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    The control of HIV transmission remains one 
of the most pressing public health priorities for 
the 21st century. All past experience suggests 
that a vaccine will be the only intervention 

able to control the HIV epidemic. Although 
many successful antiretroviral drugs have been 
developed with enormous impact on HIV-asso-
ciated morbidity and mortality, access to antire-
troviral therapy remains limited to only 5% of 
the total population of HIV-infected subjects 
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 The EuroVacc 02 phase I trial has evaluated the safety and immunogenicity of a prime-

boost regimen comprising recombinant DNA and the poxvirus vector NYVAC, both express-

ing a common immunogen consisting of Env, Gag, Pol, and Nef polypeptide domain from 

human immunodefi ciency virus (HIV)-1 clade C isolate, CN54. 40 volunteers were random-

ized to receive DNA C or nothing on day 0 and at week 4, followed by NYVAC C at weeks 

20 and 24. The primary immunogenicity endpoints were measured at weeks 26 and 28 by 

the quantifi cation of T cell responses using the interferon  �  enzyme-linked immunospot 

assay. Our results indicate that the DNA C plus NYVAC C vaccine regimen was highly 

immunogenic, as indicated by the detection of T cell responses in 90% of vaccinees and was 

superior to responses induced by NYVAC C alone (33% of responders). The vaccine-induced 

T cell responses were (a) vigorous in the case of the env response (mean 480 spot-forming 

units/10 6  mononuclear cells at weeks 26/28), (b) polyfunctional for both CD4 and CD8 T 

cell responses, (c) broad (the average number of epitopes was 4.2 per responder), and 

(d) durable (T cell responses were present in 70% of vaccinees at week 72). The vaccine-

induced T cell responses were strongest and most frequently directed against Env (91% of 

vaccines), but smaller responses against Gag-Pol-Nef were also observed in 48% of vaccinees. 

These results support the development of the poxvirus platform in the HIV vaccine fi eld 

and the further clinical development of the DNA C plus NYVAC C vaccine regimen. 
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 Most T cell vaccines use virus vectors to induce T cell im-
munity, particularly adenovirus and poxvirus vectors ( 3, 4, 13 ). 
Adenovirus vectors used alone or in combination with plas-
mid DNA-based vaccines have been shown to induce vigor-
ous T cell responses ( 14 ). However, the high seroprevalence 
to adenoviruses in target populations remains a major issue 
for adenovirus vectors, even though recent data seem to in-
dicate that vector immunity may be circumvented by higher 
vaccine doses and/or combination with DNA-based vaccines 
( 3, 4, 6, 13 ). Vector immunity seems to be a lesser problem 
for poxvirus vector – based T cell vaccines, due to the dimin-
ishing prevalence of a vaccinia-experienced population. 

 The effi  ciency of poxvirus vectors in eliciting T cell re-
sponses has been variable ( 15 ). Limited immunogenicity (17% 
response) has been shown in a study using recombinant DNA 
in combination with a modifi ed vaccinia virus Ankara (MVA) 
expressing Gag protein (consensus of HIV-1 clade A) and 
several immunodominant CD8 T cell epitopes ( 16 ). A more 
recent study using the same vaccines at a higher dose showed 
enhanced immunogenicity ( 17 ). However, the response rate 
based on ex vivo functional analysis (IFN- �  ELISPOT and 
proliferation) remained limited at a 40% response, and the 
T cell responses induced were exclusively due to CD4 T cells. 
Similarly, the ex vivo immunogenicity of a canarypox candi-
date vaccine, ALVAC, currently being tested in combination 
with an Env protein vaccine in a phase III clinical trial, was 
in the range of 30% ( 18 ). This work describes the immuno-
genicity of a prime-boost regimen composed of recombinant 
DNA and the poxvirus vector NYVAC, both expressing com-
mon immunogens consisting of Env, Gag, Pol, and Nef pro-
teins of the HIV-1 clade C isolate CN54. We performed a 
comprehensive functional analysis of the vaccine-induced 
T cell responses, including quantifi cation of T cell responses by 
IFN- �  ELISPOT and functional characterization of CD4 and 
CD8 T cell responses (IFN- � , IL-2, and TNF- �  secretion, 
proliferation, and degranulation activity) by polychromatic 
fl ow cytometry and epitope mapping. Our results indicate that 

in developing countries ( 1 ). Even in the face of open access 
to therapy, HIV transmission continues. 

 Over the past 10 yr there has been a progressive increase 
in resources for vaccine research, allowing the generation of 
several candidate vaccines capable of stimulating anti-HIV 
immunity ( 2 – 4 ). The ideal HIV vaccine should be safe, thermo-
stable, able to elicit both humoral (antibody) and cellular 
(both CD4 and CD8 T cells) eff ector functions, and to induce 
durable protective immunity ( 2 – 5 ). The goal of the  “ antibody ”  
vaccines is to induce neutralizing antibodies to provide im-
munity that prevents or limits infection; so far, these have been 
recombinant envelope protein vaccines ( 2 – 4 ). One envelope 
protein vaccine has been tested in a phase III effi  cacy clinical 
trial, without any protective eff ect ( 2 – 4 ). This candidate, as well 
as other tested envelope protein vaccine candidates, induces 
antibodies with neutralizing activity against laboratory-adapted 
strains of HIV-1, but these antibodies are largely ineff ective 
against primary HIV-1 isolates. Strategies to develop high titres 
of neutralizing antibodies with broad activity against primary 
HIV-1 isolates remain elusive. 

 In contrast, relatively signifi cant advances have been made 
in the development of  “ T cell ”  vaccine candidates. T cell vac-
cines are unlikely to prevent infection but may control HIV 
replication after infection, leading to attenuation of HIV 
 disease ( 6, 7 ). The scientifi c rationale for developing T cell vac-
cines is based on several observations, including: (a) the presence 
of vigorous CD4 and CD8 HIV-1 – specifi c T cell responses 
in HIV-1 – infected subjects that are long-term nonprogres-
sors ( 8 ); (b) the in vivo observation in the simian immuno-
defi ciency virus (SIV) model of AIDS in macaques that the 
depletion of CD8 T cells is associated with rapid loss of con-
trol of virus replication ( 9 ); and (c) the recent observation 
that CD4 and CD8 T cell responses endowed with multiple 
functional capacities, particularly IL-2 secretion and proliferation 
in addition to typical eff ector functions (cytotoxic activity and 
secretion of IFN- � , TNF- � , and MIP-1 � ), are associated with 
better control of virus replication ( 10 – 12 ). 

  Figure 1.     RNA- and codon-optimized GPN and Env gene vector inserts.  (A and B) Schematic representation of EV02 study design.  � Myr, myris-

toylation-defi cient; FS (-1), placing Gag and PolNef in one reading frame by removing the natural frameshift;  � PR, protease-inactivated; RT-N, RT-C NH2 

terminal and C-terminal part of the HIV reverse transcription; SC-Nef, scrambled Nef; RT-AS, active site of RT; SP, signal peptide.   
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and was not considered for analyses. On the basis of the above 
considerations, the proportion of subjects with vaccine-
induced specifi c T cell responses was 33% (5 out of 15) in the 
group vaccinated with NYVAC C alone. The assessment of 
vaccine-induced T cell responses at diff erent time points has 
indicated that the proportion of responders after the DNA C 
vaccination was low, for instance 10% at week 5 after two 
vaccinations and 35% at week 20 before NYVAC C boost 
( Fig. 2 B ). Furthermore, the proportion of responders in the 
DNA C plus NYVAC C group mostly peaked (17 out of 20) 
at week 24, 4 wk after the fi rst NYVAC C boost, and the 
proportion of responders was still 80% at week 48, 6 mo after 
the completion of the vaccination ( Fig. 1 B ). Only two sub-
jects within the NYVAC C – alone group maintained positive 
vaccine – induced T cell responses at week 48 ( Fig. 2 B ). 

 Magnitude of vaccine-induced T cell responses 

 Vaccine-induced T cell responses were assessed using the 
IFN- �  ELISPOT assay after the stimulation of blood mono-
nuclear cells with a panel of 464 peptides (15 mers overlap-
ping by 11 amino acids) grouped in eight pools (50 – 60 
peptides per pool). The peptides encompassed the Env, Gag, 
Pol, and Nef proteins of HIV-1 and were designed based on 
the sequence of the immunogens expressed by the DNA and 
NYVAC that were derived from the CN54 clade C isolate. 
The magnitude and the distribution of vaccine-induced T cell re-
sponses against Env, Gag, Pol, and Nef HIV-1 proteins in all the 
responders within the two study groups are shown in  Fig. 3 A .  

the DNA/NYVAC vaccine combination induced ex vivo T cell 
responses in 90% of immunized volunteers and that these re-
sponses were vigorous, polyfunctional, broad, and durable. 

  RESULTS  

 Study design 

 The main objectives of the EuroVacc 02 (EV02) trial were to 
evaluate the safety and immunogenicity of the prime-boost 
regimen, DNA C plus NYVAC C, compared with NYVAC 
C alone. The DNA and the poxvirus vector NYVAC both 
expressed fused Gag-Pol-Nef and the gp120 subunit of Env 
of the HIV-1 clade C isolate, CN54 ( Fig. 1 A ).  The design 
was open for participants and clinical investigators, without a 
placebo control, and 40 volunteers were randomized to re-
ceive DNA C or nothing on day 0 and at week 4, followed 
by NYVAC C at weeks 20 and 24 ( Fig. 1 B ). The participants 
received 2  ×  2-ml injections of DNA C (1.05 mg per ml and 
a total dose of 4.2 mg) intramuscularly in the right and left 
vastus lateralis and a 1-ml injection of NYVAC C (10 7.7  
CCID 50  per ml) intramuscularly in the deltoid. The primary 
immunogenicity endpoints were measured at weeks 26 and 
28 by the quantifi cation of T cell responses using the IFN- �  
ELISPOT assay. The T cell responses were also measured on 
day 0 and at weeks 5, 20, 24, and 48. Comprehensive analyses 
of the demographics of the trial population and of the safety of 
the vaccine regimens have been described (unpublished data 
and reference  19 ). The results indicated that both DNA C and 
NYVAC C candidate vaccines are safe and well tolerated. 

 Proportion of responders after vaccination with DNA C plus 

NYVAC C compared with NYVAC C alone 

 Although 40 subjects entered the EV02 study, only 35 had 
completed vaccination. 20 subjects were randomized to the 
DNA C plus NYVAC C group and 15 to the NYVAC C –
 alone group. As mentioned above, T cell responses were mea-
sured at diff erent time points during the 48-wk study using 
the IFN- �  ELISPOT assay. The primary immunogenicity 
endpoints were, however, evaluated on the basis of the pro-
portion of subjects with positive vaccine-induced T cell re-
sponses at weeks 26 and 28. There was a clear and signifi cant 
diff erence (P = 0.003) in the proportion of subjects with posi-
tive vaccine – induced T cell responses within the two study 
groups. The proportion of responders was 90% (18 out of 20) 
in the DNA C plus NYVAC C group compared with 40% 
(6 out of 15) in the NYVAC C – alone group ( Fig. 2 A ).  Based 
on an intention-to-treat analysis of all 40 participants (assum-
ing that missing equals no response) 83% (19 out of 23) in the 
DNA C plus NYVAC C group responded compared with 
35% (6 out of 17) in the NYVAC C – alone group (diff erence 
47%; 95% confi dence interval 20 – 75%; P = 0.0034). It is im-
portant to note that one of the six responders in the NYVAC 
C – alone group had a detectable response (in the range of 200 
spot-forming units [SFU]/10 6  cells) not only at weeks 26 and 
28, but also at weeks 5 and 20 before vaccination. Therefore, 
although this subject had to be considered positive at weeks 
26 and 28, the T cell response observed was clearly  nonspecifi c 

  Figure 2.     Immunogenicity of DNA C plus NYVAC C versus NYVAC 

C – alone vaccine regimens.  (A) Percentage of responders in the two 

study groups at weeks 26/28, i.e., primary endpoints of the study. The per-

centage of responders was calculated on the basis of volunteers with a 

positive IFN- �  ELISPOT assay at weeks 26/28. (B) Percentage of responders 

at the different time points across the duration of the study.   
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  Figure 3.     Magnitude of the vaccine-induced T cell responses.  (A) Individual patterns of the T cell responses as measured by the frequencies of 

IFN- �  – secreting cells against different peptide pools encompassing the Env, Gag, Pol, and Nef proteins in an ELISPOT assay are shown for all responders 

in both study groups. Each bar corresponds to the reactivity against a different peptide pool, and positive responses (against Gag, Pol, and Nef) are indi-

cated by a star. The Env-specifi c responses correspond to the sum of the mean of the responses induced after stimulation with the two Env peptide pools. 

(B) Median magnitude of vaccine-induced T cell responses against Env at different time points across the duration of the study. (C) Median magnitude 

of Gag-, Pol-, and Nef-specifi c vaccine-induced T cell responses at weeks 26 and 28. (D) Cumulative distribution of the sum of SFU/10 6  cells of positive 

responses at week 26 or 28 by randomization group. For each participant, the week of maximum T cell response (sum SFU) was chosen. Each step corre-

sponds to the maximal IFN- �  ELISPOT value for each participant.   
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Vaccine-induced T cell responses were predominantly directed 
against Env in the DNA C plus NYVAC C and NYVAC C –
 alone groups. At weeks 26/28 (primary endpoints), Env-spe-
cifi c responses were observed in 21 out of 23 responders 
(91%) in both groups, whereas Gag, Pol, and Nef vaccine – 
induced T cell responses were observed in 11 out of 23 of 
volunteers (48%). Transient Gag- and Pol-specifi c T cell re-
sponses were found in two additional volunteers (ES16 and 
EU09) at week 24, and Nef-specifi c T cell responses were 
only found in one volunteer (EU07) in the NYVAC C – alone 
group ( Fig. 3 A ). The responses against Gag, Pol, and Nef 
were generally transient and substantially lower in magnitude 
compared with the Env-specifi c responses. 

 At week 26, the median (mean  ±  SD) Env-specifi c IFN-
 �  – secreting T cells was 299 (480  ±  339) SFU/10 6  cells within 
the study group vaccinated with DNA C plus NYVAC C 
compared with 131 (139  ±  69) SFU/10 6  cells within the 
group vaccinated with NYVAC C alone ( Fig. 3 B ). The dif-
ferences in the magnitude of T cell response between the two 
groups were signifi cant (P = 0.013). At week 28, the num-
bers were 246 (324  ±  196) SFU/10 6  cells for the DNA C 
plus NYVAC C and 76 (78  ±  24) SFU/10 6  cells for the 
NYVAC C – alone group (P = 0.005) ( Fig. 3 B ). The majority 
( > 80%) of Gag-, Pol-, and Nef-specifi c responses were only 
detected at weeks 26 and 28 in the DNA C plus NYVAC C 
group and were not measurable at week 48 ( Fig. 3 C  and not 
depicted). These responses were measurable only at week 26 
in the NYVAC C – alone group ( Fig. 3 C ). The median mag-
nitude of Gag-, Pol-, and Nef-specifi c T cell responses was 
~100 SFU/10 6  cells ( Fig. 3 C ). 

 In  Fig. 3 D , one observes the individual maximum 
responses at week 26 or 28 (each  “ step ”  corresponds to the 
maximum response measured in each responder) and the per-
centage of participants per arm with a maximum response up 
to a certain value. In the NYVAC C – alone group, the maxi-
mum response was just above 200 SFU/10 6  cells, and 40% 
had a maximum response of 100 or fewer. In the DNA C 
plus NYVAC C group, the maximum response was almost 
1,100 SFU/10 6  cells, and 33% had a maximum response of 
 > 600 SFU/10 6  cells. 

 Distribution of the vaccine-induced T cell responses in CD4 

and CD8 T cell populations 

 The distribution of vaccine-induced T cell responses in CD4 
and CD8 T cell populations was assessed in 3 out of 5 re-
sponders of the NYVAC C – alone group and in 16 out of 18 
responders of the DNA C plus NYVAC C group. Only vol-
unteers with IFN- �  ELISPOT responses in the range of 100 
SFU/10 6  blood mononuclear cells or above were charac terized 
using polychromatic fl ow cytometry. The vaccine-induced 
T cell responses were mediated by CD4 T cells in all the in-
vestigated 19 responders (3 in the NYVAC alone and 16 in the 
DNA C plus NYVAC C groups). However, vaccine-induced 
CD8 T cell responses were observed in addition to CD4 
T cell responses in 1 out of 3 responders in the NYVAC C –
 alone group and in the 8 out of 16 (50%) responders in the DNA 

C plus NYVAC C group (not depicted). Represen tative fl ow 
cytometry profi les of Env-specifi c IFN- �  – secreting CD4 and 
CD8 T cells in six out of the seven responders with both CD4 
and CD8 T cell responses vaccinated with DNA C plus 
NYVAC C are shown in  Fig. 4 A .  The magnitude of vaccine-
induced CD4 and CD8 T cell responses was either similar or 
higher in CD8 T cells ( Fig. 4 A ). The characterization of vaccine-
induced CD4 and CD8 T cell responses was performed mostly 
for Env-specifi c responses as well as for the Gag-specifi c 
responses when the magnitude was  > 100 SFU/10 6  cells. 

  Figure 4.     Vaccine-induced CD4 and CD8 T cell responses.  (A) Flow 

cytometry profi les of vaccine-induced CD4 and CD8 T cell responses di-

rected against Env in six out of the seven responders vaccinated with 

DNA C plus NYVAC C exhibiting CD4 and CD8 T cell responses. CD4 and 

CD8 T cell responses were defi ned using polychromatic fl ow cytometry. 

Blood mononuclear cells were stimulated with the relevant peptide pools 

and stained with IFN- � , CD4, and CD8 antibodies. (B) Correlation of the 

IFN- �  – secreting cells measured by both fl ow cytometry and ELISPOT 

assay. This comparison was performed in the 17 volunteers with vaccine-

induced T cell responses in the range of 100 SFU/10 6  cells or above.   
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  Figure 5.     Functional profi le of vaccine-induced CD4 and CD8 T cells . (A) Flow cytometry profi les of CD4 T cells and CD8 T cells able to mediate 

degranulation activity and to secrete IL-2, IFN- � , and TNF- �  are shown. Blood mononuclear cells were stimulated with the relevant peptide pools for 16 h 

and stained as described in Materials and methods. The functional profi les of both CD4 and CD8 T cells were performed on blood mononuclear cells of 

volunteers EU11, ES02, and ES08 that were vaccinated with DNA C plus NYVAC C. Volunteers ES02 and ES08 also exhibited Gag-specifi c in addition to 

Env-specifi c CD4 and CD8 T cell responses. With regard to the proliferation, cells were labeled with CFSE and stimulated with the relevant peptide pools, 

and proliferation was measured at day 6. (B) Functional composition of CD4 and CD8 T cell responses. The results shown were generated from the deter-

minations in 11 responders. All the possible combinations of the responses are shown on the x axis, whereas the percentages of the functionally distinct 
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cell populations within the total CD4 and CD8 T cell populations are shown on the y axis. Responses are grouped and color-coded on the basis of the 

number of functions. The pie chart summarizes the data, and each slice of the pie corresponds to the fraction of CD4 or CD8 T cells with a given number 

of functions within the total CD4 and CD8 T cell populations. Bars correspond to the fraction of different functionally distinct T cell populations within 

total CD4 and CD8 T cell populations. Mean and standard errors are also shown.   

   

Of note, the polychromatic fl ow cytometry analysis allowed 
us to provide an independent confi rmation of the responses 
assessed using the IFN- �  ELISPOT assay. The frequencies of 
IFN- �  – secreting T cells measured by both assays were com-
pared in 17 responders, with a very high correlation between 
the frequencies measured by the ELISPOT assay and by fl ow 
cytometry ( Fig. 4 B ). 

 Functional profi le of vaccine-induced CD4 and CD8 

T cell responses 

 The panel of T cell functions analyzed included IL-2, TNF- � , 
and IFN- �  secretion and proliferation for both CD4 and 
CD8 T cells, and degranulation activity for CD8 T cells. 
Env- and Gag-specifi c CD4 and CD8 T cell functions were 
analyzed using polychromatic fl ow cytometry ( Fig. 5 ).  T cell 
functions were analyzed after stimulation with Env- or Gag-
derived peptide pools. Representative functional profi les are 
shown in responders EU11, ES02, and ES08 vaccinated with 
DNA C plus NYVAC C ( Fig. 5 A ). These three responders 
had both vaccine-induced CD4 and CD8 T cell responses, 
and responders ES02 and ES08 also had Gag-specifi c in addi-
tion to Env-specifi c responses. 

 The simultaneous analysis of three functions allowed the 
assessment of the quality of the vaccine-induced CD4 and 
CD8 T cell responses. On the basis of the analysis of IL-2 and 
IFN- �  and TNF- �  secretion, seven distinct Env- and Gag-
specifi c CD4 T cell populations were identifi ed ( Fig. 5 B ). 
Vaccine-induced CD4 T cell responses had a polyfunctional 
profi le, with ~60% of CD4 T cells exhibiting two or three 
functions ( Fig. 5 B ). Furthermore, vaccine-induced CD4 T cells 
effi  ciently proliferated after stimulation with the Env- and 
Gag-derived peptide pools ( Fig. 5 A ). 

 Similar to CD4 T cells, vaccine-induced CD8 T cells 
were highly polyfunctional. The simultaneous measure of 
four functions (IL-2, IFN- � , and TNF- �  secretion, and de-
granulation activity) allowed the identifi cation of 15 function-
ally distinct CD8 T cell populations. About 70% of vaccine-
induced Env- and Gag-specifi c CD8 T cells exhibited more 
than one function ( Fig. 5 B ). Finally, vaccine-induced CD8 
T cells were endowed with proliferation capacity after Env- and 
Gag-specifi c stimulation ( Fig. 5 A ). 

 Collectively, these results indicated that vaccination with 
DNA C plus NYVAC C induced polyfunctional Env- and 
Gag-specifi c CD4 and CD8 T cell responses. 

 Phenotypic profi le of vaccine-induced CD4 and CD8 

T cell responses 

 Phenotypic analysis of vaccine-induced T cell responses was 
performed in volunteer ES26 vaccinated with DNA C plus 
NYVAC C. Both Env-specifi c CD4 and CD8 T cells were 

induced after vaccination. Blood mononuclear cells of volun-
teer ES26 were collected at diff erent time points (weeks 24, 
28, and 48), stimulated with Env peptide pools for 16 h, and 
stained with CD4, CD8, CD45RA, CCR7, IL-2, and IFN-
 �  antibodies. Previous studies have shown that CD45RA and 
CCR7 defi ne functionally distinct populations of memory 
antigen-specifi c CD4 and CD8 T cells ( 20 – 23 ). The totality 
(single IL-2 plus dual IL-2/IFN- �  plus single IFN- � ) of Env-
specifi c CD4 T cells was CD45RA  �  CCR7  �  , and the phe-
notypic profi le and percentage of Env-specifi c CD4 T cells 
remained unchanged over time ( Fig. 6 ).  

 The Env-specifi c CD8 T cells (dual IL-2/IFN- �  plus 
single IFN- � ) were almost equally distributed within 
CD45RA  �  CCR7  �   and CD45RA + CCR7  �   cell populations 
at week 24 ( Fig. 5 ). However, there was a progressive loss of 
the CD45RA  �  CCR7  �   Env-specifi c CD8 T cell population 
over time, and ~90% of the vaccine-induced CD8 T cells were 
CD45RA + CCR7  �   at week 48 ( Fig. 6 ). 

 Of note, the changes in phenotype and in the percentage 
of Env-specifi c CD8 T cells were observed only for vaccine-
induced CD8 T cells because the phenotype and the percent-
age of EBV/CMV-specifi c CD8 T cell responses assessed in 
blood samples collected at the same time points in volunteer 
ES26 remained unchanged (Fig. 6). Similar results were ob-
tained in three additional volunteers. 

 Epitope mapping of vaccine-induced CD4 and CD8 

T cell responses 

 Identifi cation of epitopes recognized by vaccine-induced 
CD4 and CD8 T cell populations was performed in nine vol-
unteers, eight belonging to the DNA C plus NYVAC C arm 
and one to the NYVAC C – alone arm. Characterization was 
limited to the Env-specifi c responses. After the initial screen-
ing using Env-derived peptide pools, identifi cation of the 
peptides recognized was performed by testing the reactivity of 
blood mononuclear cells against the relevant peptides in a ma-
trix setting using the IFN- �  ELISPOT assay. After this analy-
sis, 19 diff erent Env-derived peptides were identifi ed in the 
nine volunteers studied, and further characterization of the 
vaccine-induced CD4 and CD8 T cell populations recogniz-
ing these peptides was performed using polychromatic fl ow 
cytometry ( Table I  and  Fig. 7 ).  A variable number of peptides, 
ranging from 2 to 8, were recognized in each volunteer, with 
a mean of 4.2 peptides ( Fig. 7 A ). 10 out of 19 peptides identi-
fi ed in the nine volunteers corresponded to epitopes that have 
already been described either in subjects with chronic HIV-1 
infection or in vaccine studies performed in mice and humans 
( Table I ). However, nine potential novel epitopes were iden-
tifi ed that have not been previously  described or reported, ac-
cording to the Los Alamos database ( Table I ) ( 24 ). 
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i.e., 1 yr after the last immunization. The protocol was amended 
only in Lausanne and, after institutional review board approval, 
blood was collected at week 72 from volunteers that were 
originally enrolled at the Lausanne site, which had a positive 
IFN- �  ELISPOT response at week 48. We analyzed 13 vol-
unteers (11 belonging to the DNA C plus NYVAC C group 
and 2 to the NYVAC C – alone group) at week 72. None of 
the two volunteers belonging to the NYVAC C alone group 
had a positive IFN- �  T cell response at week 72 ( Fig. 8 ).  
9 out of the 11 volunteers belonging to the DNA C plus 
NYVAC C group had a positive IFN- �  T cell response at 
week 72. Of interest, the magnitude of the IFN- �  T cell 
response observed at week 72 was not signifi cantly diff erent 
(P = 0.09) from that measured in the eight volunteers with 
responses at all three time points ( Fig. 8, A and B ). 

 The changes in the composition of vaccine-induced, 
functionally distinct CD4 and CD8 T cell responses were 
compared at weeks 28, 48, and 72 by performing the simul-
taneous measures of multiple functions using polychromatic 
fl ow cytometry. 

 Representative fl ow cytometry profi les of vaccine-induced 
Env-specifi c CD4 and CD8 T cells recognizing individual 
peptides are shown in  Fig. 7  (B and C). In particular, we had 
the opportunity to perform fi ne epitope mapping of peptide 
LTKKNYSENSSEYYR recognized by CD8 T cells in seven 
volunteers (six belonging to the DNA C plus NYVAC C 
group and one to the NYVAC C – alone group). By using a 
set of overlapping peptides, we demonstrated that the epitope 
recognized by vaccine-induced CD8 T cells corresponded 
to the following sequence: YSENSSEYY ( Fig. 7 C ). Two 
representative examples of the YSENSSEYY epitope mapping 
in volunteers ES26 and ES2 are shown in  Fig. 7 C . The 
YSENSSEYY epitope was restricted by HLA-A*0101, as 
demonstrated by the detection of a vaccine-induced well-
defi ned population of YSENSSEYY-specifi c CD8 T cells 
using the relevant HLA-A*0101 – YSENSSEYY pentameric 
complex ( Fig. 7 D ). 

 Durability of vaccine-induced T cell responses 

 The duration of the study in the original protocol was 48 wk. 
However, to gain insights on the long-term durability of the 
vaccine-induced T cell response, the protocol was subse-
quently amended to assess the T cell responses at week 72, 

  Figure 6.     Phenotypic analysis of vaccine-induced CD4 and CD8 T 

cells.  Blood mononuclear cells obtained from volunteer ES26, that was vac-

cinated with DNA C plus NYVAC C, were stimulated with Env-derived peptide 

pools or with CMV/EBV-derived peptides for 16 h and stained with IL-2, IFN- � , 

CD4, CD8, CD45RA, and CCR7 antibodies. The blue dots indicate Env-

specifi c (IL-2 plus IFN- � ) vaccine-induced CD4 T cells. The red dots indicate 

Env-specifi c (IL-2 plus IFN- � ) vaccine-induced CD8 T cells. The green dots 

indicate CMV/EBV-specifi c (IL-2 plus IFN- � ) vaccine-induced CD8 T cells.   

  Figure 7.     Breadth of vaccine-induced T cell responses against Env.  

(A) Number of peptides/epitopes recognized in nine volunteers. Env-spe-

cifi c T cell responses were identifi ed using peptide pools in preliminary 

experiments. The peptides of the relevant pool were then organized in 

a matrix setting to perform peptide/epitope mapping. Peptide/epitope 

mapping was performed combining the IFN- �  ELISPOT assay with poly-

chromatic fl ow cytometry. (B) Example of a peptide/epitope mapping 

recognized by CD4 T cells. (C) Epitope mapping of the YSENSSEYY CD8 T 

cell epitope in two representative volunteers vaccinated with DNA C plus 

NYVAC C. (D) YSENSSEYY-specifi c CD8 T cells after staining with the rel-

evant HLA-A*0101 – YSENSSEYY pentameric complex.   
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NYVAC C – alone group, whereas a large percentage (75%) 
of volunteers had measurable IgG anti-gp140 antibodies in 
the DNA C plus NYVAC C group (P = 0.007; not depicted). 
In addition to the diff erences in the percentage of responders 
between the two study groups, the magnitude of the anti-
body response was also signifi cantly greater in the DNA C 
plus NYVAC C group compared with the NYVAC C – alone 
group (P = 0.006; not depicted). Vaccine-induced antibodies 
failed to show any neutralizing activity in the three neutraliz-
ing assays tested (see Materials and methods for the descrip-
tion of the assays; not depicted). 

  DISCUSSION  

 Previous prime-boost clinical studies of candidate T cell vac-
cines for HIV have suggested that adenovirus vectors were 
more immunogenic than poxvirus vectors in terms of cellular 
immune responsiveness. In the EV02 trial, we demonstrate 
that DNA plus NYVAC is a highly immunogenic prime-boost 
regimen, with durable responses up to 1 yr after vaccination. The 
primary analysis of the vaccine-induced T cell responses was 

 No substantial changes were observed in the frequency of 
the seven functionally distinct CD4 T cell populations over 
time ( Fig. 8 C ). Only a drop in the range of 30% was ob-
served in the polyfunctional (IL-2/IFN- � /TNF- �  and IL-2/
TNF- � ) CD4 T cell populations between weeks 28 and 48, 
whereas the frequency of these populations remained stable 
between weeks 48 and 72 ( Fig. 8 C ). 

 With regard to the vaccine-induced CD8 T cell re-
sponses, a decrease in the frequency of functionally distinct 
CD8 T cell populations was observed over time ( Fig. 8 C ). 
In particular, three CD8 T cell populations (dual IFN- � /
TNF- � , dual CD107a/ IFN- � , and single IFN- � ) decreased 
 > 50% between weeks 28 and 72 ( Fig. 8 C ). 

 Vaccine-induced antibody response against gp-140 

 Vaccine-induced IgG antibodies against gp140 CN54 were 
assessed at diff erent time points during the immunization 
regimen. The induction of IgG anti-gp140 CN54 was as-
sessed in an ELISA assay. Only a small number of volunteers 
(25%) had a measurable antibody response at week 26 in the 

 Table I. List of env epitopes 

HLA restriction Sequence Region Previous description  a  

Class II VGNLWVTVYYGVPVW  C1/C2 VYYGVPVWKEA

 WVTVYYGVPVWKGAT

GATTTLFCASDAKAY  C1/C2 Not described

 TTLFCASDAKAYDTE

THACVPADPNPQEMV C1/C2 CVPTDPNPQEVV

ENVTENFNMWKNEMV  C1/C2 PQEVVLVNVTENFNMWKNDMV

 ENFNMWKNEMVNQMQ

EMVNQMQEDVISLWD C1/C2 Not described

CVKLTPLCVTLECRN C1/C2 Not described

NCSFNATTVVRDRKQ  V1/V2 Not described

 NATTVVRDRKQTVYA

VYALFYRLDIVPLTK  V1/V2 Not described

 FYRLDIVPLTKKNYS

INCNTSAITQACPKV C3 KLTSCNTSVITQACPKVSFE

FDPIPIHYCTPAGYA C3 PKVSFEPIPIHYCAPAGFAILKCNN

PKVTFDPIPIHYCTP  C3 PKVSFEPIPIHYCAPAGFAILKCNN

 FDPIPIHYCTPAGYA

TGDIIGDIRQAHCNI V3/C4 GRAFVTIGKIGNMRQAHCNISRAKWNAT

SSSIITIPCRIKQII V4/C5 Not described

ITIPCRIKQIINMWQ  C5 DTITLPCRIKQIINMWQKVG

 CRIKQIINMWQEVGR

VGRAMYAPPIKGNIT    C5 VGKAMYAPPISGQIRCSSNITGLL

 MYAPPIKGNITCKSN

  PIKGNITCKSNITGL

ETFRPGGGDMRNNWR C5 FRPGGGDMRDNWRSEL

ELYKYKVVEIKPLGV  C5 Not described

 YKVVEIKPLGVAPTT

Class I EIKPLGVAPTTTKRR  C5 Not described

 LGVAPTTTKRRVVER

HLA-A*01 YSENSSEYY V1/V2 Not described

  a  According to Los Alamos Database (reference  24 ).
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in the IFN- �  ELISPOT assay after a conventional overnight 
stimulation of the blood mononuclear cells, with the panel of 
peptide pools encompassing Env, Gag, Pol, and Nef of HIV-1 
clade C CN54. 

 The majority (18 out of 20, 90%) of the volunteers immu-
nized with the DNA C plus NYVAC C regimen had a positive 
response using the IFN- �  ELISPOT assay at weeks 26 or 28, 
the primary endpoints of the study. The percentage of responders 
in the NYVAC C – alone group was 33%. These results were 

performed using a validated IFN- �  ELISPOT assay. Poly-
chromatic fl ow cytometry was used to characterize the pheno-
typic and the functional profi les of the vaccine-induced T 
cell populations. Furthermore, both the IFN- �  ELISPOT as-
say and polychromatic fl ow cytometry were instrumental in 
analyzing the breadth of the vaccine-induced T cell responses 
and for performing epitope mapping. All the analyses have 
been performed on frozen blood mononuclear cell samples, 
and the evaluation of the immunogenicity has been assessed 

  Figure 8.     Durability of vaccine-induced T cell responses.  (A) Monitoring of the T cell responses in representative volunteers of the two study 

groups. Only volunteers with positive T cell responses in the IFN- �  ELISPOT assay at week 48 were retested at week 72, which corresponded to 1 yr after 

the completion of the vaccination regimen. (B) Mean frequencies of IFN- �  – secreting cells/10 6  blood mononuclear cells at weeks 28, 48, and 72 in the 

eight volunteers within the DNA C plus NYVAC C group with a positive T cell response at weeks 72, 48, and 28, and mean frequencies of IFN- �  – secreting 

cells/10 6  blood mononuclear cells in the two volunteers within the NYVAC C group alone with responses at weeks 48 and 28. (C) Changes in the frequen-

cies of functionally distinct CD4 and CD8 T cell populations over time. The results shown were generated from the determinations in six responders. 

The functional profi le of vaccine-induced CD4 and CD8 T cells was assessed using polychromatic fl ow cytometry as described in Materials and methods. 

The functional composition of CD4 and CD8 T cell responses was determined as described in Fig. 5 B. All the possible combinations of the responses are 

shown on the x axis, whereas the percentage of the functionally distinct CD4 and CD8 T cell populations at weeks 28, 48, and 72 are shown on the y axis.   
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vaccines including poxviruses seems to diff erentiate these lat-
ter from Ad5-based candidate vaccines and the DNA plus 
Ad5 vaccine regimen that appear to induce more balanced 
CD4 and CD8 T cell responses (unpublished data). Three 
factors may have contributed to the dominant CD4 T cell and 
Env-specifi c responses: (a) the DNA priming that seems to 
favor the development of the CD4 T cell response; (b) the 
monovalent nature of the NYVAC C construct in which 
Env, Gag, Pol, and Nef are expressed within the same vector; 
and (c) the construction of the NYVAC vector with regard to 
Env, which is expressed in a secreted form. The use of multi-
valent instead of monovalent DNA and Ad5-based vaccines 
may reduce the Env immunodominance in favor of more bal-
anced Env, Gag, and Pol responses. The secreted form of Env 
is likely to be responsible for favoring the exogenous pathway 
of antigen presentation and thus stimulation of CD4 T cells. 

 In natural infection studies, it has been reported that 
Gag-specifi c CD8 T cell responses are associated with better 
control of HIV disease in individuals with chronic HIV-1 
infection, whereas Env-specifi c CD8 T cell responses are as-
sociated with poor control ( 25 ). However, it is not clear from 
this study whether (a) Gag-specifi c CD8 T cell responses are 
the cause or rather the eff ect of lower levels of virus replication, 
and (b) results generated in the nonhuman primate model 
have shown that the presence of Env- and Gag-specifi c vac-
cine-induced T cell responses in animals immunized with DNA 
plus Ad5 expressing Env and Gag conferred better protection 
from disease after infection compared with animals immu-
nized with DNA plus Ad5 Gag-expressing vaccines ( 26 ). 

 The DNA C plus NYVAC C vaccine regimen induced 
CD4 T cell responses in 100% of the immunized individuals 
and CD8 T cell responses in 50% of vaccines. In this regard, 
it is important to mention that the presence of the vaccine-
induced CD4 T cell responses strongly correlated with the 
containment of viremia in macaques exposed to the highly 
pathogenic SIV mac251  after immunization with the DNA-
SIV- gag-env  plus NYVAC-SIV- gag-pol-env  ( 27 ). Therefore, 
vaccine-induced CD4 T cell responses may be eff ective in 
the attenuation of HIV disease. 

 Env- and Gag-specifi c CD4 and CD8 T cell responses 
induced by DNA C plus NYVAC C vaccination were poly-
functional. Recently ( 8, 10, 11 ), the term polyfunctional has 
been used to defi ne T cell responses that, in addition to typical 
eff ector functions such as secretion of IFN- � , TNF- � , and 
MIP-1 � , as well as cytotoxic activity, comprise T cell popula-
tions also able to secrete IL-2 and retain antigen-specifi c pro-
liferation capacity, whereas the term  “ only-eff ector ”  defi nes 
T cell responses/populations with typical eff ector functions 
but lacking IL-2 and proliferation capacity. Of interest, several 
studies ( 11, 28 – 31 ) have demonstrated that polyfunctional and 
not only-eff ector T cell responses were associated with pro-
tective antiviral immunity ( 32 ). The DNA C plus NYVAC C 
immunization therefore induced the best functional profi le of 
virus-specifi c CD4 and CD8 T cells capable of controlling 
virus replication in several chronic virus infections, such as 
cytomegalovirus, Epstein-Barr virus, herpes simplex virus, and 

superior to previous studies that have evaluated the immuno-
genicity of DNA plus poxvirus (MVA) vaccine regimens in 
which the percentage of responders was 17% (low dose 
DNA) and ~40% (high dose DNA) when conventional over-
night stimulation was performed to analyze IFN- �  – secreting 
cells (as used in EV02) ( 16, 17 ). Responses were observed in 
the eight volunteers in the high dose DNA plus MVA study 
only using a cultured ELISPOT assay (5-d stimulation) able 
to detect weak vaccine-induced T cell responses ( 16, 17 ). 
The immunogenicity observed in EV02 was also higher than 
that observed in studies using Ad5-based vaccine strategies 
and in the same range of studies using DNA plus Ad5 regimens 
(unpublished data). 

 Vaccine-induced IFN- �  – secreting cells were detected 
only in 7 out of 20 volunteers after DNA C vaccination and 
before NYVAC C boosting. However, despite the fact that 
vaccine-induced T cell responses were not measurable in the 
majority of volunteers after the two DNA vaccinations, the 
DNA priming was clearly responsible for the substantial in-
crease in the immunogenicity and magnitude (see below) of 
the vaccine-induced T cell responses in the DNA C plus 
NYVAC C group compared with the NYVAC C – alone group. 
These results indicate that the assessment of immunogenicity 
after immunization with DNA alone is not a reliable measure 
of the priming ability of DNA candidate vaccines. 

 Collectively, these results indicate that the DNA C plus 
NYVAC C regimen is superior to the NYVAC C – alone 
regimen and has a degree of immunogenicity comparable to 
that of other promising candidate vaccines that have entered 
large phase II/IIB clinical studies ( 3, 4, 13 ). 

 The magnitude of the vaccine-induced T cell responses as 
measured by the frequency of IFN- �  – secreting cells using 
the ELISPOT assay was substantially higher (three- to four-
fold) in the DNA C plus NYVAC C group compared with 
the NYVAC C – alone group. The magnitude of the vaccine-
induced T cell responses observed after DNA C plus NYVAC C 
immunization was superior to that observed in previous DNA 
plus MVA studies ( 17 ) and comparable to that of Ad5 candi-
date vaccines and to the DNA plus Ad5 vaccine combination 
(unpublished data). 

 The vaccine-induced T cell responses were predominantly 
(in 100% of responders) mediated by CD4 T cells. However, 
CD8 T cell responses were also found in 47% of responders. 
Furthermore, both vaccine-induced CD4 and CD8 T cell 
responses were predominantly directed against Env (the me-
dian magnitude of Env T cell responses in the DNA C plus 
NYVAC C group vs. the NYVAC C – alone group was 299 and 
131 SFU/10 6  cells, respectively). T cell responses against Gag, 
Pol, and Nef were detected in 48% of volunteers and had 
lower magnitude (the median magnitude of Gag-, Pol-, and 
Nef-specifi c T cell responses was ~100 SFU/10 6  cells). 

 The fi nding of predominant CD4 T cell responses after 
immunization with DNA C plus NYVAC C is consistent 
with previous studies ( 3, 4, 17 ) investigating the T cell re-
sponses induced by poxvirus candidate vaccines. The pre-
dominant CD4 T cell response after immunization with 
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virus candidate vaccine, NYVAC, in combination with DNA 
is highly immunogenic, induces vigorous and broad T cell 
responses, comprising of both CD4 and CD8 T cell responses, 
which are polyfunctional, and more importantly, this vaccine 
regimen induces long-lasting T cell immunity. 

 These promising results support the further development 
of the poxvirus platform and the move of the DNA C plus 
NYVAC C vaccine regimen into larger clinical trials. 

 MATERIALS AND METHODS 
 DNA immunogens GagPolNef (GPN) and Env.   RNA- and codon-

optimized GPN and Env gene vector inserts were designed by GENEART 

AG using the GeneOptimizer software package. Clade B/C ’  GPN and Env 

(gp120) sequences were designed based on sequence information derived 

from a 97CN54 provirus clone (sequence submitted to GeneBank) ( 35 ). 

The HIV C clade isolate CRF_70 B/C ’  97CN54 was collected from Sinki-

ang Province in China, biologically characterized, and sequenced in a col-

laboration of China CDC (the Chinese Academy for Preventive Medicine) 

and the European Commission – funded research cluster CHIVAC 1 – 3 in an 

attempt to generate region-specifi c candidate vaccines. This and subse-

quently detected, closely related variants represent at least 60% of HIV infec-

tions in China and are anti-genetically also close to other C clade isolates 

from India and South and East Africa. The CN54 Env construct comprises 

1,500 nucleotides encoding an artifi cial signal peptide (MDRAKLLLLL 

LLLLLPQAQ), followed by gp120 CN54 (nucleotides 5,673 – 7,109). The 

5 �  part of the 4,254 nucleotide CN54 GPN polygene construct encodes the 

group-specifi c antigen (nucleotides 167 – 1,651) with a G2A modifi cation 

rendering this polyprotein myristylation defi cient. The Gag coding sequence 

is followed by a 952-bp (nucleotides 1,444 – 2,406) fragment encoding the 

5 �  part of  pol , including a D577N mutation leading to an inactivation of the 

viral protease. A 618-bp fragment encoding a scrambled Nef variant (5 �  end 

of nucleotides 8,170 – 8,469 linked to 3 �  end of nucleotides 8,470 – 8,787) was 

fused to the 3 �  end of  pol -coding sequence replacing the active site of the re-

verse transcription. The 3 �  pol reading frame (nucleotides 2,527 – 3,591) 

lacking the integrase gene was extended by the 3 �  end of the scrambled Nef 

gene. The sequence stretch (nucleotides 2,407 – 2,514) encoding the active 

site of the reverse transcription (amino acids 1,382 – 1,417 in GPN) was trans-

located to the 3 �  end of the polygene construct, resulting in an open reading 

frame encoding the ~160-kD nonglycosylated artifi cial GPN polyprotein. 

Both genes were placed under direct control of CMV IE promoter/

enhancer to generate pORT1a-GPN and pORT1a-gp120, lacking any anti-

biotic resistance gene and instead using a repressor titration system for plasmid 

selection (Cobra Biomanufacturing Plc.) ( 36 ). The genetic stability of both 

plasmids was evaluated in a DH1lacdapD host strain up to 39 cell generations 

and controlled by double-strand DNA sequencing (GENEART AG). 

 Construction of recombinant NYVAC vector.   The NYVAC vector 

expressing  Gag/Pol/Nef  and  Env  of clade C HIV-1 97CN54 was used as de-

scribed previously ( 35 ). Plasmids containing codon-optimized clade C HIV-1 

 gagpolnef  and  gp120  genes (pMA60gp120C/gagpolnef-C-14) were used. 

Functional expression of the donor genes has been demonstrated by Western 

blot analysis of the proteins produced by the premaster seed lot. Expression 

levels of the  GagPolNef  polygene and the  Env  gene were similar. The de-

scription of the recombinant NYVAC vector expressing Env, Gag, Pol, and 

Nef has been described elsewhere ( 37 ). The characteristics and immuno-

genic potential of NYVAC C has been documented in mice ( 37 ). 

 DNA and NYVAC HIV-1 clade clinical lots.   Good manufacturing 

production clinical lots of DNA C and NYVAC C were manufactured by 

Cobra Biomanufacturing Plc. and sanofi  pasteur. 

 Immunization schedule.   At weeks 0 and 4, one group was  “ primed ”  with 

DNA, and one group received nothing. At weeks 20 and 24, all volunteers 

were immunized with NYVAC. The DNA pORT-gp120 and pORT-gpn 

HIV-1 in patients with nonprogressive disease ( 8, 10, 33 ). These 
data are consistent with our previous study demonstrating that 
vaccine-induced CD8 T cells after vaccination with DNA C 
plus NYVAC C were highly polyfunctional and that almost 
75% of these cells had four or fi ve functions based on IFN- � , 
TNF- � , MIP-1 � , IL-2, and CD107a ( 34 ). 

 The polyfunctional vaccine-induced CD4 T cell popula-
tions were CD45RA  �  CCR7  �  , a phenotype of cells with ef-
fector functions but also with the ability to secrete IL-2 and 
endowed with proliferation capacity ( 20 – 23, 29, 30, 33 ). The 
phenotype of the vaccine-induced CD4 T cells remained un-
changed over time. The vaccine-induced CD8 T cells were 
either CD45RA  �  CCR7  �   or CD45RA + CCR7  �  . This phe-
notypic profi le defi nes memory CD8 T cells at intermediate 
and advanced stages of diff erentiation and is consistent with 
our recent study using CD27 and CD45RO ( 34 ). The pres-
ence and rapid appearance after immunization of CD45RA + 
CCR7  �   CD8 T cells is of interest. This phenotype has been 
proposed to defi ne eff ector CD8 T cells at advanced stages of 
diff erentiation ( 21 ). Furthermore, virus-specifi c CD45RA + 
CCR7  �   CD8 T cells have been found in controlled chronic 
virus infections such as CMV and EBV ( 21, 29, 30 ), and a 
correlation between the percentage of this cell population 
and virus control has also been shown in HIV-1 infection ( 8 ). 
The majority of the vaccine-induced CD45RA  �  CCR7  �   
CD8 T cell population disappeared over time, whereas ~90% 
of vaccine-induced CD8 T cells were CD45RA + CCR7  �   
at week 48, 6 mo after the last immunization. Therefore, the 
DNA C plus NYVAC C vaccination likely induces the gen-
eration of a long-lived population of memory CD8 T cells. 

 Of interest, the DNA C plus NYVAC C vaccination in-
duced a broad T cell response, with a mean 4.2 epitopes rec-
ognized per volunteer. About 50% of epitopes identifi ed in 
the EV02 study have not previously been described accord-
ing to the Los Alamos database ( 24 ), and approximately two 
out of three of the total epitopes identifi ed were located in 
constant regions. 

 A critical component of the eff ectiveness of vaccines is their 
ability to induce long-lasting immunity. The results obtained 
in EV02 study after vaccination with DNA C plus NYVAC C 
are extremely promising. More than 70% of volunteers have still 
measurable vaccine-induced T cell responses 1 yr after the last 
vaccination and, more importantly, the magnitude of the T cell 
responses is not substantially changed compared with 1 mo 
after the completion of the vaccination regimen. 

 Poxvirus vectors have traditionally represented an inter-
esting platform in the HIV vaccine arena because of (a) their 
large and successful use in the veterinary fi eld, (b) extensive 
safety data in humans, (c) their use in vaccine platforms for 
other infectious diseases and cancer, and (d) their facility to 
be manipulated and to be inserted with large gene fragments 
( 4 ). However, disappointing results on their immunogenicity 
in humans had seriously cast doubt on the validity of the 
poxvirus platform and the rationale for their further develop-
ment in the HIV vaccine arena. The present data generated 
within the EV02 study have clearly demonstrated that a pox-
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cyte-gated events ranged between 10 5  and 10 6  in the fl ow cytometry experi-

ments shown. With regard to the criteria of positivity of ICS, the background 

in the unstimulated controls never exceeded 0.01 to 0.02%. An ICS to be 

considered positive had to have a background of  < 20% of the total percent-

age of cytokine +  cells in the stimulated samples. 

 Ex vivo proliferation assay.   After an overnight rest, cryo-preserved blood 

mononuclear cells were washed twice, resuspended at 10 6 /ml in PBS, and 

incubated for 7 min at 37 ° C with 0.25  � M CFSE (Invitrogen) as described 

previously ( 29 ). The reaction was quenched with 1 vol of FCS, and cells 

were washed and cultured in the presence of 0.5  � g/ml  � CD28 antibody 

(BD Biosciences). 1 – 2  ×  10 6  cells were then stimulated with HIV-1 peptide 

or peptide pools (20 ng/ml of each peptide). SEB stimulation (40 ng/ml) 

served as a positive control. At day 5, cells were harvested and stained with 

CD4-PerCP-Cy5.5 and CD8-APC. Cells were fi xed with CellFix (BD Bio-

sciences) and acquired on an LSRII. The number of lymphocyte-gated 

events ranged between 10 5  and 10 6 . 

 Analysis of antibody responses.   The induction of HIV-specifi c antibod-

ies was assessed using an ELISA assay. In brief, 1  μ g/ml of recombinant 

gp140 of CN54 (provided by S. Jeff s, Imperial College, London, UK) in 

100 mM Na 2 HCO3, pH 9.6, was coated on plates (Maxisorp; Nunc) for one 

night at 4 ° C. After elimination of the solution and blocking step with PBS, 

5% nonfat dry milk, serum dilutions made in PBS, 5% milk, and 3% Tween 

20 (beginning at 1/20) were added for 1 h at 37 ° C. Antibodies bound to the 

coated gp140 were revealed by an anti – human IgG – horseradish peroxidase 

conjugate (1/25 000, A1070; Sigma-Aldrich). The inhibitory activity of 

antibodies was assessed with three diff erent assays. First, a multiple-round 

neutralization assay on PBMCs was performed with the homologous primary 

isolate CN54 using experimental conditions described previously ( 40 ). Second, 

antibody eff ects in a single-cycle infection of primary isolate Bx08 in the 

 engineered cell line (TZMbl) was measured as reported ( 41 ). Third, the 

inhibition by antibodies of HIV-1 Bal multiplication in macrophages was 

determined according to the method developed previously ( 42 ). 

 Statistical analysis.   An ELISPOT result was defi ned as positive if the num-

ber of SFU was  ≥ 55 SFU/10 6  cells and greater or equal to fourfold the nega-

tive control. The primary immunogenicity endpoint was a positive ELISPOT 

result at weeks 26 and 28. Each participant was classifi ed as a responder if 

there was at least one positive response against any of the HIV peptides at 

weeks 26 or 28, and as a nonresponder if responses at these weeks were all 

negative. The magnitude of a ELISPOT response was described as the sum 

of SFU of all positive responses and — assuming that there is no overlap in 

response across the eight peptide pools — expressed per 10 6  cells, either by 

peptide pool or overall, without subtraction of background. An ICS was 

considered as positive if background was  < 20% of the total percentage of cy-

tokine +  cells in the stimulated samples. Of note, the background in the un-

stimulated controls never exceeded 0.01 to 0.02%. An antibody response was 

classifi ed as present if the OD measured with sera collected after immuniza-

tion was at least three times greater than the OD obtained with the corre-

sponding preimmune serum. 

 Comparisons of categorical variables (e.g., the primary endpoint) were 

made using Fisher ’ s exact test. The magnitude of an ELISPOT response and 

other continuous variables was compared between groups using nonpara-

metric statistical tests (magnitude over time, paired Wilcoxon or Friedman 

test; comparison between randomization groups, Mann-Whitney test). For 

the comparison of fl ow cytometry and ELISPOT assay in measuring the 

frequency of IFN- �  – secreting T cells, generalized estimating equations 

modeling was used to consider within-participant dependencies. The level 

of statistical signifi cance was 5% for all analyses, without adjustment for 

multiple comparisons. 

 We thank Ms. Song Ding from the EuroVacc Foundation for the support in the 

management of the trial. Special thanks to Drs. Marc Girard, Jaap Goudsmit, and 

Michel Klein for their key contributions in the EuroVacc EU-funded program. We are 

plasmids were mixed before administration in an equimolar fashion (fi nal total 

DNA concentration, 1.05 mg/ml). Volunteers were injected i.m. with 2 ml 

DNA in each upper leg (4.2 mg/4 ml total per person). The NYVAC vector 

expressing GPN and Env was administered i.m. in the left upper arm (10 7.7  

pfu/ml total). The study was approved by the institutional review boards of the 

Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland, 

and of St Mary ’ s Hospital, Imperial College, London. 

 Synthetic peptides and peptide – MHC class I complex.   All peptides 

used in this study were HPLC purifi ed ( > 80% purity). Overlapping peptides 

(15 mers with 11 amino acids overlap;  n  = 474) spanning the entire  Gag/Pol/

Nef  polygene, and the Env clade C of HIV-1 97CN54 (Synpep Corpora-

tion) was grouped in eight pools as follows: Gag1 60 peptides (Cg1-Cg240), 

Gag2 61 peptides (Cg244-Cg486), Gag/Pol 60 peptides (Cgp485-Cp721), 

Pol1 61 peptides (Cp725-Cpn817 and Cnp1017-Cp1161), Pol2 61 peptides 

(Cp1165-Cp1403), Nef 49 peptides (Cn838-Cnp1030), Env1 49 peptides 

(CN9-CN249), and Env2 63 peptides (CN253-CN485). In addition, Env 

peptides were either rearranged in a matrix setting for the fi ne epitope map-

ping analyses or used as single peptides. NYSENSSEY, YSENSSEYY, and 

SENSSEYYR were obtained from the peptide facility at the University of 

Lausanne. Furthermore, a set of peptides ( n  = 28) most frequently recog-

nized in CMV, EBV, and fl u infection (CEF pool) ( 38, 39 ) was used as an 

additional positive control. The HLA-A*0101-YSENSSEYY peptide – MHC 

pentameric complex was purchased from PROIMMUNE. 

 ELISPOT assays.   ELISPOT assays were performed at weeks 0, 5, 20, 24, 

26, 28, and 48. In addition, 13 volunteers recruited in Lausanne were also 

evaluated at week 72. ELISPOT assays were performed as per the manufac-

turer ’ s instructions (BD Biosciences). In brief, cryo-preserved blood mono-

nuclear cells were rested for 8 h at 37 ° C, and then 200,000 cells were 

stimulated with peptide pools (1  μ g of each single peptide) in 100  μ l of com-

plete media (RPMI plus 10% FBS) in quadruplicate conditions. Media only 

was used as negative control. 200 ng/ml of staphylococcal enterotoxin B 

(SEB) was used as a positive control on 50,000 cells, and stimulation with the 

CEF pool (on 200,000 cells) was used as an additional (antigen-specifi c) posi-

tive control. Results are expressed as the mean number of SFU/10 6  cells from 

quadruplicate assays. Only cell samples with  > 80% viability after thawing 

were analyzed, and only assays with  < 50 SFU/10 6  cells for the negative con-

trol and  > 500 SFU/10 6  cells after SEB stimulation were considered valid. 

 Flow cytometry analysis.   Cryo-preserved blood mononuclear cells (1 – 2  ×  

10 6 ) were stimulated overnight in 1 ml of complete media containing 1 � l/ml 

Golgiplug (BD Biosciences) and 0.5  � g/ml  � CD28 antibodies (BD Biosci-

ences) as described previously ( 29 ). For stimulation of blood mononuclear 

cells, individual peptides or peptide pools were used at 1  μ g/ml for each pep-

tide. SEB stimulation (200 ng/ml) served as positive control. For functional 

analyses (i.e., intracellular cytokine staining [ICS] and assessment of the de-

granulation activity/CD107a mobilization), the following antibodies were 

used in various combinations: CD4-FITC, -PerCP-Cy5.5, or -PB; CD8-

PerCP-Cy5.5, -PB, or APC-Alexa 700; CD3-ECD; CD14-PB; CD16-PB; 

CD19-PB; IFN- � -FITC or -APC; IL-2-PE or -APC; TNF- � -FITC or 

-PECY-7; and CD107a-FITC or -PE. All antibodies were from BD Biosci-

ences, except CD8-APC-Alexa 700 (VWR International AG) and CD3-ECD 

(Beckman Coulter). Furthermore, dead cells were excluded using the violet 

LIVE/DEAD stain kit (Invitrogen). In addition, for phenotypic analyses, the 

following antibodies were used: CCR7-FITC, -APC, or -APC-Alexa-647; 

CD45RA-ECD or -PerCP; and CD127-PE or -APC-Alexa-647. CD45RA-

ECD and CD127-PE were from Beckman Coulter. At the end of the stimu-

lation period, cells were washed, permeabilized (FACS Perm 2 solution; BD 

Biosciences) and stained as described previously ( 29 ). Data were acquired on 

a FACSCalibur or on an LSRII three-laser (488, 633, and 405 nm) and ana-

lyzed using CELLQuest and DiVa software (Becton Dickinson), respectively. 

Of note, analyses were also performed using SPICE 4.1.5 software from 

Mario Roederer, Vaccine Research Center, National Institute of Allergy and 

Infectious Diseases, National Institutes of Health. The number of lympho-
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