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BRIEF DEFINITIVE REPORT

    Genetic predisposition to infection with infec-
tious agents such as oncogenic human papillo-
maviruses (HPVs) is still poorly substantiated. 
Some of these viruses (HPV 16 and 18) induce 
anogenital carcinomas, in particular carcinomas 
of the uterine cervix ( 1 – 3 ). Others (HPV5 and 
HPV8) are associated with skin carcinomas de-
veloping in patients suff ering from epidermo-
dysplasia verruciformis (EV) ( 4, 5 ). This rare 
autosomal recessive dermatosis (OMIM 226400) 
is associated with an abnormal susceptibility to a 
specifi c group of related HPV genotypes (EV 
HPVs). EV patients develop disseminated, per-
sistent, fl at wart-like or macular skin lesions early 
in childhood. Patients infected with EV HPV 
type 5 or 8 are at high risk of developing intraep-
ithelial or invasive nonmelanoma skin cancers 
in their early adult life. EV carcinomas harbor a 
high copy number of HPV genomes, which 

are maintained as episomes. It is worth stressing 
that trace amounts of EV HPV DNA are de-
tected by nested PCR approaches in a high pro-
portion of normal skin or hair follicles of healthy 
subjects and renal transplant recipients, implying 
asymptomatic infections ( 6, 7 ). We have shown 
that antibodies to HPV5 are generated in epi-
dermal repair processes observed in psoriasis and 
bullous diseases or in burn patients, pointing to 
a possible reservoir for EV HPV ( 8, 9 ). In addi-
tion, a putative role of these viruses in skin car-
cinogenesis in the general population is suspected 
( 10, 11 ). Thus, EV represents an attractive model 
to analyze host genetics factors in the outcome 
of EV HPV infection. 

 We have demonstrated that EV is caused by 
homozygous mutations in either  EVER1  or 
 EVER2  gene, which are also known as  TMC6  
and  TMC8 , respectively ( 12, 13 ). These two novel 
adjacent genes are located on 17q25.3 and en-
code integral membrane proteins that have been 
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 Epidermodysplasia verruciformis (EV) is a genodermatosis associated with skin cancers that 

results from a selective susceptibility to related human papillomaviruses (EV HPV). Invali-

dating mutations in either of two genes ( EVER1  and  EVER2 ) with unknown functions cause 

most EV cases. We report that EVER1 and EVER2 proteins form a complex and interact with 

the zinc transporter 1 (ZnT-1), as shown by yeast two-hybrid screening, GST pull-down, 

and immunoprecipitation experiments. In keratinocytes, EVER and ZnT-1 proteins do not 

infl uence intracellular zinc concentration, but do affect intracellular zinc distribution. 

EVER2 was found to inhibit free zinc infl ux to nucleoli. Keratinocytes with a mutated 

 EVER2  grew faster than wild-type keratinocytes. In transiently and stably transfected 

HaCaT cells, EVER and ZnT-1 down-regulated transcription factors stimulated by zinc (MTF-1) 

or cytokines (c-Jun and Elk), as detected with luciferase assays. To get some insight into 

the control of EV HPV infection, we searched for interaction between EVER and ZnT-1 and 

oncoproteins of cutaneous (HPV5) and genital (HPV16) genotypes. HPV16 E5 protein binds 

to EVER and ZnT-1 and blocks their negative regulation. The lack of a functional E5 pro-

tein encoded by EV HPV genome may account for host restriction of these viruses. 
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ZnT-1 and EVERs were located mainly in ER, as they par-
tially colocalized with calnexin, which is a marker of ER, but 
also in the nuclear membrane and Golgi apparatus ( Fig.1 C  
and Fig. S1). Similar location was observed in other keratino-
cyte cell lines (Caski, HeLa, and SKV). This is in agreement 
with a recent article reporting that, in mouse cells, ZnT-1 can 
be located in the cytoplasm ( 20 ). These results suggest the ex-
istence of an EVER1 – EVER2 – ZnT-1 complex in the ER. 

 EVER and ZnT-1 regulate intracellular distribution 

of free zinc 

 Zinc is a trace element that is essential for a large variety of 
metalloenzymes and transcription factors. Because of toxicity 
for cells, free zinc activates several protective mechanisms, 
such as induction of zinc transporters (ZnT-1 and -2) and 
metal binding proteins like the metallothioneins MT-1 and -2 
( 19, 21 ). As a consequence, free zinc in cells is extremely low 
and tightly controlled, and even small fl uctuations in free zinc 
level can lead to signifi cant changes in signal transduction or 
activity of transcription factors. We asked whether in kerati-
nocytes ZnT-1 as well as EVERs can serve as zinc effl  uxers, 
inhibiting intracellular zinc retention. To this end, HaCaT 
cells were transiently transfected with  EVER  or  ZnT-1 . We 
found that incubation of keratinocytes with high concentra-
tions of zinc leads to increase in total cellular zinc content of 
cells ( Fig. 2 A ) and that ZnT-1 and EVER neither infl uence 
zinc accumulation in these cells nor confer resistance to zinc 
( Fig. 2 B ).  Similar results were obtained with HaCaT cells 
stably transfected with  EVER  and  ZnT-1  (unpublished data). 
In addition, no diff erence in zinc content and toxicity was 
detected for keratinocyte cell lines that we isolated from a Polish 
EV patient with a homozygous EVER2 mutation (T150fsX3; 
unpublished data) and a healthy subject ( Fig. 2, C and D ). 
These data suggest that in human keratinocytes, ZnT-1 and 
EVERs do not serve as zinc effl  uxers and they do not inhibit 
total zinc accumulation, although their possible role in re-
distribution of zinc inside keratinocytes cannot be excluded. 

 We hypothesized that the ZnT-1 – EVER complex could 
be involved in transport of free zinc inside keratinocytes, 
leading to changes in its local concentration. We used zin-
quin as a specifi c fl uorescent indicator that has the potential 
to detect free zinc in diff erent cellular compartments, includ-
ing the nucleus ( 22, 23 ). We showed that free zinc accumu-
lates in the nucleus, mainly in nucleoli ( Fig. 3 A ).  Importantly, 
the concentration of free zinc in nucleoli, measured as a mean 
fl uorescence, was signifi cantly higher in the keratinocytes 
with a mutated  EVER2  gene (EVER2  � / �   cells), as compared 
with the cells with a wild-type gene (EVER2 +/+  cells;  Fig. 3 B ). 
No diff erence in the number of nucleoli was observed be-
tween EVER2  � / �   and EVER2 +/+  keratinocytes (unpublished 
data). This suggests that in human keratinocytes, EVER2 
regulates free zinc distribution and modulates its infl ux to 
nucleoli, which are a place for an extensive synthesis of ribosomal 
RNA and could also be involved in sensing cellular stresses 
( 24 ). Although the exact mechanism and signifi cance of this 
phenomenon remain to be determined, it seems probable 

located in the ER. EVER1 and EVER2 proteins belong to the 
family of transmembrane channel-like (TMC) proteins ( 14 ). 
The EVER proteins are highly conserved in mouse, fi sh, 
 Drosophila melanogaster , and  Caenorhabditis elegans , which indi-
cates important functions that have yet to be determined. 
As suggested for TMC1 protein, it can be speculated that EVER1 
and EVER2 proteins underlie ion channel or signal transduc-
tion activities. 

 Our aim was to determine the functions of EVER pro-
teins in normal cells and to get some insight in the control of 
EV HPV infection by these proteins. The fi rst objective was 
to identify the cellular proteins interacting with EVER pro-
teins using the yeast two-hybrid approach ( 15 ). Cellular part-
ners with known function could bring clues to EVER function 
and cellular signaling pathways aff ected by EVER mutation 
in patients suff ering from EV. We report that EVER1 and 
EVER2 form a complex and interact with the zinc trans-
porter ZnT-1 protein. We found that EVER2 infl uences in-
tracellular localization of free zinc and down-regulates the 
activity of transcription factors induced by zinc or EGF. This 
inhibition is alleviated by HPV16 E5 protein, which was 
found to interact with EVER1, EVER2, and ZnT1. The 
lack of E5 open reading frame in the EV HPV genome ( 16 ) 
may account for the host restriction of these HPVs in the 
general population. 

  RESULTS AND DISCUSSION  

 EVER proteins interact with the zinc transporter ZnT-1 

 To elucidate the physiological role of EVER proteins, we fi rst 
performed a yeast two-hybrid screening to fi nd out their cel-
lular partners. Because of transmembrane domains into EVER 
proteins ( 13, 14 ), we used a region conserved among the TMC 
proteins (TMC domain) as bait to screen a cDNA library 
obtained from human HaCaT keratinocytes ( 17 ). We found 
that EVER1 and EVER2 interacted with the zinc transporter 1 
(ZnT-1), which has previously been described in hamster cells as 
a plasma membrane zinc transporter responsible for zinc effl  ux 
and resistance to zinc-mediated toxicity ( 18 ). Up to 10 diff erent 
zinc transporter proteins have been identifi ed, and it is suggested 
that they play an important role in zinc homeostasis ( 19 ). Most 
ZnT proteins have been found associated with endosomes, 
Golgi, or ER. ZnT-1 has a vesicular localization, but is also at 
the plasma membrane ( 20 ). 

 GST pull-down experiments indicated that full-length 
EVER1 and EVER2 associate with ZnT-1 ( Fig. 1 A ).  As il-
lustrated for EVER2, only the TMC domain of EVER re-
acted with ZnT-1, whereas no interaction was observed with 
the 3 �  COOH region. In addition, coimmunoprecipitation 
experiments confi rmed that EVER and ZnT-1 proteins form 
a complex ( Fig. 1 B ). Interestingly, in contrast to the previous 
study from hamster cells ( 18 ), ZnT-1 was found to be located 
not in the plasma membrane, but in the cytoplasm in human 
keratinocytes ( Fig. 1 C ). We confi rmed ZnT-1 localization 
with a set of constructs with diff erent tags in transiently or sta-
bly transfected cells, and also in living cells (Fig. S1, available at 
http://www.jem.org/cgi/content/full/jem.20071311/DC1). 
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In contrast, an increase in luciferase activity was detected in 
cells expressing mutated EVER1 or EVER2 proteins ( Fig. 4 B ) 
or with a mutation in the  EVER2  gene ( Fig. 4 D ). It is worth 
stressing that EVER1 and EVER2 mutant proteins that do 
not contain the conserved TMC domain were found to lose 
their interaction with ZnT-1. Treatment of HaCaT cells 
constitutively expressing ZnT-1 with two diff erent ZnT-1 –
 specifi c siRNAs increased the MTF-1/luc activity by four- 
to fi vefold, whereas no eff ect was observed with the negative 
control siRNA ( Fig. 4 E ). All these data indicate that ZnT-1 
and EVERs are negative regulators of MTF-1 activity. This 
might be because of the EVER – ZnT-1 – dependent changes 
in the distribution of free zinc, although interference of the 
EVER – ZnT-1 complex with activation of MTF-1 (e.g., 
phosphorylation) cannot be excluded. 

 Thus, we focused on the infl uence of EVER and ZnT-1 pro-
teins on specifi c signal transduction pathways leading to activation 

that changes in nuclear and nucleolar zinc concentration could 
strongly infl uence function of the cell. Importantly, we observed 
that EVER2  � / �   keratinocytes grew faster than EVER2 +/+  
keratinocytes ( Fig. 3 C ). 

 EVER and ZnT-1 inhibit transcription factor activities 

induced by zinc and cytokines 

 Zinc has recently been considered as a novel intracellular sec-
ond messenger ( 25 ). In addition, it is well known that zinc ions 
activate the synthesis of ZnT-1 and metallothioneins through 
the metal-regulatory transcription factor MTF-1 ( 19, 21 ). 
Thus, we studied whether ZnT-1 and EVERs can modulate 
activity of MTF-1. In transiently or stably transfected HaCaT 
cells, full-length EVER and ZnT-1 down-regulated zinc-
stimulated activity of MTF-1, as measured by transactivation of 
a construct with a luciferase gene under the control of a minimal 
responsive promoter for MTF-1 (pMT1/luc;  Fig. 4, A and C ).  

  Figure 1.     EVER proteins form a complex with ZnT-1.  (A) BHK21 cells were transfected with plasmids encoding FLAG-tagged ZnT-1 and GST-tagged 

EVER proteins or truncated GST-EVER2 corresponding to the TMC or C-terminal region. Crude lysates (CL) or pulled down (PD) proteins were immuno-

blotted (IB) with the indicated antibodies. (B) BHK21 cells were transfected with plasmids encoding FLAG-EVER proteins and GFP-ZnT-1 or GFP alone. 

Crude lysates (CL) were immunoprecipitated by anti-GFP antibody (IP) and immunoblotted (IB) with indicated antibodies. Lines indicate where the original 

gel was spliced. (C) HaCaT cells transiently coexpressing FLAG-EVER proteins and GFP-ZnT-1 were incubated with mouse monoclonal anti-FLAG antibodies 

and, subsequently, with anti – mouse CY-3 – conjugated secondary antibodies. Colocalization of EVERs (red) and ZnT-1 (green) is presented on merged 

images (yellow). Bars, 5  � m.   
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(PI3K) leading to synthesis of transcription factor like c-Jun, 
which belongs to the AP-1 family, and Elk-1 ( 26 ). To evaluate 
the phosphorylation-dependent activation of transcription 
factors, we generated a chimeric protein containing the trans-
activation domain of c-Jun or Elk-1 fused to the Gal4 DNA 
binding domain (Gal4-BD). This synthetic transcription factor 
is able to recognize Gal4 binding sites upstream of a minimal 
promoter that drives expression of the fi refl y luciferase reporter 
gene (unpublished data). In human keratinocytes stimulated 
with EGF, EVER inhibited activity of c-Jun transactivation 
domain ( Fig. 4 F ). Similar eff ects were observed after stimulation 
with TGF- �  ( Fig. 4 G ), TGF- � , or anisomycin (not depicted). 
Regions of EVER proteins corresponding to the conserved 
TMC domain ( 14 ) were as eff ective as full-length proteins, 
whereas the 3 � COOH region, as well as mutated EVER1 
and EVER2 proteins, displayed no signifi cant eff ect ( Fig. 4 F ). 
Interestingly, the infl uence of EVER and ZnT-1 is not limited 
to c-Jun only, but seems to be more general because similar 
eff ects were exerted on the transactivation domain of Elk-1 
( Fig. 4 H ). Although the underlying mechanism is not clear, it 
is likely that EVER-induced changes in free zinc concentration 
could play a role. 

 It must be stressed that all the experiments were per-
formed using artifi cial synthetic transcription factors. To in-
vestigate the infl uence of ZnT-1 and EVERs on the natural 
transcription factor present in human keratinocytes, we studied 
transactivation of a luciferase reporter plasmid with a minimal 
responsive promoter for AP-1 transcription factors (pAP-1/luc). 
ZnT-1 and EVER inhibited luciferase expression ( Fig. 4 I ), 
whereas a signifi cantly increased luciferase activity was observed 
in EVER2  � / �   keratinocytes ( Fig. 4 J ). 

 These data indicate that ZnT-1 and EVER are negative 
regulators of AP-1. Because AP-1 is a key transcription factor 
for HPV ( 2 ), a mutation in either  EVER  gene should facili-
tate the transcription of the viral genome, particularly the ex-
pression of E6 and E7 genes. 

of transcription factors. Indeed, exposure of cells to zinc have 
been found to induce stimulation of the c-Jun N-terminal kinase 
(JNK) signaling pathway through phosphoinositide 3-kinase 

  Figure 2.     EVERs and ZnT-1 do not infl uence intracellular zinc 

 accumulation and cell resistance to zinc.  HaCaT cells (A and B) were 

transiently transfected with plasmid encoding ZnT-1, EVER1, EVER2, or 

control empty plasmid. Keratinocytes (C and D) were isolated from a 

 patient suffering from EV ( EVER2  � / �   ) and from a healthy subject ( EVER2 + /+  ). 

The cells were incubated for 24 h in a standard culture medium (5  � M 

basal zinc) or in the medium supplemented with indicated concentrations 

of zinc. The total intracellular zinc content was determined by fl ame 

 absorption spectrometry (A and C) ( 29 ) and the cell number was deter-

mined by measurement of DNA (B) or protein (D) content in cell lysates. 

All the experiments were performed in triplicate. Error bars represent  ±  

the SD.   

   Figure 3.     EVER2 infl uences intracellular distribution of free zinc and cell growth.  (A) Keratinocytes with wild-type ( EVER2 + /+  ) or mutated 

( EVER2  � / �   ) gene were loaded with free zinc-specifi c indicator (Zinquin), incubated for 15 min in 140  � M zinc, and analyzed by phase-contrast micros-

copy (left) or fl uorescence (right). A strong fl uorescence is visible in nucleoli in both cell lines (arrows). Bars, 10  � m. (B) The fl uorescence intensity in 

 nucleoli was measured in 90 cells and presented as a percentage of fl uorescence of  EVER2 +/+   cells. (C) EVER2  � / �   and EVER2 +/+  keratinocytes were grown 

in triplicate in standard culture medium, and cell numbers were determined at different times as indicated. P  <  0.01, as determined by Students ’   t  test. 

Error bars represent ± the SD.    
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 HPV16 E5 protein inhibits EVER and ZnT-1 activities 

 Although EV HPV are responsible for asymptomatic infec-
tions that are widespread in the general population ( 6, 7 ), they 
induce lesions only in EV patients where high amount of vi-
rions are produced. It must be stressed that EV patients have 
an abnormal susceptibility to EV HPV, but are not prone to 
infection with other cutaneous or genital HPV, such as the on-
cogenic genital HPV16 and HPV18 ( 4, 5 ). It can be speculated 
that EVER and ZnT-1 proteins are involved in the control of 
EV HPV expression. This prompted us to use a coimmuno-
precipitation assay to search for a possible interaction between 
EVER1, EVER2, or ZnT-1 and early proteins specifi c for 
cutaneous and genital HPVs. This study was further justifi ed 
by the recent study showing an interaction between HPV16 
E5 and ZnT-1 in a two-hybrid assay ( 27 ). Importantly, the EV 
HPV genome lacks an E5 open reading frame ( 16 ). 

 No interaction was detected between EVER or ZnT-1 
proteins and E6 or E7 of HPV5, HPV9, a nononcogenic EV 
HPV, and HPV16 (unpublished data). In contrast, it was 
found that the E5 protein of HPV16 (16E5) binds to EVER1 
and EVER2 and, as expected with ZnT-1, also binds with an 
EVER1 – EVER2 complex ( Fig. 5 A ).  In addition, EVER and 
ZnT-1 colocalized with E5 in transiently transfected HaCaT 
cells ( Fig. 5 B ). Moreover, in keratinocytes transfected with 
ZnT-1 or EVER, 16E5 prevented ZnT-1/EVER-mediated 
inhibition of MTF-1 transcriptional activity ( Fig. 5 C ). Similarly, 
16E5 blocked EVER2-mediated down-regulation of c-Jun 
transactivation domain activity in HaCaT cells with constitutive 
expression of EVER2 ( Fig. 5 D ). More importantly, 16 E5 
increased luciferase activity by a factor of 1.6 also in EVER2 +/+  
keratinocytes ( Fig. 5 E ). Interestingly, no eff ect of 16 E5 protein 

  Figure 4.     EVERs and ZnT-1 down-regulate transcription factor 

activity.  (A – D) EVER and ZnT-1 inhibit zinc-induced transcription factor 

MTF-1. HaCaT cells were transiently (A and B) or stably (C) transfected 

with control plasmid (pCINeo) or plasmids expressing full-length ZnT-1, 

EVER1, and EVER2 proteins, mutant EVER1* (R94X) ( 13 ) and EVER2* 

(T150fsX3) proteins or TMC and 3 � COOH regions of EVER1 and EVER2. 

HaCaT cells, as well as keratinocytes with a wild-type (+/+) or mutant 

( � / � )  EVER2  gene (D), were transfected with a luciferase reporter plas-

mid (pMT1/luc) under the control of transcription factor MTF-1 and 

grown for 24 h at different ZnSO4 concentrations (A, C, and D) or at 120  � M 

ZnSO4 (B). (E) HaCaT cells stably expressing the control pCiNeo plasmid 

(mock) or ZnT-1 were transfected with pMT1/luc and Renilla luciferase 

plasmids in the presence of control negative siRNA or two different 

 siRNAs specifi c for ZnT-1 (siRNA#1 and siRNA#2). After 24 h, cells were 

harvested for luciferase activities. The results were scored as the ratio of 

fi refl y luciferase activity normalized to Renilla luciferase activity. (F – J) EVER 

and ZnT-1 inhibit transcription factors. HaCaT cells expressing the 

indicated plasmids were transfected with a mixture of plasmids encoding 

the transactivation domain of c-Jun (F and G) and Elk-1 (H) fused to the 

Gal4 DNA binding domain and a reporter luciferase plasmid containing 

binding sites for Gal4 (Gal4/luc). HaCaT cells (I) and keratinocytes with a 

wild-type (+/+) or mutant ( � / � )  EVER2  gene (J) were also transfected 

with a luciferase reporter gene under the control of AP-1 transcription 

factors (pAP-1/luc). The cells were grown without fetal calf serum and 

supplemented with 50 ng/ml EGF (F and H – J) or 10 ng/ml TGF �  (G). Lucif-

erase activities and cell number were determined as described in the 

Materials and methods. Values  ±  the SD obtained with c-Jun, Elk, and 

AP-1 expression plasmids in the presence of control pCiNeo plasmid were 

taken as 100%. *, P  <  0.05; #, P  <  0.01.   
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Interestingly, the E8 protein of the cottontail rabbit papillo-
mavirus that shares structural similarities with HPV16 E5 
protein was also found to interact with ZnT-1 ( 27 ). Further-
more, The E8 – ZnT-1 interaction was found to be required 
for AP-1 activation. The lack of an E5 or E8 open reading 
frame in the genome of EV HPV ( 17 ) may explain the block-
ing of replication of these viruses in the general population. 
Mutation in either of the EVER genes may alleviate host re-
striction and favor viral replication. These data suggest that 
inhibition of EVER – ZnT-1 complex by E5 protein (genital 
HPV) or mutation (EV HPV) is crucial for the papillomavirus 
life cycle. 

 However, the importance of the EVER – ZnT-1 complex 
is probably not limited to the control of virus life cycle in ke-
ratinocytes. It has been reported that most of EV patients have 

was observed in EVER2  � / �   keratinocytes, which further 
suggests EVER complex as an important target for 16 E5 in 
keratinocytes. On the other hand, EVER2 defi ciency seems 
to compensate the lack of functional 16 E5 protein, as shown 
with truncated 16 E5 corresponding to the N- or C-terminal 
half of the protein ( Fig. 5 E ). This led to MTF-1 transcriptional 
activity comparable to one induced by 16 E5 in wild-type 
keratinocytes. All these data indicate that 16 E5 is able to inter-
act with endogenous EVER and ZnT-1 and to counteract their 
down-regulation. 

 These fi ndings have some important implications, not 
only for EV HPV but also for genital HPV. It can be assumed that 
interaction between the E5 protein of genital HPV and EVER –
 ZnT-1 complex might facilitate the high level of free zinc 
and AP-1 activity needed for expression of viral genome ( 2 ). 

  Figure 5.     HPV16 E5 protein binds to EVER1, EVER2, and ZnT-1 and interferes with their activity.  (A) Clear lysates (CL) from HaCaT cells ex-

pressing FLAG-EVER and/or FLAG-ZnT-1, together with GFP-16 E5 or GFP alone, were immunoprecipitated (IP) with anti-GFP antibody and subsequently 

immunoblotted (IB) with the indicated antibodies. Immunoprecipitation experiments with ZnT-1 and HPV16 E5 gave a band of unknown origin with a 

migration pattern similar to that of EVER2. (B) HaCaT cells were transiently transfected with plasmids encoding FLAG-EVERs or ZnT-1 and GFP-16 E5 and 

stained with anti-FLAG monoclonal antibodies, followed by incubation with CY-3 – conjugated secondary antibodies. Colocalization of EVER/ZnT-1 (red) 

and 16 E5 (green) is presented on merged images (yellow). Bars, 10  � m. (C) HaCaT cells were transiently transfected with pMT1/luc and plasmids express-

ing EVER or ZnT-1 or control empty plasmid in the absence (E5-) or presence (E5 + ) of a plasmid encoding 16 E5. Cells were cultured for 24 h in medium 

with 140  � M zinc, and luciferase activity was measured. (D) HaCaT cells stably expressing control pCiNeo plasmid or EVER2 were starvated and trans-

fected with a plasmid encoding 16 E5 (or control plasmid) and with a mixture of plasmids expressing the luciferase reporter gene (pGal4/luc) and chime-

ric Gal4/c-Jun protein. Cells were incubated for 24 h in a culture medium supplemented with 50 ng/ml EGF, and luciferase activity was determined. 

(E) Keratinocytes with a wild-type (+/+) or mutant ( � / � ) EVER2 gene were transiently transfected with pMT1/luc, together with the control empty plas-

mid (control) or plasmids expressing 16 E5 or truncated 16 E5 corresponding to the N-terminal (M1 to I51) and C-terminal (I51 to T83) parts of the viral 

protein. Cells were cultured for 24 h in medium with 40  � M zinc, and luciferase activity was measured. *, P  <  0.05; #, P  <  0.01.   
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fl uorescence microscopy before and after incubation with zinc and photo-

graphs were taken at 200-fold magnifi cation on a microscope (Axioplan 2; 

Carl Zeiss, Inc.) using a 365/520-nm fi lter. 

 Atomic absorption.   For determination of the total cellular zinc content, 

3  ×  10 6  cells were washed with PBS twice and collected in 1 ml of PBS. 50  � l 

were taken to determine the protein content of the samples using the Bio-

Rad protein assay (Bio-Rad Laboratories). The remaining cell suspension 

was centrifuged, and the pellet was treated with 100  μ l 33% H 2 O 2  and 100  μ l 

65% HNO 3  at 60 ° C for 1 h, followed by an overnight incubation at 85 ° C. 

Samples were dissolved in 0.5 ml 0.2% HNO 3  and the zinc concentration 

was determined by fl ame atomic absorption ( 22 ), using an atomic absorption 

spectrometer (model 2380; PerkinElmer). 

 Luciferase assay.   HaCaT cells were plated in P24 culture plates, grown to 

50 – 80% confl uence, and transfected by the PEI method ( 18 ). In each co-

transfection experiment, total DNA (0.5  μ g) was adjusted with control pCi-

Neo DNA. To estimate transfection effi  ciency, the cells were also transfected 

with the TK promoter-driven Renilla-luciferase plasmid (0.1  μ g). After 24 h, 

cells were washed with phosphate-buff ered saline and overlaid with 100  μ l 

of passive lysis buff er (Promega) for 15 min at room temperature. The ex-

tracts were centrifuged 1 min at 14,000 g, and fi refl y and Renilla luciferase 

activities were measured by using the Dual-Glo luciferase kit assay (Promega) 

and a Lumat LB 9507 luminometer (Berthold Technologies). All experi-

ments were performed 6 – 12 times to ensure reproducibility. Because ex-

pression of EVER and ZnT-1 proteins were found to down-regulate both 

Firefl y and Renilla luciferase activities, data were normalized to cell number as 

determined by DNA content by fl uorescence of bis benzamidine H33258 ( 30 ) 

or protein content using Bio – Rad protein assay. The statistical signifi cance 

of data were calculated by Student ’ s  t  test. For all analyses, P  <  0.05 was 

considered signifi cant. 

 Small interfering RNA (siRNA) – mediated ZnT-1 silencing.   HaCaT 

cells constitutively expressing ZnT-1 were cotransfected with siRNA (20 

pmol) oligonucleotides, pMT1/luc plasmid, and Renilla luciferase plasmid 

using Lipofectamine 2000 reagent (Invitrogen) according to the instructions 

of the manufacturer. Two diff erent predesigned siRNAs specifi c for ZnT-1 

(siRNA ID#117632 and siRNA ID#117633), as well as a negative con-

trol siRNA, were purchased from Ambion. Luciferase activities were tested 

24 h after transfection. Experiments were performed in quadruplicate to en-

sure reproducibility. 

 Online supplemental material.   Fig. S1 shows the localization of EVER 

and ZnT-1 proteins by immunofl uorescence using a confocal microscope 

(model TCS4D; Leica). The online version of this article is available at 

http://www.jem.org/cgi/content/full/jem.20071311/DC1. 
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