 lo ) appear more 
like peritoneal mouse macrophages, whereas monocytes with 
a  “ resident ”  phenotype (CD14 lo , CD16 hi ) are more similar to 
BMDMs. Finally, in nonhematopoietic cells, namely fi bro-
blasts and epithelial cells, IL-13 stimulates equal or greater re-
sponses than does IL-4. The diff erential responsiveness of 
these various cell types, based on their diff erential expression 
of IL-4 – IL-13 receptor chains, helps to explain the distinct 
function of the two cytokines. 

  RESULTS  

 Mouse BMDMs have increased sensitivity to IL-4 over -13 

 M-CSF – induced in vitro diff erentiation of BM cells is a well-
characterized and widely used method to obtain large num-
bers of macrophages. Because BMDMs are not subjected to 
proinfl ammatory cytokines or Toll-like receptor (TLR) lig-
ands during in vitro diff erentiation, we hypothesized they would 
represent an immature or naive population of macrophages, 
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 IL-4 –  and IL-13 – mediated gene induction in BMDMs 

 Type II macrophage activation results in induction of several 
genes, including arginase (Arg) 1. Arg1 plays an important 
role in regulating macrophage responses, as Arg1 decreases 
nitric oxide synthase production, and thus nitric oxide, by 
consuming the substrate, cellular  L -arginine ( 22 ). The pro-
moter of Arg1 contains a Stat6 binding site ( 23 ), and Arg1 
mRNA is induced in mouse macrophages by IL-4 ( 24 ). As 
shown in  Fig. 2 A , Arg1 mRNA induction at 2 h could be 
detected in response to 1 ng/ml of IL-4, and peaked at 10 ng/
ml (mean of fold induction, 247).  In contrast, IL-13 at  < 10 
ng/ml did not induce detectable Arg1, and its peak induction 
(mean of fold induction, 79) was only  � 30% of the levels in-
duced by IL-4 ( Fig. 2 A ). In  � c  � / �   BMDMs, IL-13 induction 
of Arg1 was comparable to that observed in WT BMDMs, 
but IL-4 induction of Arg1 was virtually undetectable, even at 
100 ng/ml ( Fig. 2 A ). Anti – IL-4R �  (M1) inhibited IL-13-in-
duced Arg1 expression in both WT and  � c  � / �   BMDMs, con-
fi rming that IL-13 responses require the IL-4 receptor- �  
chain ( Fig. 2 C ) and that the IL-13 response could not be at-
tributed to a non – IL-4R �  – using receptor. The importance of 
Stat6 in the response to both IL-4 and -13 was demonstrated 
by the failure of both cytokines to induce Arg1 expression, 
even at 100 ng/ml in Stat6  � / �   BMDMs ( Fig. 2 B ). 

 IL-4 –  and IL-13 – induced responses in PMs 

and NIH3T3 fi broblasts 

 We next compared IL-4 –  and IL-13 – induced Stat6 phos-
phorylation in tissue macrophages. We initially examined 
resident PMs obtained from mouse peritoneal lavages. Typi-
cally, these cells were 80 – 90% positive for both CD11b and 
F4/80. These cells were even more sensitive than BMDMs 
to IL-4. IL-4 – induced Stat6 Y641 phosphorylation was 
nearly maximal at 0.1 ng/ml ( Fig. 3 A , top) and, at this con-
centration of IL-4, the P value for the comparison of the de-
gree of Stat6 phosphorylation between BMDMs and PMs, 
by the unpaired Student ’ s  t  test, was statistically signifi cant 
(0.014).  In contrast to BMDMs, where IL-13 induced no 
Stat6 phosphorylation at concentrations  < 10 ng/ml, IL-13 
induced substantial Stat6 phosphorylation in PMs at 1 ng/ml, 
and was close to the IL-4 maximum at 10 ng/ml. The P 
value for the comparison of the degree of Stat6 phosphoryl-
ation between BMDMs and PMs at 10 ng of IL-13 by un-
paired Student ’ s  t  test was statistically signifi cant (0.020). In 
striking contrast to  � c  � / �   BMDMs, PMs from  � c  � / �   donors 
showed only a modest reduction in their sensitivity to IL-4 
and were clearly more sensitive to IL-4 than to IL-13 ( Fig. 3 A , 
bottom). The P values for the comparison of the degree of 

 Figure 1.    The greater sensitivity of BMDMs to IL-4 compared with 

IL-13 requires the type I IL-4 receptor.  (A) BMDMs were prepared 

from three to fi ve individual WT (top) or  � c  � / �   (bottom) mice. The cells 

were stimulated with IL-4 or -13, as indicated, for 15 min or left unstimu-

lated. The cells were stained with anti-PY641Stat6 and analyzed by fl ow 

cytometry. Results shown here are from a representative of fi ve indepen-

dent experiments. (B) The difference in MFI of stimulated versus non-

stimulated cells from both WT and  � c  � / �   BMDMs from fi ve independent 

experiments; means and SEMs for results from the distinct experiments 

are shown. (C) Stat6 DNA binding in WT and  � c  � / �   BMDMs. The cells were 

stimulated as indicated, and nuclear lysates were prepared and analyzed 

by EMSA with a radioactively labeled DNA probe (SBE1) that contains a 

Stat6 binding site. (D) IL-4 binding to  � c  � / �   BMDMs is not impaired. WT 

and  � c  � / �   BMDMs, prepared as described in A, were incubated with or 

without IL-4 for 30 min at 4 ° C, and cells were washed and stained with 

anti – IL-4R �  (M1), followed by fl ow cytometry; MFI of M1 binding is indi-

cated. Results shown are from one of two replicate experiments. (E) IL-4 –

 induced Stat6 DNA binding is undetectable in Jak3  � / �   BMDMs. BMDMs 

from a Jak3-defi cient mouse were stimulated as indicated and subjected 

to EMSA assay as in C.   
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similar to the data in  Fig. 1 B , and represents fi ve experiments 
for the wild-type cells and three for the  � c  � / �   cells. Collec-
tively, IL-4 appears to be an  � 100-fold more potent inducer 
of Stat6 Y641 phosphorylation than IL-13 in both WT BM-
DMs and PMs, but a defi ciency of functional type I IL-4 
receptors has a fundamentally diff erent impact on IL-4 re-
sponsiveness in these two macrophage populations. 

 In WT PMs, IL-4 – induced Arg1 expression was some-
what greater than that induced by IL-13 ( Fig. 3 C ). In  � c  � / �   
PMs, IL-4 – induced Arg1 expression was slightly decreased, 
but in contrast to  � c  � / �   BMDMs, the lack of  � c markedly 
aff ected Arg1 expression only at the lowest cytokine concen-
tration studied (1 ng/ml;  Fig. 3 C ). 

 The responses to IL-4 and -13 by peritoneal exudate mac-
rophages induced by thioglycollate (Tg) were generally simi-
lar to those of resident PMs, although their sensitivity to IL-4 
was somewhat less than that of PMs, and they displayed only 
a minimal response to IL-13 at 1 ng/ml, but quite good re-
sponses at 10 ng/ml ( Fig. 3 D ). 

 We also compared IL-4 and -13 responses in cells that 
mainly or exclusively express the type II IL-4 receptor. For this 
purpose, we tested Stat6 phosphorylation in response to IL-4 
and -13 in NIH3T3 fi broblasts. Overnight-starved NIH3T3 
cells were stimulated for 15 min with increasing concentrations 
of IL-4 and -13. At concentrations  > 0.1 ng/ml, IL-13 induced 
Stat6 Y641 phosphorylation substantially better than IL-4 in fi -
broblasts ( Fig. 3 F ). In a human lung epithelial cell line (H292), 20 
ng/ml of IL-4 and -13 induced comparable tyrosine phosphoryl-
ation of immunoprecipitated Stat6 (Fig. S2, available at http://
www.jem.org/cgi/content/full/jem.20080452/DC1). 

 Mouse monocytes show increased sensitivity to IL-4 

 Monocytes are macrophage precursors that circulate in blood. 
They are released into the bloodstream upon diff erentiation of 
the common myeloid progenitor cells in BM ( 25 ). Because we 
hypothesized that BMDMs might represent a relatively imma-
ture macrophage pool, we wished to determine whether there 
are diff erences in IL-4 –  and IL-13 – induced signaling in these 
macrophage precursors that would be similar to the diff erences 
we detected in BMDMs. Mouse blood monocytes from WT 
B6 mice were analyzed for responsiveness to IL-4 and -13 by 
measuring Stat6 Y641 phosphorylation by fl ow cytometry. IL-
4 induced substantial responses at 0.1 ng/ml in monocytes, 
whereas IL-13 required 10 ng/ml to obtain measureable re-
sponses ( Fig. 4 A ).  Because of limitations in cell numbers, we 
did not test responsiveness to 1 ng/ml or 100 ng/ml of either 
IL-4 or -13. Monocytes from  � c  � / �   mice responded poorly to 
both IL-4 and -13 at 0.1 ng/ml, and slightly better to IL-13 
than to IL-4 at 10 ng/ml ( Fig. 4 B ). Thus, the IL-4 sensitivity 
of  � c  � / �   monocytes resembled that of  � c  � / �   BMDMs. 

 Human monocyte sensitivity to IL-4 over -13 is dependent 

on  � c and occurs in CD14 hi  and CD16 hi  subtypes 

 Easy accessibility to a large number of monocytes in human pe-
ripheral blood and the relatively low number of monocytes in 

Stat6 phosphorylation between  � c  � / �   BMDMs and PMs at 
concentrations of IL-4 at or  > 1 ng/ml are statistically signifi -
cant (1 ng/ml, 0.003; 10 ng/ml, 0.046; 100 ng/ml, 0.0003). 
Thus, in PMs, IL-4 effi  ciently uses the type II receptor, which 
it does not in BMDMs, and IL-13 is a relatively better stimulant 
in PMs than in BMDMs. The data are quantitated in  Fig. 3 B , 

 Figure 2.    IL-4 – induced Arg1 expression in BMDMs is dependent 

on the type I IL-4 receptor and Stat6 expression.  (A) BMDMs from 

WT and  � c  � / �   mice prepared as in  Fig. 1 A  were unstimulated or stimu-

lated with indicated concentrations of IL-4 or -13 for 2 h. Cells were 

lysed, RNA was purifi ed and transcribed to cDNA, and RT-PCR performed 

to measure Arg1 expression. The results were normalized to 18S RNA. The 

experiment was performed independently three times; means and SEMs 

of results from the individual experiments are shown. (B) BMDMs were 

prepared from Stat6-defi cient B6 mouse and left untreated or treated 

with indicated concentrations of IL-4 or IL-13. Thereafter, the experiment 

was performed as in A. The experiment was performed independently 

three times; means and SEMs of results from the individual experiments 

are shown. (C) BMDMs from WT and  � c  � / �   mice treated for 1 h at 37 ° C 

with blocking antibody against IL-4R �  (M1) as indicated, followed by 

stimulation with IL-4 or -13 (10 and 200 ng/ml, respectively) for 2 h. Cells 

were lysed and Arg1 mRNA induction measured as in A.   
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( Fig. 5 B ), whereas 0.1 ng/ml of IL-4 induced striking Stat6 
DNA binding. These results indicate that human monocytes are 
also 10 – 100-fold more sensitive to IL-4 than to IL-13. 

 Blocking the type I receptor on human monocytes with 
 � c neutralizing antibody had no inhibitory eff ect on the Stat6 
DNA-binding activity induced by IL-13 ( Fig. 5 C ), but the 
Stat6 DNA-binding induced by IL-4 was markedly reduced, 
indicating that type I IL-4 receptors are essential for IL-4 re-
sponses in human monocytes, despite the fact that there is 
suffi  cient type II receptor to mediate an IL-13 response. 

mice, prompted us to examine the IL-4 –  and IL-13 – induced 
Stat6 activation in human monocytes. IL-4 induced substantial 
Stat6 Y641 phosphorylation by elutriated human monocytes at 
concentrations as low as 0.1 ng/ml; maximum Stat6 phosphoryl-
ation was obtained at 1 – 10 ng/ml of IL-4 ( Fig. 5 A ).  In contrast, 
IL-13 caused no detectable Stat6 phosphorylation at 0.1 ng/ml 
and detectable phosphorylation at 1 ng/ml; 10 ng/ml of IL-13 
induced close to maximal Stat6 phosphorylation. Consistent 
with the FACS data, IL-13 failed to induce Stat6 DNA bind-
ing at concentrations  < 10 ng/ml, as demonstrated by EMSA 

 Figure 3.    PMs are highly sensitive to IL-4, but IL-4 responses are not exclusively dependent on type IL-4 receptor.  (A) PMs were purifi ed from 

three to fi ve WT (top) and  � c  � / �   (bottom) mice by adhesion after peritoneal lavage. The cells were rested for 2 d in media containing 2% FBS, and then 

stimulated for 15 min with IL-4 or -13 or left unstimulated and analyzed as in  Fig. 1 A . Results of representative experiments are shown. (B) The differ-

ence of MFI of stimulated versus nonstimulated cells from both WT and  � c  � / �   PMs in A was quantitated; means and SEMs from independent experiments 

are shown. For WT cells, the experiment was performed fi ve times; for  � c  � / �   cells, three times. (C) PMs were prepared from WT and  � c  � / �   as described. 

The cells were stimulated as indicated for 2 h or left unstimulated. Thereafter, Arg1 mRNA induction was measured as in  Fig. 2 A . The experiment was 

performed three times; means and SEMs of results from independent experiments are shown. (D) Tg was injected i.p. into 5 mice; 3 d later, they were 

killed, and PMs were purifi ed and analyzed as in A. The experiment was performed twice with similar results. (E) NIH3T3 fi broblasts were starved in growth 

media containing 1% FBS overnight. Subsequently, the cells were either left unstimulated or stimulated with IL-4 or -13 as indicated for 15 min. To study 

Stat6 Y641 phosphorylation, the cells were permeabilized, stained, and analyzed as in  Fig. 1 A . Means and SEMs of results from four independent experi-

ments are shown.   
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In that respect, the CD14 hi  population resembles the PM 
population and the CD14 lo  resembles the BMDM population. 
In accord with these diff erences in IL-4 – IL-13 sensitivity 
between human monocyte populations, we observed that 
IL-4R � ,  � c, and IL-13R � 1 are more highly expressed in the 
CD14 hi  populations, and that IL-13R � 2 is barely expressed 
in either as measured by fl ow cytometry ( Fig. 5 F ). 

 Receptor chain expression in BMDMs, PMs, 

and NIH3T3 fi broblasts 

 Measurements of binding properties of the components of 
the type I and II receptors and recent structural characteriza-
tion of type I and II IL-4 receptors ( 28 ) suggested that relative 
receptor chain expression might provide a mechanism to regu-
late the relative potency of IL-4 and -13. Indeed, the analysis 
of receptor chain expression in the human monocyte sub-
populations supports this idea ( Fig. 5 F ). We examined the 
expression of diff erent receptor chains on BMDMs and PMs 
by fl ow cytometry, and representative stainings are shown 
in  Fig. 6 A .  We quantitated the data from independent stain-
ings in  Fig. 6 B .  � c expression was detected clearly on both 
BMDMs and PMs, with fourfold higher expression on PMs. 
IL-4R �  expression was 2.6-fold higher on PMs than on BM-
DMs ( Fig. 6 B ). 

 For mouse IL-13R � 1, no suitable monoclonal antibody 
is available. We failed to detect a reliable specifi c signal with 
fl ow cytometry using a polyclonal anti – IL-13R � 1 antiserum. 
Therefore, we measured IL-13R � 1 expression by immuno-
blotting. Using antibody against IL-13R � 1, we observed a 
stronger  � 50-kD band in extracts from PMs than in extracts 

 Human peripheral blood monocytes consist of at least two 
subpopulations, i.e., CD14 hi /CD16 lo  and CD14 lo /CD16 hi , 
with  � 75% being CD14 hi /CD16 lo . There is still some debate 
as to the roles of these subpopulations in homeostasis, infec-
tions, and infl ammatory responses ( 26, 27 ), but the CD14 hi /
CD16 lo  are often considered precursors of infl ammatory mac-
rophages, and the CD14 lo /CD16 hi  are considered precursors of 
resident macrophages. We wished to determine if IL-4 –  and 
IL-13 – induced responses might be diff erent in these monocyte 
subsets. To exclude contaminating cells, we stained elutriated 
human peripheral monocyte preparations with anti-CD3, 
-CD19, and -CD56 to exclude T-, B-, and NK cells. In the 
CD16 hi -positive gate, we detected very few contaminating 
cells (CD3,  � 2%; CD19,  � 0%; or CD56,  � 1%), and in the 
CD14 hi  population, there was  � 5% CD56 +  and  � 3% CD3 +  
cells, but no detectable CD19-expressing cells (unpublished 
data). We examined IL-4 –  and IL-13 – induced Stat6 Y641 
phosphorylation in these two subsets. Both IL-4 and -13 were 
able to induce Stat6 activation at lower concentrations in 
CD14 hi /CD16 lo  than in CD14 lo /CD16 hi  population ( Fig. 5 D ). 
To further confi rm this observation, we compared the IL-4 
and -13 responsiveness of four independent donors with simi-
lar results ( Fig. 5 E ). 

 Collectively, these results confi rm the superiority of IL-4 
in inducing Stat6 activation in human monocytes and, fur-
ther, that this advantage is lost when the type I IL-4 receptor 
is inhibited. Finally, the CD14 hi  monocyte subset is more 
sensitive to both IL-4 and -13 than the CD16 hi  monocyte 
subpopulation. The diff erence between monocyte populations 
is particularly clear in the response to IL-13 at 10 ng/ml. 

 Figure 4.   The  Type I IL-4 receptor is essential for responses to low concentrations of IL-4 responses in mouse monocytes.  (A) Blood leuko-

cytes were obtained from three to four WT B6 mice. After lysing erythrocytes, the cells were rested in 2% FBS containing medium for 2 h, and then stim-

ulated for 15 min with indicated concentrations of IL-4 and -13 or left unstimulated. Subsequently, the cells were stained for CD11b and F4/80, followed 

by permeabilization and staining for Y641 of Stat6. The Stat6 phosphorylation of CD11b +  and F4/80 +  cells was evaluated as in  Fig. 1 A . To study the effect 

of IL-4 and -13 on blood monocytes in  � c  � / �   mice (B), identical experiments were performed in these mice. A representative experiment is illustrated by 

the fl ow cytometry plots; the plot of cytokine concentration versus  �  Median represents data from three independent experiments; the mean and SEM of 

the results from these independent experiments are shown.   
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 Because fi broblasts from IL-13R � 1  � / �   mice have recently 
been reported to respond to IL-4 ( 8 ), we examined expression 
of  � c, IL-4R � , IL-13R � 1, and IL-13R � 2 on NIH3T3 cells. 

from BMDMs; equal loading was confi rmed by Ponceau S 
staining. By densitometry, PMs expressed 2.5-fold more IL-
13R � 1 than did BMDMs ( Fig. 6 C ). 

 Figure 5.    Human monocytes are more sensitive to IL-4 than to IL-13.  (A) Freshly elutriated human monocytes from individual donors were cul-

tured in RPMI containing 2% FBS for 2 h. The cells were left untreated or treated with indicated concentrations of IL-4 or -13 for 15 min. Subsequently, 

the cells were fi xed, permeabilized, and stained with anti-pStat6Y641. Stat6 phosphorylation was measured in the indicated fl ow cytometry monocyte 

gate. For each cytokine concentration, MFI of Stat6 phosphorylation was obtained by subtracting the median of the unstimulated sample from the me-

dian of the stimulated sample in monocyte gate (bottom). A representative of fi ve independent experiments is illustrated in the fl ow cytometry plots. The 

graph relating cytokine concentration to  �  Median represents fi ve independent experiments, with means and SEMs. (B) Elutriated human monocytes were 

either left unstimulated or were stimulated with the indicated concentrations of cytokines for 30 min at 37 ° C. Nuclear protein extracts were then pre-

pared, and the levels of Stat6 activity were measured by EMSA using a Stat6 binding site containing radioactively labeled DNA-probe (SBE1). (C) Blocking 

of  � c inhibits IL-4 responses in human monocytes. The experiment was performed as in B, but the cells were pretreated for 1 h with a blocking antibody 

against human  � c. (D) Differential sensitivity of CD16 hi  and CD14 hi  monocytes toward IL-4 and -13. Elutriated monocytes were treated as in A. The cells 

were stained with anti-CD14 and -CD16 surface antibodies, before fi xing and permeabilizing the cells. After methanol permeabilization, the cells were 

stained with anti-pStat6Y641 antibody. Staining results from donor number 4 in E are shown. (E) Summary of results of IL-4 –  and IL-13 – induced Stat6 

phosphorylation in CD14 hi  and CD16 hi  human monocytes from four donors; means and SEMs are shown. (F) Expression of IL-4R � ,  � c, IL-13R � 1, and IL-

13R � 2 in CD14 hi  and CD16 hi  monocyte populations was measured by fl ow cytometry. The expression was quantitated by subtracting the MFI of specifi c 

staining from the MFI of the isotype control and dividing the obtained value by the MFI of the unstained control. Monocytes from seven healthy donors 

were analyzed; means and SEMs are shown.   
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better than to IL-4, despite the fact that both cell types use 
only the type II receptor? 

 To rationalize these observations, one needs to take into 
account the relative expression of the key receptor chains on 
the various cells and the equilibrium constants that describe 
the binding events. Based on our fl ow cytometric measure-
ments of receptor chain expression, IL-4R �  levels are 2.6-
fold higher in PMs than in BMDMs;  � c levels are 4 times 
higher in PMs than BMDMs; and IL-13R � 1 levels are 2.5 
times higher in PMs than BMDMs. Neither BMDMs, PMs, 
nor NIH3T3 have detectable mRNA for IL-13R � 2. Macro-
phage cell lines have been shown to contain 160 – 2,300 IL-
4R � , whereas NIH3T3 cells have  � 500 IL-4R �  ( 29, 30 ). 
Human monocytes, which are macrophage precursors and may 
represent immature macrophage population similar to BM-
DMs, have been reported to express  � 120 IL-13 binding 
sites ( 31 ), which are presumably IL-13R � 1 ( 32 ). For analysis 
here, we assumed 1,000 IL-4R � , 1,000  � c, and 200 IL-
13R � 1 are expressed by BMDMs. The corresponding levels 
of expression on PMs would be 2,600, 4,000, and 500, re-
spectively. The equilibrium constants of the binding of the 

We did not detect IL-13R � 2 mRNA in these cells, and  � c 
mRNA expression was very low (unpublished data). At the 
protein level, very low levels of  � c and IL-4R �  expression were 
detected by fl ow cytometry. By immunoblotting, IL-13R � 1 
was more highly expressed in fi broblasts than in BMDMs; IL-
13R � 2 was undetectable (Fig. S3, available at http://www
.jem.org/cgi/content/full/jem.20080452/DC1). 

 Modeling of functional receptor assemblage in response 

to IL-4 and -13 

 Our results thus indicate that monocytes and macrophages 
are exquisitely sensitive to IL-4 and relatively insensitive to 
IL-13. Furthermore, the IL-4 response of BMDMs and mon-
ocytes from  � c  � / �   donors is severely impaired, indicating 
strong dependence on the type I receptor, whereas PMs effi  -
ciently respond to IL-4 through the type II receptor. Finally, 
fi broblasts, relying largely or exclusively on the type II recep-
tor, are more sensitive to IL-13 than to IL-4. How are we to 
understand these diff erences and, particularly, to explain the 
capacity of  � c  � / �   PMs to respond better to IL-4 than to IL-
13 and for  � c  � / �   BMDMs to respond to IL-13 equally or 

 Figure 6.    Expression of type I and II IL-4 receptor complex chains on BMDMs and PMs.  (A)  � c and IL-4R �  chain expression in WT and  � c  � / �   

BMDMs and PMs. Cells were washed twice and stained for 20 min at 4 ° C, washed again twice, and subjected to fl ow cytometric analysis. Representative 

stainings for each cell type are shown. (B) Quantitated data from the cell surface stainings of 7 (BMDMs) or 5 (PMs) independent experiments are shown. 

The analysis was performed as in  Fig. 5 F . (C) IL-13 receptor expression in BMDMs and PMs. 2  ×  10 5  BMDMs and PMs were lysed, 150  μ g of total cell 

lysate was separated on PAGE gel, followed by Western blotting and immunostaining against IL-13R � 1. Equal loading and transfer was verifi ed with 

Ponceau S staining.   
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complexes can be assembled at a relatively low cytokine con-
centration and these effi  ciently recruit IL-4R � . Responses to 
IL-4 in PMs are also obtained at lower concentration because 
of the increased amounts of  � c and of IL-13R � 1. Indeed, be-
cause of the increase in the amount of IL-13R � 1, the loss of 
 � c has modest eff ect on the IL-4 response. 

 Maximal responses to IL-4 and -13 are achieved with con-
centrations of cytokine (100 ng/ml or less) that, according to 
the model, would form 35 – 40 signaling complexes. Concen-
trations of IL-13  > 100 ng/ml fail to cause greater responses, 
despite the fact that they would assemble substantially more 
signaling complexes. However, it is possible that much larger 

cytokines to their binding chains have been measured, whereas 
the two-dimensional equilibrium constants of the binding of 
membrane-associated cytokine/binding chain complex to  � c, 
IL-13R � 1, or IL-4R �  remain as free parameters, but may be 
estimated from the data available for similar membrane receptors 
( 33 ) and from the measured solution binding constants ( 28 ). 

 For the purposes of modeling, we have adapted the fol-
lowing values: IL-4 binding to IL-4R � , k A  = 10 10  M  � 1  ( 34 ); 
IL-13 binding to IL-13R � 1, k A  = 0.33  ×  10 8  M  � 1  ( 35 );  � c 
binding to IL-4 – IL-4R � , two dimensional k A  = 0.01  μ m 2  
( 33 ); IL-13R � 1 binding to IL-4 – IL-4R � , two dimensional 
k A  = 0.01  μ m 2  ( 33 ); IL-4R �  binding to IL-13/-13R � 1, two 
dimensional k A  = 0. 3  μ m 2  ( 33 ). 

 The implications of the relative numbers of receptors and 
the equilibrium constants are as follows. IL-4 binds with high 
affi  nity to IL-4R � . Thus, IL-4 saturates its binding chain at 
relatively low cytokine concentration. However, the IL-4 –
 IL-4R �  complex binds with low affi  nity to either  � c or IL-
13R � 1. This eff ectively means that the number of signaling 
receptors formed (i.e., the ligand – ligand receptor – second chain 
complex) in response to IL-4 will be highly sensitive to the 
numbers of  � c or IL-13R � 1 chains. However, raising IL-4 
concentrations will have very little eff ect. For IL-13, the situ-
ation is fundamentally diff erent. IL-13 binds its ligand-bind-
ing chain with low affi  nity, and therefore the saturation of 
binding chains is not achieved at low concentrations of cyto-
kine. Thus, the amount of bound IL-13 increases as the cyto-
kine concentration increases. However, the cytokine – binding 
chain complex binds to IL-4R �  with high effi  ciency so that 
the proportion of bound ligand – binding chains that are as-
sembled into signaling chains is high, and the number of sig-
naling chains continues to rise as ligand concentration increases, 
until most IL-4R �  chains are bound. 

 Based on our data and the aforementioned binding con-
stants, we wrote a Matlab script to predict the receptor chain 
assemblage (for details see Materials and methods). For BM-
DMs ( Fig. 7 A ), where there are substantial numbers of IL-4R �  
chains and of  � c chains, but limiting amounts of IL-13R � 1, 
the prediction is that IL-4 responses are good because large 
numbers of IL-4 – IL-4R �  complexes are formed and there is 
suffi  cient  � c to drive a reasonable proportion of these into 
signaling chains.  When  � c is not present, the concentration 
of IL-13R � 1 is so low that the number of signaling com-
plexes formed is greatly reduced. In addition, the number of 
signaling complexes formed is substantially less than the num-
ber of IL-13R � 1 chains present because they are recruited to 
the IL-4 – IL-4R �  complex relatively ineffi  ciently. However, 
the number of signaling chains that can be formed in response 
to IL-13 can approach the number of IL-13R � 1 chains if 
suffi  cient IL-13 is used because the recruitment of IL-4R �  to 
the IL-13 – IL-13R � 1 complex is effi  cient. Thus, the  � c  � / �   
cells respond poorly to IL-4, but can respond quite well to 
relatively high concentrations of IL-13. 

 In PMs ( Fig. 7 B ), IL-13R � 1 levels are 2.5-fold higher 
than in BMDMs. This results in a greater sensitivity of the 
cells to IL-13 because adequate numbers of IL-13 – IL-13R � 1 

 Figure 7.    Estimation of the ability of IL-4 and -13 to assemble 

receptor complexes.  (A) Calculated prediction of the capacity of IL-4 or 

-13 to assemble receptor complexes in BMDMs. The calculation takes into 

account three major parameters in receptor chain assemblage namely; 

the estimated receptor chain expression; the known primary binding ef-

fi ciency of cytokine/cytokine binding receptor chain and the estimated 

secondary binding effi ciency of cytokine/cytokine binding receptor to the 

second receptor chain (see text for detailed values). (B) Calculation for 

predicted assemblages of receptor complexes was performed as in  Fig. 7 A , 

using 2.6-fold more IL-4R � , 4-fold more  � c, and 2.5-fold more IL-13R � 1, 

based on our results shown in  Fig. 6 . (C) In NIH3T3, expression of  � c is 

very low or nonexisting (Fig. S3). The calculation was performed as above 

including only IL-4R �  and IL-13R � 1 expression in the analysis. Fig. S3 is 

available at http://www.jem.org/cgi/content/full/jem.20080452/DC1.   
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IL-4 is reported to be superior to IL-13 in its ability to activate 
IRS-2 in a  � c-dependent manner at IL-4 and -13 concentra-
tions that induce full Stat6 activation (unpublished data). 

 As we were fi nalizing this study, it was shown, using PMs 
and BMDMs from IL-13R � 1  � / �   mice, that alternative mac-
rophage activation in vivo does not absolutely require IL-13 
( 8 ). In line with these fi ndings, we show that Arg1 expression 
is up-regulated more strongly by IL-4 than by IL-13 in WT 
BMDMs. Furthermore, we observed a pattern of enhanced 
IL-4 and -13 responsiveness in PMs. Taking into account the 
diff erent cell types used here, comparison of IL-4 and -13 re-
sponses revealed that relatively immature macrophages (mon-
ocytes and BMDMs) rely heavily on the type I receptor; this 
leads to their relative insensitivity to IL-13. More mature tis-
sue macrophages (PMs) are still extremely sensitive to IL-4, 
but the lack of type I receptor expression has only a modest 
eff ect on IL-4 responses. This suggests that PMs have an ad-
ditional mechanism to maintain IL-4 signaling that the BM-
DMs do not. It was obvious that the degree of IL-13R � 1 
expression could explain this diff erence. Indeed, IL-13R � 1 
expression was elevated in PMs. 

 Human monocytes consist of at least two subpopulations, 
namely CD14 hi /CD16 lo  and CD14 lo /CD16 hi  cells. Although 
there is still controversy regarding the functional properties of 
these cells, based on the ability to transmigrate through normal 
endothelium, CD14 hi /CD16 lo  cells are believed to be infl am-
matory, whereas CD14 lo /CD16 hi  cells are  “ residential ”  mon-
ocytes, feeding into the residential pool of macrophages ( 26 ). 
The sensitivity of CD14 hi /CD16 lo  cells toward both IL-4 and 
-13 was elevated compared with CD14 lo /CD16 hi  cells. In fact, 
the phosphorylation patterns of Y641 of Stat6 were strikingly 
similar between mouse BMDMs and human CD14 lo /CD16 hi  
monocytes, whereas mouse PMs and human CD14 hi /CD16 lo  
monocytes resembled each other. Despite our observation 
that blocking  � c rendered human monocytes from apparently 
healthy donors unresponsive to IL-4, it is of note that mono-
cytes from a severe combined immunodefi ciency disease 
(SCID) patient with dysfunctional Jak3 kinase responded to 
IL-4 and -13 with relatively similar potency ( 38 ). Therefore, 
it would be of great interest to study in detail the level of IL-
13R � 1 expression in monocytes from this patient because this 
patient might have elevated expression of IL-13R � 1 to com-
pensate for dysfunctional type I IL-4R signaling, which may 
explain the discrepancy with our fi ndings. 

 Because IL-13R � 1 – defi cient mice show exacerbated Th2 
responses during parasite infections, it has been suggested that 
the type II IL-4 receptor plays an inhibitory role in Th2 re-
sponses in vivo ( 8 ). However, it can also be argued that the in-
ability of IL-13R � 1  � / �   mice to expel  Nippostrongylus brasiliensis  
parasites subject the mice to a more prolonged antigenic stimu-
lus, thus enhancing the Th2 response, similar to what is ob-
served in IL-13 – defi cient mice that are also incapable of expelling 
the parasite despite a robust Th2-cytokine response ( 39 ). 

 IL-13R � 2 has been proposed to be a decoy receptor for 
IL-13; it binds IL-13 with high affi  nity ( 40 ). Despite persistent 
eff orts, we did not detect any IL-13R � 2 RNA expression in 

increases in cytokine concentration might lead to increased re-
sponses, possibly by recruiting new signaling intermediates. 

 The model indicates that in BMDMs, 15 signaling com-
plexes are formed in response to 0.1 – 1 ng/ml IL-4 and to 
 � 100 ng/ml IL-13, but no concentration of IL-4 achieves 15 
signaling complexes in  � c  � / �   cells. In contrast, in PMs,  > 15 
signaling complexes are formed in response to 0.1 ng/ml IL-4 
and to slightly more than 10 ng/ml of IL-13. Deleting  � c in-
creases the required concentration of IL-4 to form 15 signaling 
complexes  � 10-fold, but 1 ng/ml is still suffi  cient to achieve 
this number. 

 Finally, in fi broblasts ( Fig. 7 C ), at cytokine concentra-
tions of  > 10 ng/ml, IL-13 displays a superior capacity to as-
semble functional receptor complexes. For fi broblast analysis, 
we used values for the expression of IL-4R �  (500/cell) and 
IL-13R � 1 (1,000/cell), based on the literature ( 30, 36 ). 

  DISCUSSION  

 The role of the Th2 cytokines IL-4 and -13 during parasite in-
fections and allergic infl ammatory conditions is well established 
( 3, 37 ). Although most results suggest that IL-4 plays its major 
role in determining the character of the immune response that 
will occur, and IL-13 is the major mediator of allergic infl am-
mation, relatively little is known about the comparative po-
tencies of these cytokines on various cell types. 

 The recently published crystal structures of IL-4 – IL-4R �  
with  � c and with IL-13R � 1, and of IL-13 – IL-13R � 1 with 
IL-4R � , provides valuable information about these inter-
actions ( 28 ). The unique top-mounted, Ig-like domain in the 
extracellular portion of IL-13R � 1 appears to play an impor-
tant role in dictating the effi  ciency of the binding of the IL-
13 – IL-13R � 1 binary complex to IL-4R �  and the relatively 
weak binding of the IL-4 – IL-4R �  binary complex to IL-
13R � 1. The former binding event has a solution K A  of 0.5  ×  
10 8  M �1  and the latter a K A  2.10 6  M �1 , indicating that the exact 
same receptor chains, assembled in reversed order by diff erent 
 “ driver ”  cytokines, behave very diff erently. This thermody-
namic data, together with previous solution measurements of 
the binding affi  nities, form the basis of our model to explain 
how IL-4 and -13 can bind to cells with the same receptors in 
such a manner that the relative abundance of the two recep-
tors determines the relative sensitivity to these two cytokines. 

 The type II IL-4 receptor is ubiquitously expressed, whereas 
the type I IL-4 receptor is mainly restricted to hematopoietic 
cells. Because mouse lymphocytes do not express IL-13R � 1, 
macrophages are among the few cell types expressing both type 
I and II IL-4 receptors that off er an easily accessible model to 
study IL-4 –  and IL-13 – induced signaling via both types of IL-4 
receptors. Furthermore, as lack of  � c does not interfere with 
macrophage development ( 20 ), the role of the type I IL-4 re-
ceptor in diff erent macrophage populations is easy to address. 
We also tested responses of mouse fi broblasts and human airway 
epithelial cells, two nonhematopoietic cell types that are thought 
to express only type II receptors. We limited ourselves to study-
ing the eff ect of IL-4 and -13 on Stat6 activation and Stat6-me-
diated gene expression. However, it is of interest to note that 
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 In contrast to the tuning mechanism used to control rela-
tive sensitivity in the IL-4 – IL-13 system when only IL-4R �  
and IL-13R � 1 are available, other cytokine systems with a 
common signaling mechanism regulate their sensitivity to dis-
tinct ligands by controlling the expression of a key binding 
chain. In the IL-3 cytokine family, the expression of specifi c 
 � -chain (IL-3R � -, IL-5R � -, or GM-CSFR � -chain) triggers 
heterodimerization to a common  � -chain, which initiates 
signaling. Thus, myeloid cells regulate their responsiveness to 
these cytokines by controlling expression of the  � -chains ( 44 ). 
In the case of IL-2 and -15, which both use the IL-2R �  – IL-
2R �  complex, specifi city depends on the expression of IL-
2R �  or IL-15R �  ( 45 ), and for IL-7 and TSLP, which share the 
IL-7R �  chain, specifi city depends on the relative expression 
of  � c and TSLPR ( 46 ). In this respect, the IL-4 – IL-13 system 
displays a novel mechanism to tune the responsiveness of dif-
ferent cell types to these two cytokines that are structurally 
analogous, but functionally quite distinct. 

 Collectively, these observations and the results presented 
here are consistent with the following scenario. During Th2 
responses, early low-concentration IL-4 production can elicit 
eff ective Th2-type monocyte responses. As infl ammation per-
sists, IL-13 production increases, and the concentration of 
IL-13 in serum become such that it can also induce effi  cient 
responses by both hematopoietic and nonhematopoietic cells. 
The high degree of toxicity of IL-4 compared with IL-13 may 
explain why IL-4 concentrations are held at low levels, whereas 
IL-13 can be produced in larger amounts. IL-13 ’ s equal or 
greater stimulatory capacity for nonhematopoietic cells makes 
it the dominant eff ector cytokine. 

  MATERIALS AND METHODS  
 Mice and cell cultures.   Wild type,  � c  � / �  , and Stat6   � / �   C57BL/6J mice 

were obtained from The Jackson Laboratory. Jak3  � / �   mice ( 47 ) were provided 

by J. O ’ Shea (National Institute of Arthritis and Musculoskeletal and Skin Dis-

eases, National Institutes of Health, Bethesda, MD). Mice were maintained in 

the National Institute of Allergy and Infectious Diseases specifi c pathogen – free 

animal facility, and the experiments were done under an approved protocol ac-

cording to the National Institute of Allergy and Infectious Diseases guidelines 

for animal care. For obtaining BMDMs and PMs, previously described methods 

were used ( 48 ). BMDMs were diff erentiated in eMEM media containing 10% 

FBS, penicillin/streptomycin, 2 mM  L -glutamine, 0.02% sodium bicarbonate, 

and 30 ng/ml M-CSF (R & D Systems). Typically,  > 95% of cells in BMDM 

cultures were positive for CD11b and F4/80 surface markers after 8-10 d. Be-

fore stimulating the BMDMs with cytokines, the cells were starved in growth 

media containing 2% FBS without M-CSF. After fl ushing of the peritoneal 

cavities, PMs were cultured overnight in RPMI containing 2% fetal bovine se-

rum, glutamine, 10 mM Hepes, penicillin/streptomycin, 50  μ M 2-mercapto-

ethanol, and nonessential amino acids. In a typical experiment, cultured cells 

were 80 – 90% positive for CD11b and F4/80. Both BMDMs and PMs were 

cultured on non – tissue culture – treated plates to alleviate the mechanical detach-

ment of the cells from the plates. NIH3T3 and H292 cells were obtained from 

American Type Culture Collection and were grown in the same media as PMs 

with 10% FBS. Elutriated human monocytes were obtained from NIH Blood 

Bank; they were cultured in RPMI containing 2% FBS for 2 h before stimula-

tion with human IL-4 (R & D Systems and Peprotech) or human IL-13 (R & D 

Systems and Peprotech). All cells were maintained at 37 ° C with 5% CO 2 . 

 Antibodies.   For Western blotting, anti-pStat6 and -Stat6 antibodies ob-

tained from Cell Signaling Technology and Epitomics were used. For mice, 

BMDMs, PMs, or NIH3T3 cells (unpublished data), indicating 
that the observed diff erences in the strength of IL-13 – induced 
signaling in BMDMs versus PMs is not caused by expression 
of an inhibitory IL-13 receptor. 

 In NIH3T3 fi broblasts, IL-13 was superior to IL-4 in in-
ducing Stat6 phosphorylation. IL-4 and -13 induced compara-
ble degrees of Stat6 phosphorylation in a human lung epithelial 
cell-line (H292). Together with the observations that larger 
amounts of IL-13 than -4 are produced in Th2 responses, the 
relative abundance of IL-4R �  and -13R � 1 explains the cen-
tral role played by IL-13 rather than IL-4 in mediating eff ector 
functions by nonhematopoietic cells ( 9 – 11 ). 

 We have presented a model that accounts for the diff er-
ences in potency in these various cell types based on the rela-
tive expression of the three receptor chains and on the relative 
affi  nities of these chains for their ligands. The basic diff erences 
in the  “ logic ”  of responses to IL-4 and -13 is that IL-4 binds 
to IL-4R �  with very high affi  nity, allowing it to capture cy-
tokines at a very low concentration. However, the construc-
tion of the signaling complex is relatively ineffi  cient because 
the affi  nity of the IL-4 – IL-4R �  complex for either  � c or IL-
13R � 1 is quite low, so when these chains are limiting, IL-4 
responses are severely blunted. In contrast, IL-13R � 1 binds 
IL-13 with low effi  ciency. High concentrations of IL-13 are 
required to assemble the IL-13 – IL-13R � 1 complex, but the 
subsequent step, the binding of IL-4R � , is relatively effi  cient 
so that one can assemble large numbers of signaling com-
plexes if one uses suffi  ciently large amounts of IL-13. It should 
be pointed out that other, more complex, models are possi-
ble, particularly if multimers of the signaling complex form and 
if these forms have distinctive signaling capabilities. 

 What might be the reason for having two functionally 
overlapping cytokine receptors? As noted, IL-4 is essential for 
immunoglobulin class switching and for Th2 diff erentiation. 
This is easily explained because, in the mouse, IL-13R � 1 is 
not expressed on lymphocytes, and thus such cells cannot bind 
IL-13. In contrast, IL-13 is the key eff ector cytokine. Block-
ing of IL-13, but not IL-4, can inhibit airway hypersensitivity 
responses in mice ( 9 – 11 ). IL-13, but not IL-4, is essential for 
expulsion of parasites in  N. brasiliensis  infection ( 8, 39 ). These 
fi ndings can be explained both by the equal or greater po-
tency of IL-13 on nonhematopoietic cells and the larger 
amounts of IL-13 produced in allergic infl ammatory responses 
that may be sustained (or produced) longer than IL-4 at the site 
of the infl ammation ( 41 ). Serum IL-13 concentrations during 
allergic infl ammatory responses are often detectable, whereas 
IL-4 can rarely be found in measurable amounts. For exam-
ple, in a comparison of atopic patients ’  PBMC responses to 
mite allergen, the level of IL-13 was  � 28 times higher than 
IL-4 in cell culture supernatant ( 42 ). In another study, PBMCs 
from healthy donors that were stimulated for 48 h with anti-
CD3 mAb expressed  � 10-fold more IL-13 than -4, as mea-
sured by ELISA from supernatants ( 43 ). It is also interesting 
that short-term administration (3 d) of IL-4 to B6 mice re-
sults in far greater toxicity than does the same or even larger 
amounts of IL-13 (unpublished data). 

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/205/11/2595/1726710/jem
_20080452.pdf by guest on 08 February 2026



2606 TUNING SENSITIVITY TO IL-4 AND IL-13  | Junttila et al. 

content/full/jem.20080452/DC1). For a simple receptor (R)  –  ligand (L) 

binding at equilibrium, the concentration of the ligated receptor, [R:L] di-

vided by the product of the concentrations of the free receptor [R] and of 

the ligand [L] is equal to the association constant K A  for the reaction: 

   K R L

R L
A = [ ]

[ ] × [ ]
:

.    

 Because the total concentration of receptors [R 0 ] equals the sum of the con-

centrations of free [R] and the ligated receptors [R:L], we can replace [R] by 

[R 0 ]  –  [R:L] to obtain the fraction of ligated receptors as a function of the 

ligand concentration [L] and the association constant K A:  

   R L

R

K L

K L
A

A

:
.

[ ]
[ ] =

× [ ]
− × [ ]0 1

   

 For the two-step binding of IL-4 or IL-13 to IL-4R � , and then to  � c or IL-

13R � 1, we fi rst calculated the fraction of cytokine-bound IL-4R �  chains 

and then analogously the fraction of these that are also bound to  � c or IL-

13R � 1. The second step is a two-dimensional binding process and is treated 

using two-dimensional concentrations (number of receptors per membrane 

area) and two-dimensional association constants. IL-13 binding is treated 

analogously, except for the fact that the second step involves binding to only 

one possible binding partner, IL-4R � . 

 Online supplemental materials.   Figs. S1 and S2 show tyrosine phosphoryl-

ation of Stat6 in response to IL-4 and -13 in WT mouse BMDMs and H292 

human airway epithelial cells. Fig. S3 indicates IL-4R � ,  � c, IL-13R � 1, and 

IL-13R � 2 expression in NIH3T3 cells. Fig. S4 provides the Matlab script used 

to calculate receptor complex assemblage. The online version of this article is 

available at http://www.jem.org/cgi/content/full/jem.20080452/DC1. 
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