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    SARS is an acute respiratory disease from infec-
tion of a novel coronavirus (SARS-CoV) that 
spreads mainly through the respiratory route 
( 1 – 3 ), with angiotensin-converting enzyme 2 
(ACE2) as the only known functional receptor 
( 4 ). One of the clinical features in SARS infec-
tion is continuous deterioration of lung function 
and the obvious loss of lung repair capacity after 
viral load has declined ( 5 ). However, the patho-
genesis for SARS-CoV infection, for which 
characterizing the nature of virus-infected cells 
is crucial, is still ill-defi ned. Reports in the lit-
erature regarding the identity of SARS �  cells are 
unconvincing either because no colocalization 
study was performed or because of technical 
limitations. Results in the literature are also in-
consistent in that some reports suggested type I 
pneumocytes, whereas others suggested type II 
pneumocytes, as the major target in humans 
and in simian models ( 6 – 11 ). It has also been 
implied that these SARS �  cells express cyto-
keratin, whether they are described as type I 
or type II cells ( 6 – 10, 12 ). It is also a concern 

that none of these reports demonstrated co-
localization of ACE2 expression with SARS-
infected cells. Using multicolor colocalization 
techniques, we previously reported that cells 
containing SARS-CoV antigen in the autopsy 
lung of SARS patients expressed ACE2 and 
liver/lymph node – specifi c ICAM-3 – grabbing 
non-integrin (L-SIGN; CD209L) ( 13 ). L-SIGN 
is a SARS-CoV binding receptor that mediates 
proteasome-dependent viral degradation and is 
expressed in cytokeratin �  respiratory  epithelia 
(Fig. S1, available at http://www.jem.org/cgi/
content/full/jem.20070462/DC1) (13). L-SIGN 
can also facilitate SARS-CoV infection/repli-
cation in trans ( 13 ). In this study, we further 
characterize the SARS-infected cells and show 
that a novel subset of putative stem/progenitor 
CD34 � Oct-4 �  cells are the only cells express-
ing ACE2 in the human lung and are the major 
target for SARS-CoV infection. 

  RESULTS AND DISCUSSION  

 SARS �  cells in alveoli and terminal bronchioles 

do not express cytokeratin or surfactant 

 To characterize the phenotype of SARS �  cells, 
autopsy lung samples from nine SARS patients 
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 Identifi cation of the nature of severe acute respiratory syndrome (SARS)-infected cells is 

crucial toward understanding the pathogenesis. Using multicolor colocalization techniques, 

we previously reported that SARS �  cells in the lung of fatally infected patients expressed 

the only known functional receptor, angiotensin-converting enzyme 2, and also a binding 

receptor, liver/lymph node – specifi c ICAM-3 – grabbing non-integrin (CD209L). In this study, 

we show that SARS-infected cells also express the stem/progenitor cell markers CD34 and 

Oct-4, and do not express cytokeratin or surfactant. These putative lung stem/progenitor 

cells can also be identifi ed in some non-SARS individuals and can be infected by SARS-

coronavirus ex vivo. Infection of these cells may contribute to the loss of lung repair 

capacity that leads to respiratory failure as clinically observed. 
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were subjected to triple-color sequential immunohistochem-
istry (IHC) and immunofl uorescence staining on the same 
section. We found that the SARS antigen could be detected 
in six patients who died within 11 d after illness onset, but not 
in the other three patients who died 21, 24, or 27 d after dis-
ease onset ( Table I ), which is consistent with a recent report 
showing that SARS antigen or RNA could not be detected in 
patients who died �2 wk after disease onset ( 11 ).  In samples 
where SARS antigen was detected, as many as 42 SARS �  
cells in a microscopic fi eld (400�) were identifi ed ( Table I ). 
By location, SARS �  cells were found in the alveoli ( Fig. 1, 
a and b, and d and e , red) and the bronchiolar lining layer ( Fig. 
1, j and k , red).  By morphology, SARS �  cells were round or 
oval in shape and rich in cytoplasm ( Fig. 1, b, d, e, j, and k ). 
Furthermore, SARS �  cells did not express surfactant A, a type II 
pneumocyte marker ( Fig. 1, a, b, d, and j , brown), or cyto-
keratin ( Fig. 1, e and k , green). SARS �  cells did not express 
surfactant C (also a type II pneumocyte marker) or T1 �  (a type I 
pneumocyte marker) either (Fig. S2, available at http://www
.jem.org/cgi/content/full/jem.20070462/DC1). Because 
bronchial/bronchiolar lining layers are composed of multiple 
cell types that are compactly arranged, some SARS �  cells 
were  “ overlapping ”  with adjacent cytokeratin �  cells (e.g., 
one indicated by a circle,  Fig. 1 k  and Fig. S3), which could be 
mistakenly interpreted as  “ colocalized ”  on two-dimensional 
images. However, they could be carefully distinguished by 
adjusting the focus under the microscope. 

 Our fi ndings indicate that SARS-infected cells are unlikely 
to be pneumocytes (either type 1 or type 2) or cytokeratin �  
epithelial cells. This observation is supported by a recent report 
that SARS-CoV cannot infect or replicate in the fully diff eren-
tiated mouse type 1 or type 2 pneumocytes ( 14 ). Our result 
does contradict some data in the literature that suggest that 
cytokeratin � , surfactant � , or the epithelial membrane antigen –
 expressing pneumocytes are targeted by SARS-CoV ( 6 – 12 ). 
Upon reviewing the literature, however, we noticed that in 

 Table I.   Number of SARS �  cells in fatally infected SARS lung 

 Case no.  Age (years)/Sex  Mortality date  

 (days after illness 

onset) 

 SARS �  cell   a   

  mean  �  SD 

 (range) 

 Phenotype of SARS �  cells 

CD34 � CD34� (range)

1 69/M 4 10  �  3 (6 – 13) 9  �  3 (6 � 12) 0–1

2 80/F 5 21  �  14 (9 – 42) 19  �  13 (9 � 39)  0–4  b  

3 91/F 9 7  �  3 (5 – 12) 7  �  3 (5 � 12)  Nil 

4 64/M 9 6  �  3 (4 – 11) 6  �  3 (4 � 11)  Nil 

5 76/M 11 5  �  2 (3 – 8) 5  �  2 (3 � 8)  Nil 

6 95/F 11 3  �  1 (2 – 4) 3  �  1 (2 � 4)  Nil 

7 37/F 21  Nil  �  � 

8 71/M 24  Nil   �    �  

9 47/M 27  Nil   �    �  

No SARS antigen could be detected in patients 7 – 9.  Nil , no detectable SARS �  cells in at least 20 fi elds (400 � ) of each lung sample.

  a  Numbers were obtained by counting SARS �  cells from fi ve different fi elds (400 � ) of lung samples in patients 1 – 6.

  b  Including 0-1 SARS � CD68 �  cell per fi eld.

 Figure 1.   SARS �  cells do not express cytokeratin or surfactant in 

alveoli (a – f) and terminal bronchioles (j – L). SARS lung autopsy sam-

ples studied by IHC for surfactant A (brown labeling in a, b, d, and j; some 

indicated by yellow arrows), for SARS-CoV nucleocapsid antigen (red label-

ing; some indicated by red arrows in a, b, d, and j; also visible in e and k), 

and immunofl uorescence for cytokeratin (green labeling in e and k; some 

indicated by white arrows). The black circle in d indicates where cytokeratin �  

cells are visualized in e. The yellow circle in e indicates where surfactant �  

cells are visualized in d. DAPI counterstaining showing the cellular nuclei 

is in the right column. Isotype antibody control for IHC and immuno-

fl uorescence is in g and h, respectively. Some SARS �  cells were actually 

 “ overlapping ”  with adjacent cytokeratin �  cells (one indicated by a circle in k), 

which might be mistakenly regarded  “ colocalized ”  on two-dimensional 

photos. Panels of each row represent results of the same section from a 

patient. Results are representative of six SARS patients who died within 

11 d after disease onset. Bar, 20  � m.   
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leukocytes infi ltrating in the lung. Results showed that the 
SARS �  cells did not express tryptase, defensins 1/2/3, CD15, 
CD68, CD57, CD45RO, CD3, and CD20, indicating that they 
were not mast cells, neutrophils, macrophages/monocytes, 
NK, T, or B cells (Fig. S5, available at http://www.jem.org/
cgi/content/full/jem.20070462/DC1). We next examined 
the markers for other cell types. CD34 is expressed by hema-
topoietic progenitors in the circulation ( 19 ) and also by bone 
marrow stromal cell precursors ( 20 ). By a four-color sequen-
tial IHC and simultaneous fl uorescence in situ hybridization 
(FISH) and ISH study, we demonstrated that SARS �  cells 
( Fig. 2 a , red) were distinct from cells expressing the macro-
phage/monocyte-specifi c marker CD68 ( Fig. 2 a , brown), 
and the SARS �  cells expressed the only known functional re-
ceptor ACE2 ( Fig. 2 b , green) as well as the stem/progenitor 
cell marker CD34 ( Fig. 2 c , purple).  Similar observations were 
made in the bronchioles, i.e., SARS �  cells expressed both 
ACE2 and CD34 (Fig. S6). In a separate sequential IHC/
FISH/ISH study, SARS �  cells ( Fig. 2 i , red) expressed CD34 
( Fig. 2 j , green) and another stem/progenitor cell marker, 
Oct-4 ( Fig. 2 k , purple). Oct-4 is a transcription factor, and 
its activity is essential for maintaining pluripotency of the 

some of previous reports the identity of the SARS �  cells was 
judged by morphology or location alone without colocalization 
with specifi c markers to confi rm the phenotype ( 6, 7, 10 ). 
In addition, these reports used avidin – biotin complex for 
SARS-CoV or cytokeratin staining ( 6, 7, 10 ). Biotin is widely 
dispersed in mammalian tissues ( 15 – 17 ), and the presence of 
endogenous biotin is likely to result in false-positive readings, 
even after blocking procedures before immunodetection ( 18 ). 
Experiences with this problem have also been encountered in 
our lab (Fig. S4, available at http://www.jem.org/cgi/content/
full/jem.20070462/DC1). In other reports, the double-color 
results for colocalization either could not be clearly diff erenti-
ated from single-color staining ( 8, 9 ) or were interfered by auto-
fl uorescence ( 11, 12 ) or by hematoxylin counterstaining ( 9 ). 
It is also a concern that none of these reports demonstrates 
the colocalization of ACE2 expression with the SARS �  cells. 
Interpretation of these reports thus requires reappraisal. 

 SARS �  cells express the functional receptor ACE2 

and markers for stem/progenitor cells 

 Because SARS �  cells did not express cytokeratin or surfac-
tant A ( Fig. 1 ), we investigated if the SARS �  cells might be 

 Figure 2.   SARS �  cells in the alveoli express ACE2, CD34, and Oct-4. (a – c) IHC on SARS autopsy lung for CD68 (brown labeling, some indicated by 

dark blue arrows in a) and for SARS-CoV antigen (red labeling, some indicated by red arrows in a; also visible in b and c), followed by FISH for ACE2 (green 

labeling in b, some indicated by green arrows and a circle) and ISH for CD34 (purple labeling in c, some indicated by light blue arrows and a circle). Circles 

in a, b, and c indicate uninfected ACE2 � CD34 �  cells. (e – g) Isotype antibody control for IHC, ACE2 sense control for FISH, and CD34 sense control for ISH, 

respectively. (i – k) IHC for SARS-CoV antigen (red labeling, some indicated by red arrows in i; also visible in j and k), followed by FISH for CD34 (green 

labeling in j, some indicated by light blue arrows and circles), and ISH for Oct-4 (purple labeling in k, some indicated by purple arrows and circles). Circles 

in j and k indicate uninfected CD34 � Oct-4 �  cells. Isotype antibody control for IHC, CD34 sense control for FISH, and Oct-4 sense control for ISH are similar 

to e, f, and g, respectively (not depicted). DAPI counterstaining is in the right column. Panels of each row represent results on the same section of a 

patient. Results are representative of six SARS patients. Bar, 20  � m.   
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express ACE2 but not cytokeratin; however, only the latter 
contain SARS-CoV antigen in the SARS lung. We also note 
that the frequency of CD34 �  cells in the non-SARS lung 
 appears to be higher than that of SARS �  cells in the SARS 
samples. However, these numbers cannot be directly compared 
because the non-SARS lung samples were from lung cancer 
patients, which may not represent the situations in healthy in-
dividuals who have no lung pathology. Furthermore, it is still 
unclear how the frequency of these putative stem/progenitor 
cells is regulated, for example, in cancers. 

 To further investigate if CD34 �  cells in the non-SARS 
lung could be infected by SARS-CoV, part of the fresh lung 
tissue collected from six lung cancer patients ( Table II ) was cut 
into small blocks (2 – 3 mm 3 ) and directly exposed to live virus 
as similarly described by others ( 23 ). After 16 h, the ex vivo –
 infected tissue blocks were fi xed and embedded for IHC-
FISH-ISH study. Results showed that though few in number, 
SARS �  cells were identifi ed in samples from four patients ( Fig. 
3 B , b and c, red, and Figs. S8 and S9, which are available at 
http://www.jem.org/cgi/content/full/jem.20070462/DC1). 
Consistently, these four patients also had detectable CD34 � 
Oct-4 �  cells in the fresh samples studied immediately upon 
collection ( Table II ). Furthermore, in line with observations in 
the SARS-infected lung, the SARS antigen ( Fig. 3 B , b and c, 
red, and Fig. S8) was not colocalized with surfactant A ( Fig. 3 
B , b, brown, and Fig. S8). SARS �  cells could be clearly visu-
alized under a fl uorescence microscope before FISH study 
( Fig. 3 B , c). After FISH/ISH study, SARS �  cells indeed 

mammalian embryonic cells ( 21, 22 ). Such observations were 
made in all lung samples from patients recruited for this study 
who died within 11 d after illness onset ( Table I ). We thus 
conclude that the majority of SARS �  cells in the SARS lung 
were a subset of putative stem/progenitor cells expressing 
CD34, Oct-4, and ACE2. 

 It is noteworthy although SARS antigen could not be de-
tected in most CD68 +  cells ( Fig. 2 a  and Fig. S5), SARS � CD68 �  
cells were occasionally found in selected sections of a patient 
( Table I  and Fig. S7, available at http://www.jem.org/cgi/
content/full/jem.20070462/DC1). However, in contrast to the 
diff usely intra-cytoplasmic staining in SARS � CD34 �  cells, the 
viral staining in CD68 �  cells was usually granular ( Fig. 2 a  vs. 
Fig. S7), suggesting that the mechanism(s) by which SARS 
antigen enters CD34 �  and CD68 �  cells may be diff erent. 
Because CD68 �  cells did not express the functional receptor 
ACE2 ( Fig. 2 ), we regard that the presence of viral antigen in 
CD68 �  cells is most likely due to phagocytosis. 

 ACE2 � CD34 � Oct-4 �  cells are present in non-SARS lung and 

express L-SIGN, and can be infected by SARS-CoV ex vivo 

 To determine if ACE2 � CD34 � Oct4 �  cells could be found in 
non-SARS lung, lung tissues from 14 lung cancer patients 
who had no SARS infection ( Table II ) were examined.  Eight 
of these patients were retrieved from our archive. The other 
six were additionally enrolled to obtain fresh lung tissues, part 
of which was immediately fi xed, embedded, and sectioned 
for IHC-FISH-ISH study upon collection, and the other part 
was used for ex vivo infection experiments (described below). 
Results showed that ACE2 signals were detectable in samples 
from 8 of 14 lung cancer patients, but not in the others 
( Table II ). In these eight patients, we found that consistent with 
our fi ndings in the SARS lung, ACE2 ( Fig. 3 A , b, f, and n, 
green) was not expressed by surfactant A �  cells ( Fig. 3 A , 
a, e, i, and m, brown; each row represents results from a patient) 
but was expressed by CD34 �  cells ( Fig. 3 A , c and j, purple or 
green).  For better diff erentiation between alveolar and vascu-
lar lumens, an endothelial cell marker, CD31, was used to 
depict blood vessels ( Fig. 3 A , a – c, red). We showed that 
cytokeratin �  cells ( Fig. 3 A , e, f, m, and n, red) did not express 
ACE2 either ( Fig. 3 A , f and n, green). Furthermore, CD34 
expression ( Fig. 3 A , j, green) was colocalized with Oct-4 
( Fig. 3 A , k, purple). Interestingly, these ACE2 � CD34 � Oct4 �  
cells did not express CD15 (i.e., SSEA-1), another marker for 
stem/progenitor cells ( Fig. 3 A , i, j, and k, red). We also found 
that in line with our previous report ( 13 ), ACE2 �  cells ( Fig. 3 
A , n, green) also expressed L-SIGN ( Fig. 3 A , p, purple), a 
binding receptor for SARS-CoV. In the lung samples from 
these eight patients, the number of CD34 �  cells was identifi ed 
from 2 to 72 per microscopic fi eld (400�) ( Table II ). There-
fore, ACE2 � CD34 � Oct4 � L-SIGN �  cells are also present in 
the lung of some non-SARS individuals. Together with our 
previous fi ndings (reference  13  and Fig. S1), we also conclude 
that the binding receptor L-SIGN is expressed by at least two 
cell types in the non-SARS lung: cytokeratin � ACE2  −   bron-
chial/bronchiolar epithelial cells and CD34 � Oct4 �  cells that 

 Table II.   Numbers of CD34 �  cells in lung samples from lung 

cancer patients 

 Case no.  Age (years)/Sex  Numbers   a   

  mean  �  SD 

  (range) 

1 68/M 10  �  8 (2 – 22)

2 67/M 18  �  17 (4 – 45)

3 67/M  Nil 

4 70/F  Nil 

5 52/M 40  �  5 (35 – 48)

6 55/M  Nil  

7 54/M 22  �  12 (6 – 38) 

8 72/F  Nil 

9  b  77/M 55  �  15 (40 – 72)

10  b  64/M 34  �  5 (28 – 40)

11  b  79/M 24  �  17 (6 – 40)

12  b  71/F  Nil  

13  b  40/M 20  �  10 (11 – 36)

14  b  49/M  Nil 

Patients 1 – 8 were from the archive. Patients 9 – 14 were recruited for ex vivo 

infection, and IHC-FISH-ISH study was performed in each sample before and after 

ex vivo infection. CD34 �  cells express Oct-4, ACE2, and L-SIGN.  Nil , no detectable 

CD34 �  cells in at least 20 fi elds (400 � ) of each lung sample.

  a  Numbers were obtained by counting CD34 �  cells from fi ve different fi elds (400 � ) 

of lung samples from eight lung cancer patients.

  b  Patients selected for ex vivo infection.
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 Figure 3.   ACE2 � CD34 � Oct-4 � L-SIGN �  cells are present in non-SARS lung and can be infected by SARS CoV ex vivo. (A, a – d) IHC on non-

SARS lung samples for surfactant A (brown labeling, some indicated by yellow arrows in a; also visible in c), CD31 (red labeling in a; also visible in b and c), 

followed by FISH for ACE2 (green labeling in b, some indicated by green arrows) and ISH for CD34 (purple labeling in c, some indicated by light blue 

arrows). DAPI counterstaining is in d. Circle in b indicates autofl uorescence from red blood cells. (e – h) IHC for surfactant A (brown labeling, one indicated 

by a yellow arrow in e; also visible in g) and for cytokeratin (red labeling, one indicated by a white arrow in e; also visible in f and g), followed by FISH for 

ACE2 (green labeling in f, some indicated by green arrows) and ISH for CD34 (purple labeling in g, some indicated by light blue arrows). DAPI counter-

staining is in h. (i – L) IHC for surfactant A (brown labeling in i, one indicated by a yellow arrow; also visible in k) and for CD15 (red labeling, one indicated 

by a dark green arrow in i; also visible in j and k), followed by FISH for CD34 (green labeling in j, some indicated by light blue arrows) and ISH for Oct-4 

(purple labeling in k, some indicated by purple arrows). DAPI counterstaining is in L. One of the CD34 � Oct-4 �  cells is juxtaposed to a surfactant �  cell 

(the yellow arrow in i vs. the lower light blue arrow in j and the lower purple arrow in k). (m – q) IHC for surfactant A (brown labeling, one indicated by a 

yellow arrow in m; also visible in p) and for cytokeratin (red labeling, one indicated by a white arrow in m; also visible in n and p), followed by FISH for 

ACE2 (green labeling, some indicated by green arrows in n) and ISH for L-SIGN (purple labeling, some indicated by pink arrows in p). DAPI counterstaining 

is in q. Some of the ACE2 � CD34 � Oct4 � L-SIGN �  cells are close to surfactant A �  cells (g and k) or cytokeratin �  cells (p). Panels of each row represent 

results on the same section of a patient. Results are representative of eight patients with lung cancer. Bar, 20  � m. (B) Fresh lung tissues resected from 

cancer patients were cut into small blocks, exposed to SARS-CoV for 16 h, and studied by IHC for surfactant A (brown labeling in a and b, one indicated 

by a yellow arrow in b; also visible in e), for SARS antigen (red labeling, indicated by a red arrow in b; also visible in c), followed by FISH for CD34 (green 

labeling, one indicated by a light blue arrow in d) and ISH for Oct-4 (purple labeling, one indicated by a purple arrow in e). T, tumor. DAPI counterstaining 

is in f. Results are representative in four of six individuals enrolled. No CD34 �  cells could be detected in samples from the other two individuals. 

Bars: a, 100  � m; b – f, 20  � m.   
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expressed both CD34 and Oct-4 ( Fig. 3 B , d and e, green and 
purple, respectively, and Fig. S8). In separate sections, triple-
color staining confi rmed that no cytokeratin or surfactant ex-
pression was colocalized with SARS antigen (Fig. S9). 

 In the ex vivo – infected samples where SARS �  cells were 
detected, an average of about two to three SARS �  cells per 
tissue section could be identifi ed. The reason for few cells be-
ing infected in this model is unclear. One possibility is that, 
unlike the in vivo situation where the virus can reside and 
replicate in the lung for days to weeks, fresh lung tissues in the 
form of blocks were exposed to live virus for 16 h only. Thus, 
the virus may not be able to  “ see ”  all of these target cells. It is 
also possible and remains to be investigated if these putative 
stem/progenitor cells represent a heterogeneous population 
that is still diff erentiating and only cells at a certain diff erentia-
tion stage are susceptible to the viral infection. 

 Collectively, we conclude that the major target for SARS-
CoV in the SARS-infected lung is a novel subset of putative 
lung stem/progenitor CD34 � Oct4 �  cells ( Fig. 2 ), which is 
also the only cell subset in the fresh non-SARS samples being 
infected after ex vivo infection ( Fig. 3 B ). Interestingly, not all 
of our enrolled non-SARS individuals had detectable putative 
stem/progenitor cells in the lung. A recent report has shown 
that approximately one third of SARS-infected patients had 
self-limited symptoms with no clinical or radiological evidence 
of progression to pneumonitis, whereas the remaining had 
progressive deterioration with impaired lung function ( 24 ). 
Whether or not our fi ndings may contribute to the above 
clinical observation deserves further study. It also remains 
to be investigated if these putative stem/progenitor cells also 
exist in nasopharynx, throat, or trachea. The presence of these 
cells in the upper airway may also allow viral replication upon 
initial exposure. 

 Our current understanding about human lung stem/pro-
genitor cells is limited. Recently, a subset of pulmonary Oct-4 �  
stem/progenitor cells that could diff erentiate into pneumo-
cytes has been isolated from neonatal mouse lung ( 14 ). Of 
 signifi cance, these mouse stem/progenitor cells express ACE2 
and are susceptible to SARS-CoV infection and replication 
in vitro ( 14 ), which at least in part supports our fi ndings. In the 
adult mouse lung, CD34 �  bronchioalveolar stem cells (BASCs) 
that can diff erentiate into alveolar epithelia have also been iso-
lated ( 25 ). The phenotype of the novel cell subset we identi-
fi ed in the human lung, however, is not entirely compatible to 
those known mouse lung stem/progenitor cells. For example, 
the Oct-4 �  stem/progenitor cells isolated from the neonatal 
mouse lung express cytokeratin and CD15 (i.e., SSEA-1) ( 14 ), 
whereas our cells do not ( Fig. 3 ). The BASCs identifi ed in the 
adult mouse lung express surfactant ( 25 ), which is undetect-
able in our cells. In addition, instead of being at the bron-
chioalveolar duct junction where the BASCs are located ( 25 ), 
our cells are scattered in the lung stroma ( Fig. 3 A ) and in the 
bronchiolar lining layer (Fig. S6). Nevertheless, we notice that 
some CD34 � Oct4 �  cells in the non-SARS lung are actually 
juxtaposed to the cytokeratin �  or surfactant �  cells ( Fig. 3 A ). 
Therefore, the possibility that these putative stem/progenitor 

cells in the human lung may diff erentiate into mature respira-
tory epithelia or pneumocytes, as in the case in mice, cannot 
be excluded. 

 The origin of this novel putative human lung stem/pro-
genitor cell is yet to be determined. In our study, some unin-
fected CD34 � Oct4 �  cells were identifi ed in the alveoli and 
bronchiolar lining layer of the SARS lung ( Fig. 2  and Fig. S6). 
Furthermore, not all the enrolled non-SARS individuals had 
these cells in the lung. It is thus likely that these CD34 � Oct-4 �  
cells might be blood-borne and recruited into the lung under 
regulation. This postulation can be supported at least in part 
by reports that circulation- or bone marrow – derived cells 
may diff erentiate into mature respiratory epithelia in animals 
( 26 – 28 ), and that preexisting injury may increase recruitment 
of adult bone marrow – derived cells to the lung, which subse-
quently give rise to diff erentiated cells ( 29 ). Because CD34 � 
Oct4 �  cells can be found in the non-SARS lung ( Fig. 3 A ) 
and can be infected by SARS-CoV ex vivo ( Fig. 3 B  and 
Figs. S8 and S9), we regard it unlikely that the presence of 
these cells in the lung is merely a response to SARS infection. 
For the same reason, it is also unlikely that these cells are 
recruited into the lung only as part of an attempt for viral 
clearance or are the only remaining cells bearing viral antigen 
by the time of death. 

 Whether or not these CD34 �  cells are also the major tar-
get for SARS-CoV in the early phase of infection remains to 
be investigated. Our ex vivo infection model in part can be a 
complement to actual early infection. However, in vivo con-
fi rmation of the identity of virus-targeted cells in the early 
phase is diffi  cult because of unavailability of samples from pa-
tients who died within 3 d after illness onset or even before 
the onset. Extrapolation of animal studies to humans for early 
infection also requires much caution because iatrogenic in-
oculation with large-volume viral droplets into animals is dif-
ferent from infection in a more natural aerosol form in human 
settings ( 30 ). Moreover, the value and reproducibility of the 
nonhuman primate model for SARS infection are also highly 
disputable ( 31, 32 ). 

 Admittedly, the pathogenesis of SARS is still unclear and 
no satisfactory explanation for a complete picture has been 
provided by reports in the literature or by this study. Never-
theless, we present clear evidence that putative stem/progenitor 
CD34 � Oct4 �  cells are the major target for SARS-CoV in-
fection in the human lung. With our fi ndings, we postulate 
that although L-SIGN – mediated viral entry into cytokeratin �  
respiratory epithelia leads to viral degradation ( 13 ), infection 
of CD34 � Oct4 �  cells may result in cell death (cytopathy) 
and the production of proinfl ammatory cytokines or other 
soluble mediators. The death of the stem/progenitor cells and 
the resulting local immuno-dysregulation (e.g., cytokine storm 
from infi ltrating immune cells [Fig. S5], including macrophages, 
and/or from the infected CD34 � Oct4 �  cells) may together 
contribute to alveolar cell damage, loss of repair capacity, and 
respiratory insuffi  ciency as clinically observed. Isolation and 
purifi cation of these CD34 � Oct4 �  cells are underway to fur-
ther examine their role in the pathogenesis. 
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ACE2 and CD34. Fig. S7 shows that SARS-CoV antigen can be found in 

CD68 �  cells. Fig. S8 shows that CD34 � Oct-4 �  cells in non-SARS lung tis-

sues can be infected by SARS-CoV ex vivo. Fig. S9 shows that SARS-CoV 

does not infect cytokeratin �  or surfactant A �  cells in fresh lung tissue blocks. 

Table S1 shows the list of antibodies used. The online supplemental material 

is available at http://www.jem.org/cgi/content/full/jem.20070462/DC1. 
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 MATERIALS AND METHODS 
 Lung samples, antibodies, and cRNA probes.   Lung autopsy from nine 

patients fatally infected with SARS were retrieved for the study. Non-SARS 

lung samples were obtained from 14 adults having lobectomy for lung cancers 

with approval by the Institutional Review Board of the University of Hong 

Kong. Mouse anti-SARS CoV nucleocapsid antibody was produced as de-

scribed previously ( 13 ). Other primary antibodies used were listed in Table S1 

(available at http://www.jem.org/cgi/content/full/jem.20070462/DC1). 

Antisense and sense of cRNA probes for FISH and ISH were generated as 

described previously ( 13 ). CD34 cRNA probe corresponding to nucleotides 

590 – 1034 (GenBank accession no.  S53910 ) and Oct-4 cRNA probe corre-

sponding to nucleotides 454 – 1046 (GenBank accession no.  NM002701 ) 

were used. ACE2 and L-SIGN (CD209L) probes were described previ-

ously ( 13 ). 

 Sequential triple immunostaining on paraffi  n sections.   Sequential 

immunostaining was performed on 5- � m paraffi  n sections of formalin-fi xed 

lung samples. Samples were de-paraffi  nized and rehydrated. After blocking 

endogenous peroxidase with 0.3% H 2 O 2 , 0.03% NaN 3  for 30 min at room 

temperature, mouse anti – surfactant A antibody was added at 4 ° C overnight. 

Sections were then incubated with peroxidase-conjugated EnVision plus 

reagent (anti – mouse, ready to use; DakoCytomation) for 1 h at room 

temperature and developed with diaminobenzidine chromogen substrate 

(DakoCytomation). Sections were subjected to microwave heating to block 

endogenous alkaline phosphatase as well as to inactivate the antibody from 

the fi rst staining. Mouse anti-SARS CoV nucleocapsid antibody was applied 

at 4 ° C overnight, followed by anti – mouse universal immuno-alkaline-

phosphatase polymer (ready to use; Nichirei Corporation) for 2 h at room 

temperature. The color was subsequently developed with a fast red substrate 

system (Sigma-Aldrich). After immunohistochemical staining, sections were 

again microwaved to inactivate the antibody from the second staining, fol-

lowed by incubation with mouse anti-cytokeratin AE1/AE3 at 4 ° C overnight. 

Sections were incubated with FITC-conjugated goat anti – mouse IgG (1:400; 

Sigma-Aldrich) at room temperature for 2 h. Sections were mounted with 

medium for fl uorescence with DAPI (Vector Laboratories). Electronic images 

of the immunohistochemical and immunofl uorescence staining, visualized 

under a fl uorescence microscope (eclipse E600; Nikon), were captured and 

saved to a computer using the software ACT-1 (Nikon). 

 IHC, FISH, and ISH on paraffi  n sections.   Sequential IHC was per-

formed similarly as described above. After immunostaining, sections were 

treated with 0.2 N HCl for 30 min at room temperature to block alkaline 

phosphatase activity from the previous staining. Sections were then digested 

with 10  � g/ml proteinase K at 37 ° C for 15 min. Subsequent FISH and ISH 

were performed on the same section as described previously ( 13 ). The same 

fi eld as in the IHC, FISH, and ISH images were selected and visualized un-

der the same microscope and saved as electronic images for comparison and 

analysis of colocalization. 

 SARS-CoV infection of fresh human lung tissues.   Lung tissues were ex-

cised from lung cancer patients for ex vivo infection with the approval by the 

Institutional Review Board of the University of Hong Kong. Fresh lung tissues 

were cut into small tissue blocks (2 – 3 mm 3 ), followed by SARS-CoV (strain 

GZ50) ( 33 ) infection at 5  �  10 6  TCID 50  in 1 ml of serum-free RPMI medium 

at 37 ° C for 1 h. The culture was then supplemented with 10% fetal bovine 

 serum and further incubated at 37 ° C for 16 h. Tissue blocks were fi xed and 

processed for subsequent IHC, FISH, and ISH analysis as described above. 

 Online supplemental material.   Fig. S1 shows that L-SIGN is expressed 

in cytokeratin �  cells. Fig. S2 shows that SARS �  cells do not express surfac-

tant C or T1 � . Fig. S3 shows that SARS �  cells do not express cytokeratin or 

surfactant A. Fig. S4 shows that IHC using an avidin – biotin complex method 

can result in a false-positive reading for cytokeratin expression in the alveoli. 

Fig. S5 shows that SARS �  cells do not express most of the common leuko-

cyte markers. Fig. S6 shows that SARS �  cells in bronchioles express both 

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/204/11/2529/1723628/jem
_20070462.pdf by guest on 24 April 2024



2536 SARS-C O V INFECTS LUNG CD34 � OCT-4 �  STEM/PROGENITOR CELLS | Chen et al.

(CLEC4M) plays a protective role in SARS coronavirus infection.  
  Nat. Genet.    38 : 38  –  46 .  

    14 .  Ling ,  T.Y. ,  M.D.   Kuo ,  C.L.   Li ,  A.L.   Yu ,  Y.H.   Huang ,  T.J.   Wu ,  Y.C.  
 Lin ,  S.H.   Chen , and  J.   Yu .  2006 .  Identifi cation of pulmonary Oct-4+ 
stem/progenitor cells and demonstration of their susceptibility to SARS 
coronavirus (SARS-CoV) infection in vitro.    Proc. Natl. Acad. Sci. USA  . 
 103 : 9530  –  9535 .  

    15 .  Bonnard ,  C. ,  D.S.   Papermaster , and  J.-P.   Kraehenbuhl .  1984 . The strep-
tavidin-biotin bridge technique: application in light and electron micro-
scope immunohistochemistry.  In  Immunolabelling Electron Microscopy. 
J.M. Polak and I.M. Varndell, editors. Elsevier Scientifi c Publishers, 
Amersterdam. 95 – 111.  

    16 .  Bussolati ,  G. ,  P.   Gugliotta ,  M.   Volante ,  M.   Pace , and  M.   Papotti .  1997 . 
 Retrieved endogenous biotin: a novel marker and a potential pitfall in 
diagnostic immunohistochemistry.    Histopathology  .  31 : 400  –  407 .  

    17 .  Yagi ,  T. ,  N.   Terada ,  T.   Baba , and  S.   Ohno .  2002 .  Localization of 
endogenous biotin-containing proteins in mouse Bergmann glial cells.  
  Histochem. J.    34 : 567  –  572 .  

    18 .  Mount ,  S.L. , and  K.   Cooper .  2001 .  Beware of biotin: a source of false-
positive immunohistochemistry.    Curr. Diagn. Pathol.    7 : 161  –  167 .  

    19 .  Andrews ,  R.G. ,  J.W.   Singer , and  I.D.   Bernstein .  1986 .  Monoclonal anti-
body 12-8 recognizes a 115-kd molecule present on both unipotent and 
multipotent hematopoietic colony-forming cells and their precursors.  
  Blood  .  67 : 842  –  845 .  

    20 .  Simmons ,  P.J. , and  B.   Torok-Storb .  1991 .  CD34 expression by stromal 
precursors in normal human adult bone marrow.    Blood  .  78 : 2848  –  2853 .  

    21 .  Nichols ,  J. ,  B.   Zevnik ,  K.   Anastassiadis ,  H.   Niwa ,  D.   Klewe-Nebenius , 
 I.   Chambers ,  H.   Scholer , and  A.   Smith .  1998 .  Formation of pluripotent 
stem cells in the mammalian embryo depends on the POU transcription 
factor Oct4.    Cell  .  95 : 379  –  391 .  

    22 .  Scholer ,  H.R. ,  G.R.   Dressler ,  R.   Balling ,  H.   Rohdewohld , and  P.   Gruss . 
 1990 .  Oct-4: a germline-specifi c transcription factor mapping to the 
mouse t-complex.    EMBO J.    9 : 2185  –  2195 .  

    23 .  Shinya ,  K. ,  M.   Ebina ,  S.   Yamada ,  M.   Ono ,  N.   Kasai , and  Y.   Kawaoka . 
 2006 .  Avian fl u: infl uenza virus receptors in the human airway.    Nature  . 
 440 : 435  –  436 .  

    24 .  Tsui ,  P.T. ,  M.L.   Kwok ,  H.   Yuen , and  S.T.   Lai .  2003 .  Severe acute respi-
ratory syndrome: clinical outcome and prognostic correlates.    Emerg. Infect. 
Dis.    9 : 1064  –  1069 .  

    25 .  Kim ,  C.F. ,  E.L.   Jackson ,  A.E.   Woolfenden ,  S.   Lawrence ,  I.   Babar ,  S.  
 Vogel ,  D.   Crowley ,  R.T.   Bronson , and  T.   Jacks .  2005 .  Identifi cation 
of bronchioalveolar stem cells in normal lung and lung cancer.    Cell  . 
 121 : 823  –  835 .  

    26 .  Kotton ,  D.N. ,  B.Y.   Ma ,  W.V.   Cardoso ,  E.A.   Sanderson ,  R.S.   Summer , 
 M.C.   Williams , and  A.   Fine .  2001 .  Bone marrow-derived cells as pro-
genitors of lung alveolar epithelium.    Development  .  128 : 5181  –  5188 .  

    27 .  Abe ,  S. ,  C.   Boyer ,  X.   Liu ,  F.Q.   Wen ,  T.   Kobayashi ,  Q.   Fang ,  X.   Wang , 
 M.   Hashimoto ,  J.G.   Sharp , and  S.I.   Rennard .  2004 .  Cells derived from 
the circulation contribute to the repair of lung injury.    Am. J. Respir. Crit. 
Care Med.    170 : 1158  –  1163 .  

    28 .  Krause ,  D.S. ,  N.D.   Theise ,  M.I.   Collector ,  O.   Henegariu ,  S.   Hwang , 
 R.   Gardner ,  S.   Neutzel , and  S.J.   Sharkis .  2001 .  Multi-organ, multi-lineage 
engraftment by a single bone marrow-derived stem cell.    Cell  .  105 :
 369  –  377 .  

    29 .  Weiss ,  D.J. ,  M.A.   Berberich ,  Z.   Borok ,  D.B.   Gail ,  J.K.   Kolls ,  C.   Penland , 
and  D.J.   Prockop .  2006 .  Adult stem cells, lung biology, and lung disease. 
NHLBI/Cystic Fibrosis Foundation Workshop.    Proc. Am. Thorac. Soc  .  3 :
 193  –  207 .  

    30 .  Wang ,  B. ,  A.   Zhang ,  J.L.   Sun ,  H.   Liu ,  J.   Hu , and  L.X.   Xu .  2005 . 
 Study of SARS transmission via liquid droplet in air.    J. Biomech. Eng.   
 127 : 32  –  38 .  

    31 .  McAuliff e ,  J. ,  L.   Vogel ,  A.   Roberts ,  G.   Fahle ,  S.   Fischer ,  W.J.   Shieh , 
 E.   Butler ,  S.   Zaki ,  M.   St Claire ,  B.   Murphy , and  K.   Subbarao .  2004 . 
 Replication of SARS coronavirus administered into the respiratory 
tract of African Green, rhesus and cynomolgus monkeys.    Virology  .  330 :
 8  –  15 .  

    32 .  Hogan ,  R.J.   2006 . Are nonhuman primates good models for SARS? 
 PLoS Med.  3:e411; author reply, e415.  

    33 .  Zhong ,  N.S. ,  B.J.   Zheng ,  Y.M.   Li ,  Poon ,  Z.H.  Xie, K.H. Chan, P.H. 
Li, S.Y. Tan, Q. Chang, J.P. Xie, et al.  2003 . Epidemiology and cause 
of severe acute respiratory syndrome (SARS) in Guangdong, People ’ s 
Republic of China, in February, 2003.  Lancet.  362:1353 – 1358.         

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/204/11/2529/1723628/jem
_20070462.pdf by guest on 24 April 2024



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /UseDeviceIndependentColor
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue true
  /ColorSettingsFile (U.S. Prepress Defaults)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 299
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 299
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


