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BRIEF DEFINITIVE REPORT

    Rheumatoid arthritis (RA) is a chronic auto-
immune disease in which proinfl ammatory cy-
tokines, such as TNF � , IL-6, and IL-1, play 
dominant pathological roles. More recently, 
IL-17 has been suggested to play an important 
additional role in the induction and mainte-
nance of RA ( 1, 2 ). Thus, IL-17 is present in 
the synovium of RA patients and contributes 
to the production of IL-6 and MMP-1 in the 
joint ( 2, 3 ), whereas treatment of human mac-
rophages with IL-17 in vitro stimulates the 
production of TNF �  and IL-1 �  ( 4 ). IL-17 can 
also synergize with TNF �  to induce cytokine 
and chemokine production by synovial fi bro-
blasts and cartilage destruction in vitro and can 
promote osteoclastogenesis ( 1, 5, 6 ). 

 IL-17 is a proinfl ammatory cytokine pro-
duced predominantly by T helper cells (Th17 
cells) and, although there is controversy over 

the signals required for the diff erentiation of 
murine and human Th17 cells, both murine and 
human CD4 +  Th17 T cells require IL-23 for 
their proliferation and maintenance ( 7 ). IL-23 
is a heterodimeric protein composed of a p19 
subunit and a p40 subunit, whereas IL-12, an 
important cytokine for Th1 cell diff erentiation, 
is formed when the p40 subunit dimerizes with 
p35 ( 8 ). 

 The role of TNF �  in RA is well docu-
mented, with TNF � -blocking biologics causing 
amelioration of clinical symptoms (e.g., pain, 
joint swelling, and stiff ness), laboratory parame-
ters of infl ammation (e.g., CRP and ESR), and 
radiological progression of disease ( 9, 10 ). Al-
though TNF �  plays a direct pathological role in 
RA, its contribution to disease pathogenesis is 
amplifi ed by its ability to promote the expression 
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 IL-17 is implicated in the pathogenesis of rheumatoid arthritis (RA) and has previously 

been shown to be induced by tumor necrosis factor (TNF) in vitro. The aim of this study 

was to assess the impact of TNF inhibition on IL-17 production in collagen-induced arthri-

tis, a model of RA. TNF blockade using TNFR-Fc fusion protein or anti-TNF monoclonal 

antibody reduced arthritis severity but, unexpectedly, expanded populations of Th1 and 

Th17 cells, which were shown by adoptive transfer to be pathogenic. Th1 and Th17 cell 

populations were also expanded in collagen-immunized TNFR p55  � / �   but not p75  � / �   mice. 

The expression of IL-12/IL-23 p40 was up-regulated in lymph nodes (LN) from p55  � / �   

mice, and the expansion of Th1/Th17 cells was abrogated by blockade of p40. Treatment of 

macrophages with rTNF also inhibited p40 production in vitro. These fi ndings indicate that 

at least one of the ways in which TNF regulates Th1/Th17 responses in arthritis is by down-

regulating the expression of p40. Finally, although TNF blockade increased numbers of Th1 

and Th17 cells in LN, it inhibited their accumulation in the joint, thereby providing an 

explanation for the paradox that anti-TNF therapy ameliorates arthritis despite increasing 

numbers of pathogenic T cells. 
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is responsible for delivering the inhibitory signal, Th1/Th17 
responses were assessed in p55  � / �  , p75  � / �  , and WT mice 
immunized 14 d previously with type II collagen in CFA. 
This time point was chosen because maximal T cell responses 
are normally detected around this time. 

 The results show conclusively that inhibition of Th1/Th17 
responses occurs via the p55 and not the p75 TNF receptor. 
Thus, the production of IL-17 and IFN �  was dramatically 
higher in collagen or anti-CD3 mAb – stimulated LN cell cul-
tures from p55  � / �   mice compared with either WT or p75  � / �   
mice ( Fig. 2 A ).  Further analysis by fl ow cytometry confi rmed 

of other proinfl ammatory cytokines. For example, TNF �  has 
been shown in vitro to drive the production of IL-17 by equip-
ping DC with the ability to diff erentiate T cells toward a Th17 
phenotype ( 11 ). On this basis, it would be predicted that 
TNF �  blockade would result in reduced IL-17 expression, and 
to test this hypothesis in vivo, we investigated the dependence 
of IL-17 expression on TNF �  in collagen-induced arthritis 
(CIA). Surprisingly, our data show that TNF �  is an important 
negative regulator, not only of IL-17 but also of IFN �  produc-
tion by T cells. We propose that this forms a part of a negative 
feedback loop that attempts to limit the intensity and/or dura-
tion of Th17 and Th1 responses. 

  RESULTS AND DISCUSSION  

 To investigate the eff ect of blockade of TNF �  on the produc-
tion of IL-17, DBA/1 mice were immunized with bovine type 
II collagen in CFA. After onset of arthritis, mice were treated 
with soluble TNFR-Fc for 10 d and the production of IL-17 
and IFN �  by LN cells was determined by ELISA. Signifi cantly 
increased IL-17 and IFN �  production was observed after stim-
ulation of LN cells from TNFR-Fc – treated mice with colla-
gen or anti-CD3 mAb in vitro, and a trend toward enhanced 
production of these cytokines was observed even in unstimulated 
LN cells ( Fig. 1 ).  As expected, arthritis severity was signifi cantly 
reduced in TNFR-Fc – treated mice despite the increased IL-17 
and IFN �  production ( Fig. 1 ). 

 We next set out to establish whether the increased IFN �  
and IL-17 production in vitro by LN cells after blockade of 
TNF �  was paralleled by increased numbers of Th1 and Th17 
cells in vivo. In addition, we compared the eff ect of TNF �  
blockade on numbers of Th1/Th17 cells during the T cell ex-
pansion phase (days 0 – 14 after immunization) versus the phase 
of T cell contraction (days 1 – 14 after disease onset). For this ex-
periment, we used anti-TNF �  mAb (TN3-19.12), which has 
been characterized extensively in CIA ( 12 ). Anti-TNF �  mAb 
treatment lead to a signifi cant expansion of the proportion of 
CD4 + IFN �  +  cells in inguinal LN, irrespective of whether it 
was administered from days 0 – 14 after immunization or days 
1 – 14 after disease onset (Fig. S1, available at http://www.jem
.org/cgi/content/full/jem.20072707/DC1). There was a trend 
toward increased numbers of CD4 + IL-17 +  cells during the ex-
pansion phase and a signifi cant increase in CD4 + IL-17 +  cells 
during the contraction phase. 

 It was concluded that early TNF �  blockade led to a sig-
nifi cant expansion of Th1 cells, whereas late TNF �  blockade 
led to a signifi cant expansion of both Th1 and Th17 cells. 
The coordinate expansion of both Th17 and Th1 cells in 
vivo after blockade of TNF �  is surprising and challenges the 
assumption that the diff erentiation of these two subsets is 
mutually antagonistic ( 13, 14 ). Less than 0.2% of CD4 +  cells 
from control or anti-TNF �  – treated mice were double posi-
tive for IFN �  and IL-17 (Fig. S1). 

 Thus far, the data suggest that signaling via the TNF re-
ceptor inhibits Th1/Th17 responses. To confi rm this fi nding, 
and to establish which of the two TNF receptors (p55 or p75) 

  Figure 1.     Increased IL-17 and IFN �  production in CIA after block-

ade of TNF � .  DBA/1 mice with CIA were treated with TNFR-Fc or isotype 

control mAb (100  μ g/mouse on alternate days) from the time of disease 

onset. (A and B) LN cells were taken 10 d after disease onset and levels of 

IL-17 (A) and IFN �  (B) were determined by ELISA in the supernatants 

without further stimulation (Nil) or after stimulation with type II collagen 

(CII) or anti-CD3 mAb (CD3). Data show individual mice ( n  = 8; *, P  <  0.05). 

(C) Clinical scores were assessed over the 10-d period in TNFR-Fc – treated 

and control mice. The data are representative of at least three experi-

ments. Error bars show SEM.   
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strongly Th1/Th17-skewing properties of CFA. The fact 
that expanded populations of Th1 and/or Th17 cells were 
observed in inguinal LN of p55  � / �   and anti-TNF – treated 
mice before the onset of arthritis indicates that there was 
not simply a redistribution of cells away from the joint to 
the LN. 

 We next sought to identify the mechanism by which 
TNF �  reduces Th17 and Th1 cell activity. IL-12 and IL-23 
share a common subunit, p40. Dimerization of p40 with p35 
forms IL-12, which is involved in the diff erentiation of Th1 
cells, whereas dimerization of p40 with p19 forms IL-23, 
which has an important role in the generation and/or sur-
vival of Th17 cells. Hence, one possible explanation for our 
fi ndings is that TNF �  conditions myeloid cells toward re-
duced p40 expression, and we set out to address this question 
using thioglycolate-elicited macrophages stimulated with 
LPS in vitro. Pretreatment of macrophages before LPS stimu-
lation with 30 or 100 ng/ml of TNF �  produced a dose-
dependent reduction of p40 upon subsequent stimulation 
with LPS ( Fig. 3 ).  The maximum inhibition of p40 produc-
tion by LPS-stimulated macrophages was  � 50%, and the fail-
ure to obtain greater suppression was attributed to the fact 
that LPS alone would inevitably produce signifi cant quan-
tities of TNF � . TNF �  pretreatment also suppressed IL-6 
production at 100 ng/ml, but not at 30 ng/ml, but had no 
eff ect on IL-1 �  production at either dose ( Fig. 3 ). This shows 
that the eff ect of TNF �  on cytokine production was selective 
and did not cause global suppression of cellular activity. 

that the proportion of CD4 +  T cells producing IL-17 and IFN �  
in the LN of p55  � / �   mice was signifi cantly greater than in 
those from WT or p75  � / �   mice ( Fig. 2 B ). However, increased 
IFN �  and IL-17 responses were not observed in anti-CD3 –
 stimulated LN cells from nonimmunized p55  � / �   mice ( Fig. 2, 
A and B ), indicating that the T cells were not skewed toward 
Th1/Th17 responses before immunization. The percentage of 
CD4 +  cells in immunized WT mice coexpressing IFN �  and 
IL-17 was low ( � 0.1%) and was not altered in p55  � / �   or 
p75  � / �   mice. 

 Despite the increase in Th1/Th17 responses observed in 
immunized p55  � / �   mice, the proliferative responses of T 
cells from p55  � / �  , p75  � / �  , and WT mice did not vary sig-
nifi cantly in response to collagen or anti-CD3 mAb stimu-
lation ( Fig. 2 C ), and the percentages of CD4 +  T cells in the 
LN of WT and p55  � / �   mice were comparable, although 
slightly reduced in p75  � / �   mice ( Fig. 2 C ). The percentage 
of regulatory CD4 + Foxp3 +  T cells remained unchanged in 
the p55  � / �   and p75  � / �   mice when compared with WT 
mice. IL-4 and IL-5 were undetectable in immunized WT, 
p55  � / �  , and p75  � / �   mice, which was attributed to the 

  Figure 2.     Amplifi cation of Th17 and Th1 cell activity in p55 

TNFR  � / �   mice.  LN cells from WT, p55 TNFR  � / �  , and p75 TNFR  � / �   mice 

were taken 14 d after immunization with type II collagen in CFA. (A) LN 

cells were either unstimulated or stimulated with collagen or with anti-

CD3 mAb, and the level of proliferation was determined by [ 3 H]thymidine 

incorporation. The percentage of CD4 +  T cells in the LN was determined by 

fl ow cytometry on day 14 after immunization. (B) Levels of IL-17 and 

IFN �  were determined by ELISA. (C) The proportion of CD4 +  cells in the LN 

producing IL-17 and IFN �  were determined by fl ow cytometry. Histo-

grams show mean  ±  SEM ( n  = 8). *, P  <  0.05; **, P  <  0.01. Data are repre-

sentative of two experiments.   

  Figure 3.     TNF �  inhibits expression of IL-12/IL-23 p40.  Thioglyco-

late-elicited macrophages were cultured in the presence or absence of 

30 or 100 ng/ml TNF �  for 8 h and then stimulated for a further 18 h with 

1 ng/ml LPS. (A – C) Levels of p40, IL-1 � , and IL-6 protein were determined 

in the culture supernatants by ELISA. (D) Relative levels of p40 mRNA 

from WT, p55 TNFR  � / �  , and p75 TNFR  � / �   LN cells 14 d after immunization 

were determined by real time PCR. Histograms show mean  ±  SEM ( n  = 4). 

*, P  <  0.05; **, P  <  0.01; ***, P  <  0.001.   
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antibodies, the pathogenic potential of these T cells is eff ec-
tively neutralized. 

 One of the mechanisms by which anti-TNF �  therapy is 
known to act in human RA is by preventing infl ammatory cell 
infi ltration into the joint ( 16 ). On this basis, we hypothesized 
that the mechanism by which TNF �  blockade is able to re-
duce disease activity while expanding populations of Th1 and 
Th17 cells is by preventing the migration of T cells into the 
joint. To validate this hypothesis, arthritic DBA/1 mice were 
treated for 10 – 14 d with anti-TNF �  mAb or control Ab. The 
mice were then killed and cells harvested from paws and ingui-
nal LN for subsequent analysis by fl ow cytometry. 

 Anti-TNF �  treatment of established arthritis reduced to-
tal numbers of CD4 + IFN �  +  and CD4 + IL-17 +  cells in joints 

 Next, we addressed the question of whether p40 ex-
pression was elevated in vivo in the absence of signaling via 
the p55 TNFR. To quantify p40 expression without any 
form of manipulation in vitro, mRNA was extracted from 
LN cells immediately postmortem and analyzed by real-time 
PCR. LN cells from immunized p55  � / �   mice were found to 
express sixfold greater levels of p40 mRNA compared with 
immunized WT and p75  � / �   mice ( Fig. 3 ). This confi rms the 
ability of TNF �  to suppress p40 expression in vivo. 

 We then questioned whether inhibition of IL-12/IL-23 
p40 activity in p55  � / �   mice would result in a reduction of 
IFN � /IL-17 production and reduced numbers of Th1/Th17 
cells. Treatment with a blocking anti – mouse p40 mAb in 
p55  � / �   mice from the day of immunization to day 14 after 
immunization partially or completely abrogated both the in-
crease in IL-17 and IFN �  production and the expansion of 
CD4 + IL-17 +  and CD4 + IFN �  +  cells ( Fig. 4 ).  These fi ndings 
strongly suggest that at least one of the mechanisms by which 
TNF �  infl uences the development and/or survival of Th1 
and Th17 cells is by inhibition of IL-12/IL-23 p40 expres-
sion, although other mechanisms may also be involved. 

 These fi ndings raise the important question of why TNF �  
blockade is eff ective in reducing disease activity despite in-
creasing numbers of Th1 and Th17 cells. To address this 
question, we used an adoptive transfer system established pre-
viously ( 15 ) to confi rm that the expanded Th1/Th17 cells 
were potentially pathogenic. Spleen and LN cells from ar-
thritic mice treated for 10 – 14 d with anti-TNF �  mAb or 
control Ab were pooled and injected into CB-17 SCID mice 
(5  ×  10 7  cells/mouse or 10 7  cells/mouse). The SCID recipi-
ents were also injected i.p. with 100  μ g of type II collagen 
without adjuvant, which is required for the successful transfer 
of arthritis ( 15 ). The proportion of LN cells to spleen cells 
was  � 1:10 and was identical in both anti-TNF �  – treated and 
control groups. 

 Transfer of 5  ×  10 7  cells from either anti-TNF �  – treated 
or control mice led to effi  cient transfer of arthritis, although 
onset of arthritis was much earlier when donor cells were de-
rived from anti-TNF �  – treated mice (Fig. S2, available at 
http://www.jem.org/cgi/content/full/jem.20072707/DC1). 
However, when the numbers of donor cells were reduced to 
10 7  cells, there was a dramatic diff erence between the two 
groups, with the cells from the anti-TNF �  – treated donors 
showing vastly superior transfer of arthritis (Fig. S2). Remark-
ably, when the recipient SCID mice were treated with anti-
TNF �  mAb from the time of cell transfer, the development of 
arthritis was largely abrogated (Fig. S2). This experiment 
shows conclusively that anti-TNF �  therapy expands the pop-
ulation of pathogenic T cells. However, the pathogenicity of 
these donor cells is largely blocked by anti-TNF �  treatment of 
the recipients. 

 The enhanced capacity of lymphoid cells from anti-
TNF �  – treated mice to adoptively transfer arthritis to SCID 
mice demonstrates that the expansion of Th1/Th17 cells may 
have pathological consequences when the anti-TNF �   “ brake ”  
is removed. However, in the presence of TNF � -neutralizing 

  Figure 4.     Blockade of IL-12/IL-23 blocks the expansion of Th1/

Th17 cells.  (A – C) LN cells from immunized WT (white bars) or p55 

TNFR  � / �   (gray bars) mice treated with control Ig (Ig) or rat anti – mouse 

p40 Ab (p40) were either unstimulated or stimulated with collagen or 

anti-CD3 mAb. Levels of IL-17 (A) and IFN �  (B) were determined by ELISA, 

and the proportion of CD4 +  cells in the LN producing IL-17 and IFN �  were 

determined by fl ow cytometry (C). Histograms show mean  ±  SEM ( n  = 5). 

*, P  <  0.05; **, P  <  0.01; ***, P  <  0.001. Data are representative of two 

experiments.   
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 Anti-TNF �  therapy is now undergoing evaluation in an 
increasing number of diseases and its eff ect is not universally 
benefi cial. For example, TNF �  blockade was shown to in-
crease both the rate and frequency of relapse in patients with 
existing multiple sclerosis ( 23 ). In EAE, TNF �   � / �   mice devel-
oped enhanced infl ammation and demyelination, whereas 
treatment of susceptible mice with TNF �  reduced the severity 
of disease ( 24 ). In another study, EAE failed to resolve in 
TNF �   � / �   or TNFR  � / �   mice, suggesting that TNF �  plays an 
important role in resolution of infl ammation ( 25 ). Similarly, in 
murine lupus, administration of rTNF �  was found to be pro-
tective ( 26 ), whereas TNF �  defi ciency was associated with in-
creased production of antinuclear antibodies and accelerated 
onset of disease ( 27 ). Hence, an important question is whether 
the deleterious eff ects of TNF �  blockade in these diseases are 
mediated via the expansion of Th1 and/or Th17 cells. 

 As discussed in a previous paragraph, TNF �  has been re-
ported to decrease p40 expression in human macrophages 
( 18 ). Therefore, the fi ndings presented in this paper may 
have implications for human RA. As in CIA, the therapeutic 
effi  cacy of TNF �  blockade in human RA is indisputable 
( 28 ), but it is possible that the rare occurrence of side eff ects, 
such as antinuclear autoantibodies and demyelination ( 29 ), 
could be explained by an amplifi cation of Th17 and/or Th1 
responses. However, it is also possible that the increased 
Th1/Th17 responses in the periphery versus the joint after 
anti-TNF �  therapy may have benefi cial consequences by in-
creasing resistance to infection. This may help to explain the 
relatively low impact of TNF �  blockade on susceptibility to 
infection ( 30 ). 

 In conclusion, the results of this study show that TNF �  
plays at least two distinct and opposing roles in CIA. First, it 
contributes to the accumulation of Th1 and Th17 cells in ar-
thritic joints, and second, it plays an inhibitory role by limiting 
total numbers of these pathogenic T cell subsets in peripheral 
lymphoid organs. 

 MATERIALS AND METHODS 
 Mice.   DBA/1, C57BL/6, and CB-17 SCID mice were purchased from 

Harlan. p55  � / �   and p75  � / �   mice were bred in house on a C57BL/6 back-

ground. All experimental procedures were approved by the Ethical Review 

Process Committee. 

 Immunization.   DBA/1 and C57BL/6 mice were immunized with CFA 

plus bovine or chicken type II collagen, respectively ( 31 ). Arthritis severity was 

assessed as follows: 0, normal; 1, slight swelling and/or erythema; 2, pronounced 

edematous swelling; and 3, ankylosis. Each limb was graded, giving a maxi-

mum score of 12. 

 Anticytokine therapy.   Blockade of TNF �  was achieved using murine p75 

TNFR-Fc (donated by GlaxoSmithKline) or hamster anti – mouse TNF �  

mAb (TN3-19.12; provided by R.D. Schreiber, Washington University 

School of Medicine, St. Louis, MO). Blockade of IL-12/IL-23 was achieved 

using rat anti – mouse p40 mAb (c17.8; donated by G. Trinchieri, then at 

Wistar Institute, Philadelphia, PA). 

 LN cell culture.   LN cells were cultured at a density of 2  ×  10 6  cells/ml 

in RPMI-1640 with  l- glutamine plus 10% FCS, penicillin/streptomycin, 

sodium pyruvate, and  �  2 -mercaptoethanol and stimulated with 50  μ g/ml 

by 63% and 67%, respectively, despite being present in in-
creased numbers in inguinal LN ( Fig. 5 ).  It was concluded 
that one of the mechanisms of action of anti-TNF �  therapy 
is to inhibit immigration of pathogenic T cells to the joint or 
prevent their emigration from LN. It was beyond the scope 
of the present study to investigate the mechanisms by which 
anti-TNF �  prevents T cell accumulation in the joint, but 
they are likely to include reduced chemokine and adhesion 
molecule expression in the joint, as has been proposed for 
human RA ( 16, 17 ). 

 The key fi nding to emerge from this study is that, in ad-
dition to its proinfl ammatory role, TNF �  is also responsible 
for dampening down Th1 and Th17 responses within the 
context of autoimmune arthritis. We propose that this repre-
sents a negative feedback mechanism that normally serves to 
limit the duration of T cell – driven infl ammatory responses. 

 There are several published studies that support the fi nd-
ings reported here. For example, as observed in the present 
study, it was reported that TNF �  selectively inhibits p40 
expression in human and mouse myeloid cells in an IL-10 – 
independent manner ( 18, 19 ). In CIA, it was shown that 
there was elevated IFN �  production (IL-17 was not mea-
sured) and increased numbers of CD4 +  T cells in TNF  � / �   
mice compared with WT mice ( 20 ). More recently, it was 
shown that i.p. administration of rTNF �  reduced IFN �  pro-
duction as well as the clinical severity of adjuvant-induced 
arthritis in rats ( 21 ), which is also consistent with our fi nd-
ings. In experimental autoimmune encephalomyelitis (EAE), 
it was reported that there was enhanced IL-12/IL-23 p40 ex-
pression in p55  � / �   mice and increased Th1 (but not Th17) 
cells in the CNS compared with WT mice ( 22 ). 

  Figure 5.     Anti-TNF �  therapy prevents the accumulation of Th1/

Th17 cells in the joint.  Arthritic DBA/1 mice ( n  = 6) were treated once 

every 3 d for a total of 14 d with anti-TNF �  mAb (TN3-19.12; 300  μ g/

mouse) or control Ab. CD4 +  cells from the inguinal LN and joints (ob-

tained by enzymatic digestion of synovial tissue) were analyzed for in-

tracellular cytokine expression by fl ow cytometry after stimulation with 

PMA/ionomycin. A, CD4 + IL-17 +  cells in LN; B, CD4 + IL-17 +  cells in joints; 

C, CD4 + INF �  +  cells in LN; D, CD4 + INF �  +  cells in joints. **, P  <  0.01. Data 

are representative of two experiments. Error bars show SEM.   
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of type II collagen or 0.1  μ g/ml of anti – CD3 mAb (145-2C11). Superna-

tants were collected for cytokine analysis after 48 h. Cells were then incu-

bated for a further 16 h in the presence of 1  μ Ci/well of [ 3 H]thymidine to 

quantify proliferation. 

 Thioglycolate-elicited macrophages.   Mice were injected i.p. with 1 ml 

of 3% thioglycolate. After 3 d, mice were killed and peritoneal macrophages 

collected by PBS lavage. After overnight adherence, cells were incubated for 

8 h in the presence or absence of 30 ng/ml rTNF �  (PeproTech), followed 

by 18 h in the presence of 1 ng/ml LPS (Sigma-Aldrich). 

 Isolation of cells from joints.   The skin was removed from arthritic hind 

paws, and synovial cells were liberated by digestion with 1.6 U/ml Liberase C 

(Roche) and 0.2 mg/ml DNase I (Roche) for 40 – 60 min at 37 ° C. 

 Cytokine measurement.   Cytokines were measured using commercially 

available kits as follows: IFN �  (BD Biosciences); IL-17A (R & D Systems); 

and IL-12/IL-23 p40, IL-1 � , and IL-6 (eBioscience). 

 Flow cytometry.   For intracellular cytokine staining, cells were stimulated 

for up to 10 h with PMA and ionomycin. Brefeldin A was added for the last 

4 h. For surface staining, cells were incubated with anti-CD4 or anti-CD8 

(BD Biosciences) for 30 min at 4 ° C, washed, and then fi xed in Cytofi x (BD 

Biosciences). Cells were permeabilized using PBS containing 1% FCS, 

0.01% sodium azide, and 0.05% saponin and stained with anti – mouse IFN �  

(BD Biosciences), anti – mouse IL-4 (BD Biosciences), and anti – mouse IL-17 

(Cambridge BioScience) and analyzed on FACS Canto II using FACSDIVA 

software (BD Biosciences). 

 Real-time quantitative RT-PCR.   RNA was isolated using the RNeasy 

protect mini kit (QIAGEN) and cDNA transcribed using the reverse transcrip-

tion system (Promega). p40 gene expression was determined by real-time 

PCR using predesigned TaqMan primers and probe (Applied Biosystems) by 

the comparative method of relative quantitation. HPRT mRNA was used as 

an endogenous control to check for RNA and cDNA diff erences within sam-

ples. Diff erences in the mean threshold cycle (C t ) for the target gene p40 and 

the C t  for HPRT RNA, indicated by  � C t , were calculated to normalize dif-

ferences in the mRNA extractions and the effi  ciency of the reverse transcrip-

tion. The relative mRNA amount for each target gene was calculated as  �  � C t  

and expressed as fold change compared with a control sample. 

 Statistical analysis.   The unpaired  t  test or one way ANOVA with Dunnett ’ s 

multiple comparison test was used to test statistical signifi cance. A p-value of 

 < 0.05 was considered signifi cant. 

 Online supplemental material.   Fig. S1 shows the expansion of Th1 and 

Th17 cells after treatment with anti-TNF �  mAb. Fig. S2 uses an adoptive 

transfer model to demonstrate that the expanded population of Th1/Th17 

cells is pathogenic. Online supplemental material is available at http://www

.jem.org/cgi/content/full/jem.20072707/DC1. 
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