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    The innate immune system represents an evo-
lutionarily conserved defense against infectious 
agents that senses pathogenic microorganisms 
through  “ pattern-recognition receptors, ”  mol-
ecules that recognize the conserved molecular 
patterns on the surface of microbes ( 1 – 3 ). Over 
the past decade, much of the focus of innate 
immune research has been to understand the 
role of the archetypal pattern-recognition mol-
ecules, the Toll-like receptors (TLRs). The TLRs 
are key sensors of pathogens that trigger signal 
transduction events that converge to activate 
mitogen-activated protein (MAP) kinases and 
transcription factors such as NF- � B and inter-
feron regulatory factors, leading to proinfl am-
matory responses ( 4 ). However, although TLRs 
are canonical, germline-encoded receptors that 
signal via essentially hard-wired pathways, it is 
evident that the fi nal response induced by a 
pathogen displays surprising specifi city. This 
specifi city is in part caused by the complexity 
of pathogens, which carry a variety of TLR li-
gands that defi nes their distinct  “ molecular sig-
nature ”  and results in combinatorial ligation of 

TLR heterodimers and contributes to specify 
pathogen-appropriate responses ( 4, 5 ). More 
recently, work has begun to explore the im-
portance of signaling from non-TLR receptors 
in contributing to defi ning pathogen-specifi c 
responses ( 6, 7 ). 

 Emerging data indicate that coordinated 
 integration of signals from alternative defense 
pathways such as the Nod-like receptors, scav-
enger receptors, and C-type lectins contributes 
to innate immune discrimination. The best de-
fi ned example is the recognition of endotoxin 
that occurs via a cooperation of molecules, in-
cluding LPS-binding protein (LBP) ( 8 ), CD14 
( 9 ), and MD2 ( 10 ), that enhance TLR4 signal-
ing in response to LPS ( 11 ). Recent work has 
demonstrated that other TLRs can be similarly 
modifi ed: CD36 recognizes Gram-positive bac-
terial cell wall products and modulates TLR2/6 
signaling, and the C-type lectin, Dectin-1, can 
either signal alone to induce IL-10 or in coop-
eration with TLR2 to induce IL-12 in response 
to yeast ( 12 – 15 ). These examples demonstrate 
how combinatorial recognition by multiple re-
ceptors and integration of signaling establishes 
an innate immune network that provides ro-
bust but pathogen-specifi c responses. 

 The evolutionarily ancient defense path-
ways mediated by soluble molecules such as 
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 Innate immunity is the fi rst-line defense against pathogens and relies on phagocytes, 

soluble components, and cell-surface and cytosolic pattern recognition receptors. Despite 

using hard-wired receptors and signaling pathways, the innate immune response demon-

strates surprising specifi city to different pathogens. We determined how combinatorial use 

of innate immune defense mechanisms defi nes the response. We describe a novel coopera-

tion between a soluble component of the innate immune system, the mannose-binding 

lectin, and Toll-like receptor 2 that both specifi es and amplifi es the host response to 

 Staphylococcus aureus . Furthermore, we demonstrate that this cooperation occurs within 

the phagosome, emphasizing the importance of engulfment in providing the appropriate 

cellular environment to facilitate the synergy between these defense pathways. 
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  Figure 1.     MBL regulates the cytokine responses upon  S. aureus  infection.  (A) Protein array blots showing the relative amounts of specifi c cyto-

kines present in the pooled serum samples obtained from wild-type ( n  = 3) and MBL  � / �   ( n  = 3) mice on a C57BL/6 background at 2 h after i.v. inoculation 

in the tail vein with 2  ×  10 7   S. aureus  or saline (no infection; Fig. S1 A shows the map of the protein array). (B) Expression levels of cytokines in serum 
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after  S. aureus  infection. Data are mean intensity  ±  SD of duplicate signals obtained from the protein array blots shown in A. (C and D) Cytokine produc-

tion by peritoneal macrophages (from wild-type C57BL/6J mice) and J774 macrophages after in vitro stimulation with  S. aureus . Cells were incubated 

with heat-inactivated  S. aureus  (MOI = 50 or as indicated), which were opsonized without (control) or with MBL at 10  μ g/ml or the indicated concentra-

tions. Induction of cytokine responses at 2 (TNF- � ) or 4 (IL-6) h was measured by ELISA in culture supernatants. Data are representative of four indepen-

dent experiments. Data indicate mean  ±  SD of triplicates. *, P  ≤  0.05; **, P  <  0.01.   

   

complement and collectins are also integral components of 
innate immune defense. A key example is the mannose-bind-
ing lectin (MBL), a circulating protein that recognizes a vari-
ety of infectious agents and, hence, functions as a prototypic 
pattern-recognition molecule ( 1, 16 ). MBL belongs to the 
collectin family and functions as an opsonin ( 17, 18 ) that is 
also able to activate the complement cascade via the lectin 
pathway ( 19 – 21 ). Association studies have linked low serum 
levels of MBL or  mbl2  genotypes with particular diseases ( 22 ), 
including an increased susceptibility to certain infections ( 18, 
23 – 25 ). In addition, accumulating in vitro data show that 
MBL is able to modulate infl ammatory responses ( 26 – 28 ). 
These observations suggest that MBL may act as an important 
natural modifi er of human defense pathways. Supporting this 
hypothesis, our recent in vivo studies have demonstrated that 
mice lacking MBL are highly susceptible to pathogens such as 
 Staphylococcus aureus  ( 29, 30 ). However, the molecular mech-
anism by which MBL modulates infl ammatory responses re-
mains undefi ned. 

 In this paper, we confi rm that MBL plays an essential role 
in  S. aureus  infection, making a contribution comparable to 
that of TLR2. MBL modifi es cytokine responses, not through 
its capacity to act as an opsonin or to activate complement, 
but via a novel cooperation with TLR2/6. We demonstrate 
that MBL binds to lipoteichoic acid (LTA) and complexes 
with TLR2 to increase ligand delivery, resulting in up-regu-
lation of TLR2 responses. Furthermore, we demonstrate the 
essential contribution of the phagosome in coordinating these 
responses. These data indicate a novel mechanism by which 
soluble innate immune molecules such as MBL integrate with 
TLRs in the innate immune network to specify and amplify 
host defense responses. 

  RESULTS  

 MBL modifi es the cytokine responses after  S. aureus  

infection 

 We have previously observed that mice lacking MBL have 
reduced TNF- �  and IL-6 responses during infection to 
 S. aureus,  suggesting a role for MBL in regulating cytokine re-
lease in vivo ( 30 ). To determine whether MBL enhanced re-
sponse or defi ned a unique cytokine signature after bacterial 
infection, wild-type and MBL-null mice were infected with 
 S. aureus  i.v., and serum cytokines were determined using 
protein microarrays. These arrays demonstrated signifi cant 
diff erences between wild-type and MBL-null mice 2 h after 
inoculation ( Fig. 1, A and B ); specifi cally, MBL augmented 
production of a subset of proinfl ammatory cytokines and 
chemokines such as TNF- � , tissue inhibitor of metallopro-

teinase 1, and monocyte chemotactic protein 1 ( Fig. 1 B ) 
but did not modify production of others (GCSF, IL-2, or 
IL-12p70; Fig. S1 B, available at http://www.jem.org/cgi/
content/full/jem.20071164/DC1).  MBL also down-regulated 
production of the immunoregulatory cytokine IL-10 (Fig. 
S1 B). Collectively, these data demonstrate that MBL contrib-
utes to modify the host response to  S. aureus  in vivo and speci-
fi es a unique infl ammatory cytokine signature. Similar results 
were observed in thioglycollate-elicited peritoneal macro-
phages and J774 macrophages stimulated in vitro with heat-
inactivated bacteria opsonized with or without MBL ( Fig. 
1, C and D ). Consistent with our in vivo data, MBL signifi -
cantly enhanced TNF- �  and IL-6 production by macro-
phages in response to  S. aureus  in a dose-dependent manner 
( Fig. 1, C and D ). 

 Altered response to  S. aureus  in the presence of MBL 

is not caused by increased bacterial uptake 

 MBL functions as an opsonin and, consistent with previous 
reports, was able to accelerate phagocytic uptake of diff erent par-
ticles, including pathogens (e.g.,  S. aureus ; Fig. S2, available 
at http://www.jem.org/cgi/content/full/jem.20071164/DC1) 
and apoptotic cells (not depicted). To determine if the altered 
response to  S. aureus  in the presence of MBL was caused 
by opsonization and increased uptake, we assessed macro-
phage responses to a variety of particles opsonized by MBL. 
MBL opsonization of neutral particles such as mannose-
coated beads and apoptotic cells failed to induce cytokine 
production, demonstrating that MBL opsonization alone was 
insuffi  cient to induce or alter proinfl ammatory cytokine pro-
duction (Fig. S3). In addition, despite increasing uptake of 
heat-inactivated group B  Streptococcus ,  Escherichia coli , or  Sal-
monella montevideo  (unpublished data), we observed no eff ect 
of MBL on TNF- �  production in response to these proin-
fl ammatory particles (Fig. S4). Thus, increased bacterial up-
take by MBL opsonization did not correlate with increased 
cytokine production. We next determined if the ability of 
MBL to regulate cytokine response to  S. aureus  was unique to 
MBL by examining the eff ect of opsonization with two re-
lated collectins, surfactant protein A (SP-A) and SP-D. SP-A 
increased uptake but not TNF- �  response (Fig. S5), again 
demonstrating that increased phagocytosis is insuffi  cient to 
enhance the proinfl ammatory response to  S. aureus.  Interest-
ingly, SP-D shared with MBL the ability to increase TNF- �  
production (Fig. S5 B). Collectively, these data provide evi-
dence that MBL plays a specifi c role in regulating response to 
 S. aureus  beyond that of simple opsonization or increased 
bacterial uptake. 
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ciated with a 1.5 – 2-fold increase in TNF- � , as determined 
by the mean fl uorescence intensity (MFI) of intracellular cyto-
kine staining ( Fig. 2 B ). Such increases were observed as early 
as 90 min after internalization of the bacteria (Fig. S6, available 
at http://www.jem.org/cgi/content/full/jem.20071164/DC1). 
These data unequivocally indicate that increased bacterial up-
take per se cannot explain the increased cytokine production 
associated with MBL opsonization and suggest that MBL plays 
a specifi c role in regulating response to  S. aureus . 

 MBL enhances the response to  S. aureus  independently 

of complement activation via C3 

 One mechanism by which MBL could increase cytokine re-
sponse is through activation of complement via the lectin 
pathway. To address this possibility, we used serum derived 
from MBL-null or MBL  ×  C3 – null mice. Consistent with 
our in vivo data, less TNF- �  was produced when  S. aureus  
were opsonized with serum from MBL-null mice than with 
wild-type serum ( Fig. 3 A ), and this defect could be rescued 
by the addition of exogenous MBL ( Fig. 3 A ).  Importantly, 
exogenous MBL also restored TNF- �  production when se-
rum from MBL  ×  C3 – null mice was used ( Fig. 3 B ), indicat-
ing that the ability of MBL to increase TNF- �  occurred 
independently of C3 activation. Furthermore, MBL augmented 
TNF- �  response to  S. aureus  in macrophages obtained from 
C3-defi cient mice ( Fig. 3 C ) and complement receptor 3 
(Mac-1) – defi cient mice ( Fig. 3 D ). Collectively, these data 
support our previous in vivo observations ( 30, 31 ) and demon-
strate conclusively that MBL is suffi  cient to enhance the pro-
infl ammatory cytokine responses to  S. aureus  independently 
of complement activation. 

 MyD88- and TLR2-dependent responses to  S. aureus  

are up-regulated by MBL 

 TLR2 is known to play a key role in response to  S. aureus  
( 14, 32 ). Based on the observations that MBL functions to re-
gulate cytokine responses induced by  S. aureus  independently 
of opsonization or complement, we hypothesized that MBL 
might function to directly modify this host defense pathway. 
To address this possibility, we examined the in vivo response 
of MBL and TLR2-null animals after infection with  S. aureus . 
Consistent with our published work ( 30 ), MBL-null mice 
showed a profound defect in their ability to fi ght  S. aureus  infec-
tion ( Fig. 4 A ).  Moreover, this defect was comparable to that 
of the TLR2-null mice ( Fig. 4 A ). These data indicate that 
MBL and TLR2 make comparable contributions to host defense 
to  S. aureus  in vivo. 

 To establish if MBL and TLR2 function in the same 
pathway of host defense, we examined the eff ect of MBL 
 opsonization in macrophages from MyD88-, TLR2-, and 
TLR4-defi cient mice. Macrophages isolated from wild-type 
or TLR4  � / �   mice responded normally to  S. aureus , and as 
expected, MBL opsonization enhanced TNF- �  production 
( Fig. 4 B ). In contrast, MyD88  � / �   macrophages failed to re-
spond to heat-inactivated  S. aureus , and TNF- �  was not pro-
duced even when the bacteria were opsonized with MBL 

 To defi nitively test if the altered response to  S. aureus  in 
the presence of MBL could be explained by increased bacte-
rial uptake, fl ow cytometry and intracellular cytokine stain-
ing were used to simultaneously measure bacterial engulfment 
and cytokine production at a single-cell level. These assays 
allowed cytokine production to be normalized for the num-
ber of bacteria internalized. At 3 h, equivalent numbers of 
control and MBL-opsonized bacteria were internalized by 
macrophages ( Fig. 2 A ).  However, when macrophages carry-
ing equivalent bacterial-derived fl uorescence (and hence, 
bacterial loads) were examined, MBL opsonization was asso-

  Figure 2.     MBL enhances TNF- �  response in macrophages with 

equivalent bacterial loads.  (A) Single-cell analysis by fl ow cytometry 

determining bacterial engulfment and intracellular TNF- �  production. 

TAMRA-labeled  S. aureus , unopsonized (control) or opsonized with MBL 

at 10  μ g/ml, were incubated with adherent C57BL/6J peritoneal macro-

phages at an MOI of 25 for 1 – 3 h. Phagocytosis and intracellular TNF- �  

production were measured simultaneously by fl ow cytometry. Contour 

plots show the percentages of TNF- �  – producing (top) or  – nonproducing 

(bottom) cells at 3 h after internalization of the bacteria. (B) TNF- �  pro-

duction in macrophages with defi ned bacterial loads. The number of bac-

teria engulfed by macrophages was estimated with the MFI obtained for a 

single bacterial particle. Cells that contain one- or twofold increasing 

numbers of bacteria were identifi ed in regions R1 – 6 (density plots; left), 

thus allowing normalization of cytokine production for defi ned bacterial 

loads (right). Data are the MFI of intracellular TNF- �  production 

from corresponding regions and representative of three 

independent experiments.   
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( Fig. 4 C ). Similarly, TLR2  � / �   macrophages showed a sig-
nifi cant, but not total, impairment in TNF- �  production in 
response to  S. aureus  ( Fig. 4 B ). Importantly, the residual 
TNF- �  produced in the absence of TLR2 was not enhanced 
by MBL ( Fig. 4 B ). These results demonstrate that MBL 
 enhances TNF- �  released in response to activation of the 
TLR2 – MyD88-dependent pathway. Furthermore, as MBL 
is epistatic to TLR2 – MyD88 activation, these data place 
MBL and TLR2 in the same pathway of host defense. 

 MBL binds TLR2/6 ligands and modulates signaling 

from this heterodimer 

 To determine whether MBL-regulated signaling induced by 
TLR2 via binding to TLR ligands, we characterized the 
ligand that MBL bound on the surface of  S. aureus . We fi rst 
tested the ability of MBL to bind to  S. aureus  – derived ligands 
in solid phase by ELISA. MBL was able to bind to both LTA 
and peptidoglycan (PGN) in solid phase ( Fig. 5 A ).  However, 
it is important to note that the binding to LTA is Ca 2+  de-
pendent ( Fig. 5 A ), indicating that MBL interacts with LTA 
using its carbohydrate recognition domain (Ca 2+  dependent). 
In contrast, binding to PGN is partially Ca 2+  dependent ( Fig. 
5 A ), suggesting that MBL may bind PGN via other domains 
such as the collagenous region or tail (Ca 2+  independent). To 
further determine the ligand that MBL bound on the surface 
of  S. aureus , fl ow cytometry was used to measure the binding 
of MBL to the bacteria. Cyanine 3 – labeled MBL (Cy3-MBL) 
bound strongly to heat-inactivated  S. aureus , and the binding 
was highly Ca 2 +  dependent and, hence, completely blocked 
by EDTA ( Fig. 5 B ). However, despite binding of MBL to 
both LTA and PGN in solid phase, only soluble LTA, and 
not PGN, was able to compete and inhibit Cy3-MBL binding 
to heat-inactivated  S. aureus  ( Fig. 5 B ). This inhibition was 
comparable to the eff ects of mannan. Importantly, even when 
used at high concentrations, PGN did not block Cy3-MBL 
binding to  S. aureus . The inhibition by LTA was also con-
fi rmed with fl uorescence microscopy ( Fig. 5 C ). Collectively, 
these data suggest that MBL binds via its carbohydrate recogni-
tion domain to LTA exposed on the surface of intact bacteria. 

 LTA is a known TLR2/6 ligand and, thus, led us to hy-
pothesize that MBL regulates heterodimer TLR2/6 signaling 
in response to  S. aureus . To test if MBL modifi es TLR2/6 
signaling, HEK293 cells stably expressing GFP-TLR2 (TLR2-
HEK293) and transfected with an NF- � B – luciferase re-
porter system were used. Soluble MBL showed no eff ect on 
NF- � B activation in this system ( Fig. 5 D ), supporting our 
observations that MBL alone is insuffi  cient to induce proin-
fl ammatory response (Fig. S3). In addition, cells expressing 
TLR2 alone failed to respond to heat-inactivated  S. aureus  
with or without MBL opsonization. However, when TLR2-
HEK293 cells were cotransfected with TLR6, MBL caused a 
signifi cant increase in  S. aureus  – induced activation of NF- � B 
( Fig. 5 D ), indicating that MBL can enhance signaling initi-
ated via the TLR2/6 heterodimer. To further determine 
if the enhanced signaling by MBL was via the interaction 
with LTA on the bacterial surface, we examined the eff ect of 

  Figure 3.     MBL enhances proinfl ammatory response to  S. aureus  

independently of complement activation.  (A and B) TNF- �  response to 

 S. aureus  opsonized with mouse serums. C57BL/6J peritoneal macro-

phages were cultured in the presence of heat-inactivated  S. aureus  (MOI = 

50), which were opsonized with wild-type serum (from wild-type mice), 

MBL KO serum (from MBL knockout mice; A), or MBL/C3 KO serum (from 

MBL  ×  C3 knockout mice; B), or the KO serums supplemented with exog-

enous MBL at 20  μ g/ml. TNF- �  response at 2 h was measured by ELISA in 

culture supernatants. (C and D) TNF- �  production by control (wild-type), 

C3  � / �  , or complement receptor 3  � / �   macrophages in response to 

 S. aureus  opsonized with or without MBL. Peritoneal macrophages from 

control C57BL/6J mice, C3  � / �   mice (C), or complement receptor 3  � / �   

(Mac-1  � / �  ) mice (D) were cultured in the presence of heat-inactivated

 S. aureus  (at the indicated MOIs [C] or MOI = 50 [D]), which were opsonized 

without (control) or with 10  μ g/ml of MBL. TNF- �  response at 2 h was 

measured. Data are representative of two independent experiments and 

indicate the mean  ±  SD of triplicates. *, P  ≤  0.05; **, P  <  0.01. n.d., no de-

tectable cytokine.   
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 MBL complexes with TLR2 and modulates the signaling 

within phagosomes 

 The observed cooperation between MBL and TLR2/6 sug-
gested a possible physical association between these mole-
cules. To investigate this possibility, we fi rst examined the 
localization of MBL and TLR2 during phagocytosis of heat-
inactivated  S. aureus  using immunofl uorescence microscopy. 

MBL on the response to LTA. MBL was able to enhance 
the  response to LTA only when immobilized on the sur-
face of a particle (LTA-coated beads) but had no eff ect on 
soluble LTA (Fig. S7, available at http://www.jem.org/cgi/
content/full/jem.20071164/DC1). Thus, MBL only aug-
ments signals to particulate TLR2/6 ligands that are delivered 
to phagosomes. 

  Figure 4.     MBL up-regulates TLR2 – MyD88 – dependent response to  S. aureus .  (A) Survival of wild-type ( n  = 8), MBL  � / �   ( n  = 9), TLR2  � / �   ( n  = 8), 

and MyD88  � / �   ( n  = 7) mice on a C57BL/6 background after i.v. inoculation in the tail vein with 1.5  ×  10 7   S. aureus . (B and C) In vitro TNF- �  response to 

 S. aureus  opsonized with or without MBL in control (wild-type), TLR2  � / �  , TLR4  � / �  , or MyD88  � / �   macrophages. Peritoneal macrophages from TLR2  � / �  , 

TLR4  � / �  , or control B6129PF2/J mice (B), or MyD88  � / �   or control C57BL/6J mice (C), were cultured in the presence of heat-inactivated  S. aureus  (at the 

indicated MOIs), which were opsonized without (control) or with 10  μ g/ml of MBL. Induction of TNF- �  response at 2 h was measured by ELISA in culture 

supernatants. Data are representative of three independent experiments and indicate the mean  ±  SD of triplicates. *, P  ≤  0.05; **, P  <  0.01. n.d., no detect-

able cytokine.   
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  Figure 5.     MBL recognizes  S. aureus  via binding to LTA and modules signaling from the TLR2/6 heterodimer.  (A) MBL binding to LTA and PGN in 

solid phase. MBL was incubated at 10  μ g/ml in microtiter plates coated with 100  μ g/ml BSA, mannan, LTA, or PGN in the absence (control) or presence of 

EDTA for 2 h. MBL binding to the coated wells was determined by ELISA. Data are representative of at least three independent experiments and indicate 

the mean  ±  SD of triplicates. (B and C) Inhibition of MBL binding to  S. aureus  by LTA. Cy3-MBL at 10  μ g/ml was pretreated without (control; B, left) or 

with 100  μ g/ml LTA or PGN (B, left), or the indicated amount of mannan, LTA, or PGN (B, right), or 100  μ g/ml LTA (C). Pretreated or nonpretreated Cy3-

MBL at 10  μ g/ml was incubated with heat-inactivated  S. aureus  in the presence or absence of EDTA for 30 min. Binding of Cy3-MBL (red) to the bacteria 

was analyzed by fl ow cytometry, where MBL binding was determined by MFI in the bacteria population (B), and fl uorescence microscopy (C). The dashed 

line (B, right) indicates the binding to the bacteria by nonpretreated MBL. Bars, 5  � m. (D) NF- � B activation by  S. aureus  opsonized with or without MBL in 

HEK293 cells expressing TLR2 with or without TLR6. HEK293 cells stably expressing TLR2, cotransfected with the NF- � B reporter system, and with or 

without TLR6, were cultured in the presence of heat-inactivated  S. aureus  (MOI = 50), which were opsonized without (control) or with MBL at 10  μ g/ml. 

Reporter gene activity at 4 h was measured by a luciferase assay system (see Materials and methods). Data are representative of two independent experi-

ments and indicate the mean  ±  SD of triplicates. *, P  ≤  0.05; **, P  <  0.01.   
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  Figure 6.     MBL traffi cs onto phagosomes and complexes with TLR2.  (A – C) Localization of MBL on macrophage phagosomes. C57BL/6J peritoneal 

macrophages were incubated with Alexa Fluor 488 – MBL – opsonized  S. aureus  for 10 min at 37 or 4 ° C (on ice; A), for 10 min at 37 ° C (B), or for 45 min at 

37 ° C (C). Before intracellular staining for TLR2 or nuclei, cells were washed with EDTA to remove MBL from extracellular bacteria. Localization of MBL on 

phagosomes was shown by Alexa Fluor 488 – MBL (green) on internalized bacteria (arrows), but not on noninternalized or cell surface – bound bacteria 

(arrowheads; A). Nuclei were stained with HOECHST (blue). Enrichment of TLR2 on phagosomes was shown by staining with anti-TLR2 (red), where TLR2s 

were colocalized with MBL in the merged image (B). (B, right) Images are magnifi cations of the insets. Localization of MBL on phagolysosome was shown 

in macrophages preloaded with LysoTracker (red; C). Data are representative of four independent experiments. Bars, 10  � m. (D) Requirement of phagocy-

tosis for MBL-enhanced responses to  S. aureus . C57BL/6J peritoneal macrophages were pretreated with 6  � M cytochalasin D or an equal volume of 

DMSO and incubated with heat-inactivated  S. aureus  (MOI = 100) opsonized without (control) or with 10  μ g/ml MBL. Induction of cytokine responses at 
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2 (TNF- � ) or 4 (IL-6) h was measured by ELISA in culture supernatants. Data are representative of three independent experiments and indicate the mean  ±  

SD of triplicates. *, P  ≤  0.05; **, P  <  0.01. n.d., no detectable cytokine. (E) Immunoprecipitation (IP) and immunoblot (IB) of lysates of HEK293T cells ex-

pressing TLR2, detecting association between MBL and TLR2. HEK293T cells stably expressing GFP-tagged TLR2 were transfected with TLR6 and were 

stimulated for 15 min with or without  S. aureus  (MOI = 50), which were opsonized with or without 10  μ g/ml MBL. MBL was detected by the IB using anti-

MBL antibody ( � MBL) in the cell lysates (left) and in the immunoprecipitates of GFP-TLR2 with anti-GFP antibody ( � GFP; right). 0.625  μ g rhMBL was used 

as a control in the IB to indicate the size of a single subunit of the molecule. Proteins pulled down by protein G alone without  � GFP were used as a 

control for the IP (see Materials and methods). The exposure time of enhanced chemiluminescence to develop the signals is indicated for the IB of the 

immunoprecipitates.   

   

TLR2- and Alexa Fluor 488 – labeled MBL opsonized bacte-
ria were both localized on the cell surface of macrophages dur-
ing early phagocytosis (unpublished data). Previous work has 
demonstrated that TLR2 is recruited to macrophage phago-
somes containing either zymosan or IgG-opsonized sheep red 
blood cells ( 33, 34 ), and similar to these observations, we also 
observed TLR2 enriched in  S. aureus  phagosomes. In addition, 
MBL traffi  cked into the early phagosomes ( Fig. 6 A ), where it 
colocalized with TLR2 ( Fig. 6 B ).  MBL persisted within 
phagosomes for up to 45 min, at which time MBL could be 
colocalized with LysoTracker (an acidophilic dye that labels 
lysosomes), suggesting that MBL traffi  cked into mature pha-
golysosomes ( Fig. 6 C ). To further test if the colocalization be-
tween MBL and TLR2 in phagosomes correlates with their 
functional cooperation, we blocked bacterial engulfment in 
macrophages using cytochalasin D (Fig. S8 A, available at 
http://www.jem.org/cgi/content/full/jem.20071164/DC1) 
and measured cytokine responses ( Fig. 6 D ). Cytochalasin D 
inhibited  S. aureus  – induced TNF- �  and IL-6 production and 
abrogated the ability of MBL to enhance cytokine release ( Fig. 
6 D ). Importantly, these eff ects were not caused by adverse ef-
fects on cell viability, as production of TNF- �  by macrophages 
in responses to LPS and zymosan was unaff ected (Fig. S8 B). 
These data indicate that activation by  S. aureus  and, hence, the 
cooperation between MBL and TLR2 cannot occur on the 
cell surface but requires internalization. 

 To examine if the observed colocalization of MBL and 
TLR2 in the phagosome detected by immunofl uorescence 
was caused by a physical association, we took advantage of the 
TLR2-HEK293T cells. HEK293T cells internalize  S. aureus  
at low levels. TLR2-HEK293T cells were challenged with 
MBL-opsonized  S. aureus , and using an anti-GFP antibody, 
TLR2 was immunoprecipitated and probed for association 
with MBL. MBL failed to bind to TLR2 when added alone, 
but when used to opsonize  S. aureus , MBL could be detected 
as a coimmunoprecipitate with TLR2 ( Fig. 6 E ). These data 
support our microscopy data and suggest that  S. aureus  induces 
the association between MBL and TLR2 to form a complex 
within the phagosome. 

 Collectively, these data demonstrate an essential role of 
the phagosome in generating the signals required for induc-
tion of proinflammatory cytokine responses to  S. aureus . 
These fi ndings support a model in which  S. aureus  must be 
delivered into phagosomes to induce TLR2-mediated responses 
(Fig. S9, available at http://www.jem.org/cgi/content/full/

jem.20071164/DC1). Furthermore, they suggest that modi-
fi ers of the TLR2 pathway such as MBL must also colocalize 
within this compartment to regulate the responses to bacte-
rial-derived ligands (Fig. S9). Collectively, these data suggest 
that an important function of the phagosome is to provide 
an appropriate cellular compartment to concentrate ligands 
released from engulfed bacteria and coordinate signaling from 
diff erent defense pathways. 

  DISCUSSION  

 The sensing of infectious agents is an essential component of 
fi rst-line host defense ( 3 ). In this study, we confi rm that MBL 
makes an important contribution to defi ning the host re-
sponse after infection with  S. aureus  and demonstrate that this 
contribution occurs independently of its ability to increase 
uptake of  S. aureus  or activate complement. The model we 
suggest for the role of MBL in the host defense to  S. aureus  is 
based on the following observations. First, MBL and TLR2 
make comparable contributions to host defense to  S. aureus  
in vivo, and MBL is epistatic to TLR2 – Myd88 signaling in vitro, 
suggesting that MBL-mediated microbial recognition and 
TLR2 sensing are functionally linked. Second, MBL binds to 
 S. aureus  via the known TLR2 ligand, LTA, and colocalizes 
and complexes with TLR2, potentially increasing ligand 
delivery and activation of the TLR2/6 signaling pathway. 
Finally, during phagocytosis of  S. aureus , MBL traffi  cs into early 
phagosomes, where it colocalizes with recruited TLR2. In-
triguingly, when bacterial internalization is blocked, cytokine 
responses to  S. aureus  are abrogated, indicating the essential 
contribution of the phagosome to the activation of TLR2/6 –
 MyD88 – dependent signaling in response to  S. aureus . These 
fi ndings support a model in which MBL is delivered along 
with  S. aureus  into the phagosome, which provides the unique 
cellular environment required both for TLR2 signaling and 
for the augmentation by MBL. Collectively, these data describe 
a novel collaboration between MBL and TLR2/6 initiated upon 
engulfment of  S. aureus  (Fig. S9). 

 Although known as an opsonin, our data demonstrate 
conclusively that the ability of MBL to enhance the infl am-
matory response is not caused by increased phagocytosis. It is 
possible that complement activation, leading to the genera-
tion of C3 cleavage fragments or the formation of membrane 
attack complex, can facilitate enhanced signaling via comple-
ment receptors or presentation of bacterial ligands to TLRs. 
However, although an important function of MBL is to initiate 
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the appropriate cellular environment to facilitate synergy
between defense pathways. 

 MATERIALS AND METHODS 
 Mice and cells.   Wild-type mice, C57BL/6J and B6129PF2/J mice, and 

complement receptor 3 (Mac-1) knockout mice were purchased from the 

Jackson Laboratory. C3 knockout mice were provided by M. Carroll (CBR 

Institute for Biomedical Research, Boston, MA), MyD88 knockout mice 

were provided by M. Freeman (Massachusetts General Hospital and Harvard 

Medical School, Boston, MA), and TLR2 and TLR4 knockout mice were 

provided by R. Medzhitov (Yale University School of Medicine, New 

Haven, CT). MBL-null (MBL-A and MBL-C double knockout) and MBL  ×  

C3 – null (MBL-A/-C/C3 triple knockout) mice were generated in our lab-

oratory as previously described ( 30, 31 ). CD36 knockout mice were gener-

ated by K.J. Moore, as previously described ( 43 ). Animals were kept and 

handled under a protocol approved by the Subcommittee on Research Ani-

mal Care at Massachusetts General Hospital. Thioglycollate-elicited perito-

neal macrophages were collected from mice by peritoneal lavage 3 d after 

intraperitoneal injection of 3% thioglycollate (Difco Laboratories), and 

maintained in DMEM (Invitrogen) containing 10% heat-inactivated FCS 

(Invitrogen) and penicillin-streptomycin (50 IU/ml and 50  μ g/ml; Cellgro). 

Jurkat T cells were used as a source of apoptotic cells that were generated by 

the treatment of the cells with 500 ng/ml actinomycin D for 24 h in serum-

free RPMI 1640 medium (Invitrogen) containing 0.4% BSA (Sigma-Aldrich). 

 Bacteria and reagents.   The strain of  S. aureus  used was Reynolds capsular 

serotype 5 (provided by J.C. Lee, Brigham and Women ’ s Hospital, Boston, 

MA).  S. aureus  were cultivated overnight at 37 ° C in 5 ml of Columbia media 

(Difco Laboratories) with 2% NaCl. The bacterial culture was diluted 1:40 

in fresh medium and grown to the mid-exponential phase (OD 600  = 0.6; 2 h). 

The strains of group B  Streptococcus ,  E. coli , and  S. montevideo  used were a 

clinical isolate GBS type III CHO-1, K12 (American Type Culture Collec-

tion) and SH5770 (provided by H. M ä kel ä , National Public Health Institute, 

Helsinki, Finland), respectively, and were grown as described previously 

( 17, 44 ). The bacteria grown to the mid-exponential phase were heat inacti-

vated at 65 ° C for 30 min, washed once (10,000  g  for 10 min), and stored in 

aliquots at  � 20 ° C before use for cell stimulation in vitro. PGN and LTA, 

both derived from  S. aureus , were purchased from InvivoGen and Sigma-

Aldrich, respectively. Mannan-coated latex beads were prepared by passive 

adsorption of mannan on the bead surface. Approximately 2  ×  10 9  polysty-

rene latex beads (Sigma-Aldrich), 1.1  � m in diameter, were washed twice 

(10,000  g  for 10 min) in 0.1 M of carbonate-bicarbonate buff er, pH 9.6, and 

incubated with 500  μ g of mannan from  Saccharomyces cerevisiae  (Sigma-

Aldrich) in 500 ml of the carbonate-bicarbonate buff er for 1 h at 37 ° C. The 

beads were then washed twice with HBSS (Invitrogen), incubated in 5% 

BSA for 2 h at 37 ° C to block nonspecifi c binding sites, washed again, resus-

pended in HBSS, and stored at 4 ° C before use. LTA-coated latex beads were 

prepared by covalent coupling of Polybead Carboxylate Microsphates (Poly-

science), 3  � m in diameter, with LTA (Sigma-Aldrich) using PolyLink 

EDAC (Polyscience), according to the manufacturer ’ s instructions. 

  S. aureus  infection in vivo.   All mice were between 6 and 12 wk old and 

on a C57BL/6 background. Mice were inoculated i.v. in the tail vein with 

200  μ l of a mid-exponential growth phase of  S. aureus  (1.5 or 2  ×  10 7  CFU) 

and monitored for survival as described previously ( 30, 31 ). In some experi-

ments, blood was collected from wild-type and MBL-null mice at 2 h after 

inoculation with  S. aureus  or control saline. Blood protein array was per-

formed using the membranes included in a mouse protein cytokine array kit 

(Mouse Cytokine Antibody Array II; RayBiotech), in which 1 ml of fi ve-

fold-diluted serum samples were incubated with the membranes at 4 ° C 

overnight. The bound proteins were detected according to the manufactur-

er ’ s instructions. The signal intensities of the proteins were determined using 

National Institutes of Health image analyzer software (available at http://rsb

.info.nih.gov/nih-image/). 

C3-dependent complement activation via the lectin pathway, 
C3 was not necessary to modify the infl ammatory responses to 
 S. aureus . These observations are consistent with our previous 
in vivo work using mice defi cient in C3, MBL, and MBL/
C3 that indicated that MBL has important eff ects in regulat-
ing responses to  S. aureus  independently of C3 ( 31 ). It re-
mains to be addressed if MBL is involved in a C3-independent 
complement pathway such as that described recently ( 35 ). 
Furthermore, MBL modulation of cytokine response does 
appear to be relatively specifi c for  S. aureus.  We propose that 
this specifi city is determined, in part, by the ability of MBL 
to bind LTA, a TLR ligand found within the cell wall of this 
Gram-positive organism, and facilitate its delivery to TLR2. 
Intriguingly, although two other collectins, SP-A and SP-D, 
also opsonize  S. aureus  ( 36 – 38 ), only SP-D modulated the 
response. MBL and SP-D, but not SP-A, share the ability to 
bind to LTA ( 39 ), and it is tempting to suggest that it is the 
ligand specifi city of MBL and SP-D, and not their opsonic 
role, that determines the ability of these collectins to augment 
TLR signaling. 

 Previous studies by us and others demonstrated that CD36 
is a coreceptor for  S. aureus  and  S. aureus  – derived LTA and 
facilitates signaling via the TLR2/6 heterodimer ( 14, 15 ), 
suggesting that the function of CD36 is analogous to that of 
CD14 in TLR4 activation. However, our observations show 
that MBL can enhance  S. aureus  – induced TNF- �  production 
in macrophages from CD36-null mice (unpublished data), 
indicating that MBL can act independently of CD36. It is 
possible that MBL may operate via MBL receptors such as 
calreticulin/CD91( 40 ), CD93 (C1q receptor for phago-
cytosis) ( 41 ), and/or CD35 (complement receptor 1) ( 42 ). 
An  alternative scenario is that MBL acts independently of 
any specifi c receptor, and these two possibilities remain 
to be explored. 

 A fi nal but surprising observation is the requirement of 
engulfment for response to  S. aureus . TLRs are not believed 
to function directly as phagocytic receptors but are recruited 
to phagosomes ( 33, 34 ), suggesting an important role of this 
organelle for initiating signaling by certain TLRs. In this re-
gard, it will be of interest to determine if other known core-
ceptors of TLR2, such as CD36, are also colocalized with 
TLR2 in phagosomes. In conclusion, the results demon-
strated in this study identify the mechanisms by which MBL 
collaborates with other host defense pathways and receptors 
to both specify and amplify the immune response to  S. aureus . 
This novel collaboration between MBL and TLR2/6 makes 
a signifi cant contribution to the host defense networks initi-
ated in response to  S. aureus  infection in vivo and illustrates 
the essential role of accessory proteins in directing pathogen-
specifi c responses. It is tempting to compare the role of MBL 
during phagosome degradation of  S. aureus  with that of LBP. 
However, unlike LBP, which recognizes LPS and enhances its 
sensing by TLR4 at the cell surface ( 11 ), MBL clusters LTA 
and presents it to TLR2/6 only within phagosomes. Impor-
tantly, this cooperation occurs within the phagosome of mac-
rophages, emphasizing the role of engulfment in providing 
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 NF-  �  B – luciferase reporter assays.   Dual luciferase reporter assays for 

NF- � B activation were performed in HEK293 cells that stably express TLR2 

(provided by D. Golenbock, University of Massachusetts Medical School, 

Worcester, MA), as previously described ( 15 ). In brief, cells were transfected 

with NF- � B reporter construct and pcDNA3.1-TLR6 complementary 

DNA (cDNA) or mock pcDNA3.1 using Lipofectamine 2000 (Invitrogen) 

in accordance with the manufacturer ’ s instructions. Before assays, the cells 

were washed with PBS and cultured in fresh DMEM with 1% FCS. Heat-

inactivated  S. aureus  opsonized with or without MBL, as described in Bacte-

rial stimulation in vitro, were added to the cells at an MOI of 50. Buff er 

alone with or without MBL was used as a control (MOI = 0). The cells were 

then incubated at 37 ° C in 5% CO 2  for 4 h and lysed, and reporter gene 

 activity was measured using the Dual-Glo Luciferase Assay System (Pro-

mega) in accordance with the manufacturer ’ s protocol. Data were normalized 

for transfection effi  ciency with the control reporter activity from the same 

sample and presented as the mean NF- � B fold induction of triplicate samples. 

 Immunofl uorescence.   Macrophages were plated at 8  ×  10 5  cells per well 

on glass coverslips in sixwell tissue culture plates (Costar) and cultured over-

night in the DMEM. Before incubation with heat-inactivated  S. aureus , the 

cells were washed twice with PBS and cultured in fresh serum-free DMEM. 

In some experiments, 200  � M of LysoTracker Red DND-99 (Invitrogen), 

an acidophilic dye, was added to the cells for 30 min to label lysosomes. 8  ×  

10 6  heat-inactivated  S. aureus  were opsonized with 1  μ g/ml of Alexa Fluor 

488 (Invitrogen) – labeled recombinant human MBL (Alexa Fluor 488 –

 rhMBL) in 50  μ l HBSS for 30 min at room temperature. After incubation 

with opsonized bacteria for 10 – 45 min at 37 ° C or on ice, macrophages were 

washed twice with ice-cold PBS containing 5 mM EDTA (to remove Alexa 

Fluor 488 – rhMBL from extracellular bacteria particles but not from those 

phagocytosed) and fi xed in 3% paraformaldehyde. To detect TLR2, cells 

were permeabilized using 0.1% saporin in blocking buff er (HBSS containing 

3% BSA, 0.2% gelatin, and 0.02% NaN 3 ) and stained with anti-TLR2 (clone 

H-175; Santa Cruz Biotechnology, Inc.) and Alexa Fluor 546 – labeled goat 

anti – rabbit antibody (Invitrogen). HOECHST (Sigma-Aldrich) was used to 

stain nuclei. After mounting with Immu-Mount (Thermo Fisher Scientifi c), 

the cells were observed by fl uorescent microscopy. Images were captured 

and analyzed using Openlab software (Improvision). 

 Immunoprecipitation and Western blotting.   HEK293 cells that stably 

express GFP-tagged TLR2 were transfected with pcDNA3.1-TLR6 cDNA 

as described in NF- � B – luciferase reporter assays. Before stimulation, the 

cells were washed with PBS and cultured in fresh DMEM with 1% FCS. 

Heat-inactivated  S. aureus  opsonized with or without MBL in HBSS, as de-

scribed in Bacterial stimulation in vitro, were added to the cells at an MOI 

of 50. HBSS alone with MBL was also used as a control. After incubation for 

15 min at 37 ° C, cells were rinsed once in ice-cold PBS/EDTA and lysed 

with lysis buff er (10 mM Tris-HCl, 150 mM NaCl, 5 mM EDTA, 1% 

NP-40, and 1 ×  protease inhibitor cocktail [Complete Mini; Roche]). 500  � l 

of cell lysates at 2 mg/ml of protein concentration were precleared with 

50  μ l of 50% protein G – agarose – Sepharose beads (GE Healthcare) for 20 min 

at 4 ° C. The precleared lysates were then incubated without (control) or with 

4  μ g of mouse anti-GFP monoclonal antibody (clone 3E6; Invitrogen) for 2 h 

at 4 ° C, followed by incubation with 50  μ l of the protein G beads overnight 

at 4 ° C. The beads were washed four times according to the manufac turer ’ s 

protocol for using anti-GFP antibodies (Invitrogen) and then suspended in 

SDS sample buff er heated to 100 ° C for 3 min. The eluted GFP-TLR2 pre-

cipitates were applied to 12% SDS-PAGE and blotted to polyvinylidene fl u-

oride membranes. MBLs were detected by immunoblotting using rabbit 

anti-MBL antibody (clone DB2) ( 46 ). Signals were developed using en-

hanced chemiluminescence (Millipore). 

 Inhibition assays.   To assess the role of phagocytosis in the induction of 

TNF- �  and IL-6 by heat-inactivated  S. aureus  in peritoneal macrophages, 

before the stimulation with heat-inactivated  S. aureus  (as described in Bacte-

rial stimulation in vitro) cells were pretreated with 6  � M cytochalasin D 

 Bacterial stimulation in vitro.   Macrophages were plated at 4  ×  10 5  cells per 

well in 24-well tissue culture plates (Costar; Corning) in the DMEM the day 

before each experiment. Before the start of the assays, the cells were washed 

twice with PBS (Invitrogen) and cultured in fresh DMEM with 1% FCS. 

Stimulation of macrophages by heat-inactivated bacteria was performed at dif-

ferent multiplicities of infection (MOIs) ranging from 25 to 400. Heat-inacti-

vated bacteria (e.g., for MOI = 100, 4  ×  10 7  bacteria to each well of 

macrophages) were opsonized for 1 h at room temperature with or without 

recombinant human MBL (provided by NatImmune A/S, Copenhagen, 

Denmark), or SP-A or SP-D (provided by S. Gardai, National Jewish Medical 

and Research Center, Denver, CO) in some cases, at the indicated concentra-

tions in 50  μ l HBSS, or opsonized with 50% wild-type serum, MBL-defi cient 

serum, or MBL and C3 double-defi cient serum in 50  μ l HBSS (serum were 

obtained and pooled from two to three wild-type mice, MBL-null mice, or 

MBL  ×  C3 – null mice). Opsonization with BSA was used as a control in some 

experiments. Opsonized microorganisms were added to the macrophages, and 

the cells were incubated at 37 ° C in 5% CO 2  for 2 – 4 h, after which culture su-

pernatants were taken. The measurements of TNF- �  and IL-6 levels in the 

supernatants were performed by ELISA (DuoSet ELISA Development Sys-

tem; R & D Systems) in accordance with the manufacturer ’ s protocol. In some 

cases, mannan-coated latex beads ( � 4  ×  10 7  particles to each well of macro-

phages) or 1.2  ×  10 6  apoptotic cells opsonized with or without MBL were 

used to stimulate the macrophages in the presence or absence of LPS. All 

experiments were repeated in triplicate at least three times. 

 Phagocytosis and detection of intracellular TNF-  �  .   Macrophages 

plated at 10 6  cells per well in 12-well tissue culture plates in DMEM with 1% 

FCS were incubated with  � 2.5  ×  10 7  heat-inactivated bacteria, labeled with 

tetramethyl-6-carboxyrhodamine (TAMRA; Invitrogen), and opsonized 

with or without 10  μ l/ml of MBL, as described in the previous section, for 

20 min on ice, allowing the synchronization of bacteria binding onto the 

cell. In all cases, before the opsonization and the incubation with macro-

phages,  S. aureus  clusters were disrupted by passing the bacteria through a 

30-gauge needle. After 20 min on ice, the cells were further incubated for 

the times indicated in the fi gures at 37 ° C in the presence of GolgiStop (BD 

Biosciences) to accumulate intracellular TNF- � . The cells were washed 

twice with ice-cold PBS containing 5 mM EDTA (PBS/EDTA), detached 

with scrapers, and fi xed in 3% paraformaldehyde. The cells were permeabi-

lized and stained with allophycocyanin-conjugated anti – mouse TNF- �  

antibody (BD Biosciences) diluted in PBS with 0.2% saponin. After washing, 

the cells were analyzed by fl ow cytometry performed on FACSCalibur (Bec-

ton Dickinson); the analysis was performed with CellQuest Pro software 

(Becton Dickinson) to determine phagocytosis and intracellular TNF- �  pro-

duction at the single-cell level. GolgiStop alone did not stimulate TNF- �  

production (unpublished data). To estimate the number of bacteria engulfed 

by a single cell, TAMRA-labeled  S. aureus  used in the same experiment 

were also analyzed by fl ow cytometry to obtain the MFI of a single bacterial 

particle, which allowed to identify the cells that engulfed one- or twofold 

increasing numbers of bacteria and, therefore, to determine the means of 

intracellular TNF- �  production in cells with the same bacterial loads. 

 MBL binding assays.   MBL binding to bacterial cell wall components in 

solid phase was assessed by ELISA, as described previously ( 45 ). Flow cytom-

etry was also used to measure MBL binding to the whole bacteria. In brief, 

Cy3-MBL (Cy 3 was obtained from GE Healthcare) at 10  μ g/ml was prein-

cubated with the indicated amounts of bacterial cell wall components (as 

shown in the fi gures) in liquid phase for 10 min at room temperature. Prein-

cubated Cy3-MBL or Cy3-MBL without preincubation at 10  μ g/ml was 

mixed with 2  ×  10 7  heat-inactivated  S. aureus  in 100  μ l of HBSS. The mix-

ture was incubated for 30 min at room temperature. After washing once 

with HBSS (10,000  g  for 2 min), the bacteria were analyzed for MBL bind-

ing by fl ow cytometry as described in the previous section. MBL binding 

was evaluated as MFI of the bacteria population. MBL binding to the bacte-

ria was also analyzed by fl uorescence microscopy, where the bacteria were 

cytospun onto microscope slides, and after mounting, images were captured 

as described in Immunofl uorescence. 
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