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Interleukin 12 Receptor Deficiency

 

Abstract

 

The clinical phenotype of interleukin 12 receptor 

 

�

 

1 chain (IL-12R

 

�

 

1) deficiency and the
function of human IL-12 in host defense remain largely unknown, due to the small number of
patients reported. We now report 41 patients with complete IL-12R

 

�

 

1 deficiency from 17
countries. The only opportunistic infections observed, in 34 patients, were of childhood onset
and caused by weakly virulent 

 

Salmonella

 

 or 

 

Mycobacteria

 

 (Bacille Calmette-Guérin -BCG- and
environmental 

 

Mycobacteria

 

). Three patients had clinical tuberculosis, one of whom also had sal-
monellosis. Unlike salmonellosis, mycobacterial infections did not recur. BCG inoculation and
BCG disease were both effective against subsequent environmental mycobacteriosis, but not
against salmonellosis. Excluding the probands, seven of the 12 affected siblings have remained
free of case-definition opportunistic infection. Finally, only five deaths occurred in childhood,
and the remaining 36 patients are alive and well. Thus, a diagnosis of IL-12R

 

�

 

1 deficiency
should be considered in children with opportunistic mycobacteriosis or salmonellosis; healthy
siblings of probands and selected cases of tuberculosis should also be investigated. The overall
prognosis is good due to broad resistance to infection and the low penetrance and favorable
outcome of infections. Unexpectedly, human IL-12 is redundant in protective immunity
against most microorganisms other than 

 

Mycobacteria

 

 and 

 

Salmonella

 

. Moreover, IL-12 is redun-
dant for primary immunity to 

 

Mycobacteria

 

 and 

 

Salmonella

 

 in many individuals and for secondary
immunity to 

 

Mycobacteria

 

 but not to 

 

Salmonella

 

 in most.

Key words:

 

Mycobacteria • Salmonella • 

 

immunodeficiency • interleukin 12 receptor • 
interferon 

 

�

 

Introduction

 

Mendelian susceptibility to mycobacterial disease (MSMD;
Mendelian inheritance in man [MIM] 209950) (1) is a rare
syndrome which results in predisposition to clinical disease
caused by poorly virulent mycobacterial species such as the
Bacillus Calmette-Guérin (BCG)

 

*

 

 vaccines (2) and nontu-
berculous environmental 

 

Mycobacteria

 

 (EM; reference 3).
Patients are also susceptible to virulent 

 

Mycobacterium tuber-
culosis

 

 (1). Unlike patients with classic immunodeficiencies,
these patients rarely present other unusual infectious dis-
eases, with the exception of extra-intestinal nontyphoid
salmonellosis, which affects less than half of them. Histo-
pathological and clinical heterogeneity are suggestive of ge-
netic heterogeneity. Some sporadic and most familial cases
suggest autosomal recessive heredity, but the syndrome
segregates in an autosomal dominant (4) or X-linked re-
cessive (5) pattern in some families.

Five disease-causing autosomal genes have been found,
and allelic heterogeneity accounts for the existence of nine
defined disorders, all of which result in impaired IFN-

 

�

 

–
mediated immunity (1). Null recessive mutations in the
IFN-

 

�

 

-receptor ligand-binding chain (IFN-

 

�

 

R1)-encod-
ing gene (

 

IFNGR1

 

) abolish either receptor expression (6,
7) or the binding of surface-expressed receptors to IFN-

 

�

 

(8). Partial recessive (9) and dominant (4) IFN-

 

�

 

R1 defi-
ciencies have also been described. Different recessive muta-
tions in the gene of the IFN-

 

�

 

 signaling chain (IFN-

 

�

 

R2),

 

IFNGR2

 

, are responsible for complete (10) or partial (11)
IFN-

 

�

 

R2 deficiency. A dominant mutation in 

 

STAT1

 

, re-
sulting in partial STAT-1 (signal transducer and activator of
transcription-1) deficiency and impaired cellular responses
to IFN-

 

�

 

, has also been identified in other kindreds (12).

 

The remaining two genetic defects result in normal cel-
lular responses to IFN-

 

�

 

, but abnormal IL-12–dependent
production of IFN-

 

�

 

. A few children are homozygous for
null mutations in 

 

IL12B

 

, encoding the p40 subunit of IL-12
(13–15). Null recessive 

 

IL12RB1

 

 mutations have been
identified in other patients with IL-12 receptor 

 

�

 

1 chain
deficiency (15–21). These studies (13–21) only addressed
case reports or small cohorts of patients, making it difficult
to estimate the range of pathogenic microorganisms and
the severity of the clinical course. These issues are of both
clinical and immunological importance, given the central
role attributed to IL-12 in Th1 development and immunity
to various pathogens (22–24). Here, we describe the

 

IL12RB1

 

 genotype and the cellular and clinical phenotypes
of 41 patients with IL-12R

 

�

 

1 deficiency.

 

Materials and Methods

 

Subjects, Kindreds, and Statistical Methods.

 

We investigated 120
unrelated patients, including five previously described patients
(16, 19, 20). Our study was conducted according to the principles
expressed in the Helsinki Declaration, with informed consent ob-
tained from each patient or the patient’s family. The proportion
of infection-free individuals, survival, and penetrance were calcu-
lated by the Kaplan-Meier method, and the differences between
curves were assessed by the log-rank test. All calculations were
performed with the Lifetest procedure of SAS version 8.2 (SAS).

 

Cell Culture and Stimulation.

 

Epstein-Barr virus-transformed
lymphoblastoid cell lines (EBV-B cell lines) were cultured as de-
scribed previously (14). Whole blood samples were diluted 1:2 in
RPMI 1640 (Invitrogen) and infected by incubation with live 

 

M.
bovis

 

 BCG at a multiplicity of infection of 20:1, alone or with re-
combinant IL-12p70 (20 ng/ml; R&D Systems), for 48 h. Alter-
natively, PBMCs were cultured in RPMI 1640 supplemented
with 10% heat-inactivated pooled human AB serum, and acti-

 

*

 

Abbreviations used in this paper:

 

 BCG, Bacille Calmette-Guérin; EM, envi-
ronmental Mycobacteria; SSCP, single-stranded conformation polymorphism.
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vated by incubation with PHA P 1/700 (Bacto PHA-P; Becton
Dickinson) for 72 h. T cell blasts were restimulated every 48 h
with IL-2 (40 IU/ml; Chiron Corp.).

ELISA and Flow Cytometry. Cell culture supernatants were
assayed for IFN-� by ELISA, according to the kit manufacturer’s
recommendations (Pelikin Compact, CLB). IFN-� concentration
was calculated per 1 million PBMCs. T cell blasts and/or EBV-B
cells were first incubated with an IL-12R�1–specific mouse IgG1
mAb (24E6), an IL-12R�1–specific rat IgG2a mAb (2B10), or
isotypic control mAbs, then with a biotinylated rat anti–mouse
Ab or a biotinylated mouse anti–rat Ab, and finally with streptavi-
din-PE (all reagents were obtained from BD Biosciences/Becton
Dickinson). Signals were analyzed with a FACScan™ machine,
using CELLQuest™ software (Becton Dickinson).

DNA and RNA Extraction, cDNA Synthesis, and PCR Amplifi-
cation. Genomic DNA and total RNA were extracted from
EBV-transformed B cells or T cell blasts, as described previously
(14). RNA was reverse transcribed in the presence of oligo (dT)
with Superscript II reverse transcriptase (Invitrogen; reference
14). The IL12RB1 cDNA, coding exons and flanking intron re-
gions were amplified using pairs of primers and PCR conditions
available upon request.

Single-stranded Chain Polymorphism and Sequencing. Single-
stranded chain polymorphism (SSCP) analysis and PCR were per-
formed with pairs of intron primers flanking each IL12RB1 exon,
under conditions available upon request. PCR products were se-
quenced by dideoxynucleotide termination with nested primers
(available upon request) and the BigDye terminator kit. PCR
products were sequenced on an ABI Prism 3100 apparatus, and
analyzed with Sequencing Analysis software (Applied Biosystems).

Results
We investigated 120 unrelated probands, including 100

with MSMD syndrome (disseminated BCG or EM disease
with or without salmonellosis), and 20 with only nonty-
phoid extraintestinal salmonellosis, as we recently described
a child with salmonellosis as the sole infectious disease and
IL-12p40 deficiency (14).

Detection of IL12RB1 Mutations and Intrafamilial Segrega-
tion. The 17 IL12RB1 coding exons and flanking intron
regions were analyzed by SSCP. 25 patients displayed a
unique SSCP pattern, each for only one exon (Kindreds
1–9, 11–16, 18-26, 29; Table I and Fig. 1). Three addi-
tional patients (17.II.2, 27.II.2, 28.II.3) displayed unique
SSCP patterns for two separate exons, and in one patient
(10.II.2), exons 8 to 13 were not amplified. All coding ex-
ons were sequenced in these 29 patients with abnormal
SSCP patterns. Introns 7 and 13 were also sequenced in pa-
tient 10.II.2, and introns 12 and 13 in patient 19.II.1 (ow-
ing to the identification of a cDNA of low molecular
weight, see below). The patients were found to be ho-
mozygous, or compound heterozygous for nonsense (n �
4), splice (n � 4), and missense (n � 6) mutations, small in-
sertions (n � 1), large deletions (n � 2), and deletions/in-
sertions (n � 4; a total of 21 mutant alleles; Table I). None
of the mutations were found in 50 unrelated healthy indi-
viduals from the corresponding ethnic group. We then am-
plified and sequenced the full-length IL12RB1 cDNA cod-
ing region for the 29 probands. IL12RB1 transcripts of low

molecular weight were found in patients 10.II.2 and
19.II.1. In patients homozygous for splice mutations, no
full-length mRNAs were found. All parents tested were
heterozygous for one IL12RB1 mutation. Only 12 of the
61 known siblings could not be genotyped (designated
“E?” in Fig. 1). Two had died of proven BCG (26.II.1) or
EM (4.II.2) infection and therefore probably carried the
disease-associated IL12RB1 genotype. 10 of the 49 siblings
tested, from nine kindreds, carried two mutant IL12RB1
alleles, raising the number of affected siblings to 12. Alto-
gether, we report 41 individuals from 29 kindreds demon-
strated (n � 39) or thought (n � 2) to be homozygous or
compound heterozygous for IL12RB1 mutations, includ-
ing 29 probands and 12 siblings.

Impaired Surface Expression and Function of IL-12R�1.
We assessed IL-12R�1 expression on the surface of T cell
blasts (kindreds 9, 14, 15, 22, 25), EBV-transformed B cells
(kindreds 8, 11, 19, 20, 29), or both (kindreds 3, 6, 10, 12,
16, 17, 23, 24, 26–28), from 21 of the 24 newly diagnosed
probands, by flow cytometry with specific antibodies.
Consistent with the five patients previously reported (16,
19, 20), no IL-12R�1 molecules were detected on the sur-
face of cells from all but one patient. Patient 10.II.2, carry-
ing a large in-frame deletion, presented an expression of
the �1 chain, both on T cell blasts and EBV-transformed B
cells, detectable with one monoclonal antibody (24E6), but
not with another (2B10; data not depicted). Cells from the
three remaining probands (kindreds 13, 18, 21) were not
tested for IL-12R�1 expression, but were homozygous for
mutations found in other kindreds (Table I). The cells from
all 21 patients tested, including the proband from kindred
10 with residual IL-12R�1 expression produced less IFN-�
than the “travel” and “local” laboratory controls in re-
sponse to BCG (mean of 76 versus 664 and 4,109 pg/ml),
and production was not increased by IL-12 (mean of 87
versus 22,432 and 65,636 pg/ml; Fig. 2). Some patients
were not tested with this assay (kindreds 4, 7, 12, 13, 14,
18, 22, 29). However, kindreds 4, 7, 14, 18, and 22 carry
the same mutation as other patients (Table I). We and oth-
ers have demonstrated that T cells homozygous for the
IL12RB1 missense mutation R213W (kindred 2) are com-
plemented by transfection with a wild-type IL12RB1 allele
(20, 21). Overall, we have demonstrated complete IL-
12R�1 deficiency in 29 patients (absence of detectable IL-
12R�1 surface expression, n � 28, absence of response to
IL-12, n � 27, or both, n � 27).

Onset and Outcome of Infections in IL-12R�1–deficient Pa-
tients. We first analyzed the 34 individuals who developed
case-definition opportunistic infections caused by weakly
virulent microorganisms (BCG, EM, and nontyphoid Sal-
monella; Table I). 25 of these 34 patients had been inocu-
lated with live BCG in childhood. Only 18 developed dis-
seminated BCG disease, within six months of inoculation
(Fig. 3 a). No recurrence of BCG disease was observed in
the 16 patients who survived the initial BCG infection.
Eight patients suffered EM disease. EM disease began before
the age of six years, in all but two patients (4.II.1 and 7.II.5)
who developed M. avium and M. fortuitum infections at the

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/197/4/527/1144487/jem
1974527.pdf by guest on 05 D

ecem
ber 2021



T
h
e 

Jo
u
rn

al
 o

f 
E
xp

er
im

en
ta

l 
M

ed
ic

in
e

530 Interleukin 12 Receptor Deficiency

Table I. Genotypes and Clinical Phenotypes of Patients with IL-12 Receptor �1 Deficiency

Kindred Patientsa Mutationsb Originc Follow-upd
Agee

(yr) BCGf EMf Mtbf Salmonellaf

1 II.2 K305X Morocco Alive 23 D – – S. typhimurium

2 II.1 R213W Morocco Alive 26 Resistant – GI tract –

II.3 Alive 15 D – – S. typhimurium

3 II.3 Y367C Cameroon Alive 2 D – – S. dublin

4 II.1 1623_1624delinsTT Cyprus Alive 33 Resistant M. avium
M. triplex

– S. enteritidis

II.2 Deceased 8 nv M. avium – –

II.3 Alive 27 Resistant – – S. enteritidis

5 II.3 783�1G�A Turkey Alive 15 D – – –

II.4 Alive 12 nv – – –

6 II.2 783�1G�A Turkey Alive 14 D – – S. enteritidis

II.3 Alive 9 D – – –

7 II.5 R173P Turkey Alive 14 Resistant M. chelonae – –

8 II.2 R173P Turkey Alive 9 D – – S. enteritidis

9 II.3 557_563delins8 Turkey Alive 12 D – – S. enteritidis

10 II.2 700+362-1619-944del Israel Alive 4 nv – – S. group D

11 II.2 1190-1G�A Saudi Arabia Alive 3 D – – –

12 II.2 C186S Qatar Alive 7 D – – S. enteritidis

13 II.3 C186S Qatar Alive 7 Resistant – S. spp 

II.4 Alive 4 Resistant – S. typhimurium

14 II.2 1791�2T�G Iran Alive 8 nv – – S. enteritidis

15 II.2 S321X Pakistan Alive 19 Resistant – – S. enteritidis

16 II.1 1791�2T�G Sri-Lanka Alive 18 D – – –

17 II.1 [Q32X�1623_1624delinsTT] France Alive 18 Resistant – – –

II.2 Alive 13 nv M. genavense - S. enteritidis

18 II.1 Q376X France Alive 30 Resistant – – S. dublin

19 II.1 [1745_1746insCA�1483+182-1619-
1073del]

France Alive 31 D – – S. dublin

20 II.1 Q32X France Alive 6 D – – –

21 II.1 Q32X Belgium Alive 16 nv – – –

II.2 Deceased 7 nv M. avium – –

22 II.1 1623_1624delinsTT Germany Deceased 3.5 nv M. avium – –

23 II.1 1623_1624delinsTT Germany Alive 10 D – – S. enteritidis

II.2 Alive 7 nv – – –

24 II.1 1791+2T>G Spain Alive 16 nv – – –

II.2 Alive 14 nv – Lungs S. enteritidis

II.3 Alive 7 nv D –

25 II.1 1791+2T>G Spain Alive 4 nv M. avium – S. enteritidis

26 II.1 549+2T>C Bosnia-
Herzegovina

Deceased 4 D – – –

II.4 Alive 6 nv M. spp – –

27 II.2 [1440_1447delins16+Q171P] Slovakia Deceased 2 D – – –

28 II.3 [1007_1008delinsG+Q171P] Slovakia Alive 3 D – – –

29 II.1 L77P Brazil Alive 24 D – – S. typhimurium

aChildren 3.II.2, 5.II.1, 6.II.1, 7.II.1 and 9.II.2 (Fig. 1) died during their first year of life of unknown causes; they were not available for genetic analysis (no DNA available),
and thus were not included in the present series of patients as their phenotype and genotype were unclear. In contrast, two patients with the known phenotype of BCG and/
or EM infection were included despite their genotype not being known (4.II.2 and 26.II.1).
bMutation nomenclature follows the recommendations of Antonarakis and den Dunnen (reference 52). Mutation Q214R initially found in patient 4.II.1 (16), was subse-
quently found to be a polymorphism. “Delins” indicates mutations combining the deletion and insertion of nucleotides.
cThe clinical features of kindreds 1, 4, and 5 were initially reported in 1998 (reference 16), kindred 2 in 2001 (reference 20), kindred 4 in 1995 (reference 3) and 2000 (ref-
erence 18), kindred 5 in 1988 (reference 53), kindred 7 in 2001 (reference 19), and kindred 21 in 1997 (reference 54). The countries of residence in some cases differ from
the countries of origin: kindred 1 lives in France, kindreds 4 and 15 live in the United Kingdom, kindreds 5 and 6 living in Sweden and originating from Turkey are of the
Kurd ethnic group, kindred 9 originating from Turkey lives in Germany, kindred 10 originating from and living in Israel is of the Bedouin ethnic group, kindred 14 lives in
USA, kindred 16 lives in Switzerland.
dDeceased or alive.
eAge at death or at the time of writing this report.
fBCG, Bacille Calmette-Guérin; D, Disseminated; EM, Environmental Mycobacteria; Mtb, Mycobacterium tuberculosis; nv, not vaccinated with BCG; Resistant, no adverse re-
action to BCG vaccination; M. spp, patient 26.II.4 was not BCG-vaccinated and suffered from chronic disseminated granulomatous disease that responded to empirical anti-
mycobacterial treatment (rifampicin, isoniazid, ethambutol, amikacin); no mycobacterial species were visible or cultured, suggesting atypical mycobacteriosis. Patient 10.II.2
also had Kingella kingae infections, and patient 29.II.1 Paracoccidioides brasiliensis infections. Patient 4.II.1, previously reported not to have been vaccinated (references 3, 16, and
18), had in fact been inoculated with BCG at 5 yr of age. Sera from 26, 25, and 22 patients were tested for Ab against non-typhoid Salmonella, Toxoplasma gondii, and cytome-
galovirus, respectively. The detailed clinical features of all patients will be reported elsewhere.
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ages of 17 and 10 yr, respectively. One of these two patients
(4.II.1), unlike the others, suffered a second EM disease,
caused by M. triplex. Finally, disseminated nontyphoid sal-
monellosis occurred in 21 of 34 patients. Salmonellosis was
the only infectious disease for seven patients. First Salmo-
nella infection occurred at or before the age of 12 yr. Eight
patients had recurrent salmonellosis (8/21, 38%), involving
the same serotype, whereas BCG and EM infections were
not recurrent. Nevertheless, we found high titers of Salmo-
nella-specific antibodies in the sera of 4 deficient patients
with no history of clinical salmonellosis. Only five of the 34
infected IL-12R�1-deficient patients died due to BCG
(n � 2) or EM (n � 3; a mortality rate among symptomatic
patients of only 15% [5/34]) (Fig. 3 b). All deaths occurred
before 8 yr of age. No death was attributable to salmonello-
sis. Thus, infections caused by weakly virulent Mycobacteria
and Salmonella in IL12R�1-deficient patients generally have
a childhood onset and a favorable clinical outcome, particu-
larly once patients have entered their teens.

Clinical Penetrance and Impact of BCG on Clinical Pheno-
type. We determined the clinical penetrance of IL12R�1
deficiency, by excluding all probands (Fig. 3 c). Five (42%)

of the 12 affected siblings were completely free of unusual
infections at their last follow-up visit (mean duration of fol-
low-up: 13.8 yr, range: 7–18 yr). None of the other 7 sib-
lings had more than one infection. Two of the six siblings
who had been vaccinated had disseminated BCG disease.
Three additional siblings developed infections with weakly
virulent microorganisms, EM in one case and Salmonella in
the other two. Overall, the penetrance of opportunistic in-
fections was estimated to be 45.3% (confidence interval
[CI] 95%: 14.2%-75.4%) when calculated with survival
analysis techniques to account for differences in follow-up
period (Fig. 3 c). Finally, tuberculosis occurred in 2 other
siblings (2.II.1, 24.II.3). We then determined the impact of
BCG on the clinical phenotype for the 41 patients de-
scribed herein. BCG inoculation or disease had no impact
on the occurrence (and age at onset) of Salmonella infec-
tion, or the occurrence of tuberculosis. In contrast, none of
the 18 patients with BCG disease developed EM disease
(interval between onset of BCG disease and last follow-up:
3–31 yr, mean 12.8 yr). Only two (4.II.1 and 7.II.5) of the
nine patients resistant to BCG (BCG inoculation without
BCG disease) suffered EM disease, with late onset of the

Figure 1. Pedigrees of 29 kindreds with IL-12 receptor �1 deficiency. Each kindred is designated by a capital letter (1–29), each generation by a roman
numeral (I–II), and each individual by an Arabic numeral (from left to right). Symbols are partitioned in two parts by a horizontal line: the upper part in-
dicates infections with Mycobacteria (in black, patients with BCGosis or atypical mycobacteriosis; in gray, patients with tuberculosis); the lower part indi-
cates infections with Salmonella (in black, nontyphoid salmonellosis). The proband are indicated by an arrow. Individuals whose genetic status could not
be evaluated are indicated by the symbol “E?”. Asymptomatic individuals carrying two mutant IL12RB1 alleles are represented by a vertical line.
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disease. Six (43%) of the 14 patients who had not been in-
oculated with BCG suffered EM disease (Fig. 3 d), with
early onset of the disease. The difference in age at onset of
EM disease between the three groups of patients was highly
significant (P � 0.004; Fig. 3 d). This difference was partic-
ularly clear if patients with BCG disease were compared
with patients not inoculated with BCG (P � 0.004). The

difference between patients resistant to BCG and nonvacci-
nated patients was not significant (P � 0.09). Finally, the
difference in incidence of EM disease between BCG-inoc-
ulated patients (with or without BCG disease) and nonvac-
cinated patients was highly significant (P � 0.002).

Discussion
We report here the first large series of patients with

complete IL-12R�1 deficiency, including 41 deficient in-
dividuals from 29 unrelated kindreds (Table I and Fig. 1).
The kindreds originate from 17 countries, in Africa, Amer-
ica, Asia, and Europe. Seven other unrelated patients re-
ported elsewhere (15, 17, 18, 21) raise the total number of
cases to 48, from 36 kindreds, in 20 countries. The cellular
phenotype of IL-12-receptor �1 chain–deficient patients is
uniform: all patients tested failed to respond to IL-12. The
relative contributions to the clinical phenotype of the lack
of response of NK cells (16) and of T lymphocytes (15–18,
21) to IL-12 are unclear. The receptor for IL-23, another
IFN-�–inducing cytokine, contains the IL-12R�1 subunit
(25), suggesting that patients with IL-12R�1 deficiency
probably also suffer from IL-23 receptor deficiency.

The results obtained in this study confirm that IL-
12R�1 deficiency is principally associated with mycobacte-
rial diseases (Table I). If we include the seven patients re-
ported elsewhere (15, 17, 18, 21), 33 of the 48 patients
have had BCG (n � 22) or EM (n � 11) disease. We also
report three patients from two kindreds with M. tuberculosis
disease. Thus, a diagnosis of IL-12 receptor deficiency
should be considered in patients with unusually severe
forms of tuberculosis (20). Mice with a disrupted IL12B
gene (26) are susceptible to BCG (27), M. tuberculosis (27–

Figure 2. Impaired cellular response to interleukin-12. Production of
IFN-� by whole blood cells from 20 healthy “local” positive controls
(fresh blood), from 16 healthy “travel” positive controls and from 21 pa-
tients, either unstimulated (�) or stimulated with BCG alone or with BCG
plus recombinant IL-12p70. Fresh, heparinized blood from 7 patients and
all “travel” controls were shipped to Paris within 12 to 48 h, where the ex-
periments were performed. Blood from four patients and all “local” control
was drawn in Paris and readily stimulated. The supernatants were harvested
after 48 h of activation for cytokine quantification by ELISA. The horizon-
tal bars represent the arithmetic mean of the values.

Figure 3. Epidemiological
features of IL-12R�1 deficiency.
First onset (a) and outcome (b)
of case-definition opportunistic
infectious diseases in 34 deficient
patients, according to infections:
BCG (broken black line), EM
(broken gray line), Salmonella
(solid gray line), and all 3 in-
fections (solid black line). (c)
Penetrance of case-definition
infectious diseases in the 12
IL-12R�1–deficient siblings (ex-
cluding all probands). (d) Varia-
tions in onset of EM disease
among the 41 deficient patients,
who had been vaccinated with
BCG and suffered BCG disease
(broken black line, n � 18),
who had been vaccinated with
BCG without developing BCG
disease (resistance to BCG, solid
black line, n � 9), or who had
not been vaccinated with BCG
(solid gray line, n � 14).
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29) and, to a lesser extent, to M. avium (30–32). Our results
extend these observations, and highlight the crucial role of
IL-12 in immunity to BCG, several EM and M. tuberculosis
in humans.

However, IL-12R�1–deficient patients are less suscepti-
ble to Mycobacteria than was initially thought (15–21). 9 of
27 children inoculated with BCG did not suffer adverse ef-
fects. Only 8 of the 41 patients (19%) in this series, and 11
of the 48 (23%) including the cases reported elsewhere (17,
18, 21), developed EM infections. Excluding the probands,
only 2 of 6 siblings vaccinated with BCG and 1 of 12 IL-
12R�1–deficient siblings developed BCG and EM disease,
respectively. Paradoxically, these data indicate that most
IL-12R�1–deficient patients do not have the original phe-
notype of BCG/EM disease or salmonellosis. Healthy sib-
lings of probands should therefore be investigated. IL-12 is
surprisingly redundant in protective immunity against pri-
mary infection by weakly virulent Mycobacteria in a majority
of individuals.

In our survey, the age at onset of EM disease differed be-
tween patients with and without BCG disease. If we in-
clude the other IL-12R�1– and IL-12p40–deficient cases
(13–15, 17, 18, 21), there are 63 patients in total, 36 of
whom had BCG disease. None of these 36 patients devel-
oped EM disease, while among the 27 patients who did not
develop any BCG disease 12 developed EM disease (P �
10�6, Fisher’s exact test). This indicates that BCG disease
protects against subsequent EM illness in patients with IL-
12 deficiency or IL-12R deficiency. Antibiotic treatment
against BCG probably played a minor role in preventing
EM disease, as it was discontinued after a few years in all
patients. Moreover, the impact of BCG inoculation itself
(with or without BCG disease) was also significant in our
series. Similarly, EM disease was protective in itself. In con-
trast, BCG inoculation and EM disease had no effect on the
incidence of salmonellosis. IL-12 is thus redundant for
adaptive, secondary immunity to Mycobacteria in most, if
not all, patients.

The prognosis of IL-12R�1 deficiency is good due to
the low clinical penetrance of primary mycobacterial in-
fection, acquired protective immunity to secondary my-
cobacterial infection, and the lack of life-threatening
nonmycobacterial infections. Only 5 of our 41 (12%)
IL-12R�1–deficient patients died of BCG or EM infec-
tion, before the age of 8 yr. The overall mortality rate for
all known IL-12R�1–deficient patients is only 15% (7/48),
increasing to 21% (13/63) if we include IL-12p40–defi-
cient children (13–15, 17, 18, 21). Outcome improved
with age, and our patients (now aged 2–33 yr) are healthy
and off all treatment. These results should help us to predict
clinical outcome for individual patients. They also indicate
that immune mechanisms progressively develop ways of
compensating for the lack of IL-12–mediated immunity.

21 of the 41 patients (51%) in our series had had extra-
intestinal infections caused by Salmonella, as had 4 of the
other 7 IL-12R�1–deficient patients (15, 17, 18, 21) and 5
of the 15 IL-12p40–deficient patients (a total of 30 out of
63, 48%; references 13–15). Of clinical interest, five chil-

dren presented salmonellosis as the only infectious disease.
IL-12 has been shown to play a major role in host defense
against Salmonella in IL-12p40-KO mice (33, 34). Our ob-
servation extends this findings in humans. However, not all
Salmonella-infected patients developed clinical disease (Ta-
ble I). IL-12 was redundant in primary immunity against
Salmonella in some patients. Salmonellosis recurrence was
frequent (8/21, 38%), suggesting that IL-12 is required for
secondary immunity to Salmonella in many patients. These
data suggest that different immune mechanisms control sec-
ondary immunity to Salmonella and Mycobacteria.

There were no other unusually severe infections in our
41 patients, as in the other seven patients (15, 17, 18, 21;
Table I). CMV infection had been well controlled in at
least 14 patients (Table I). Other common viruses did not
cause severe disease in our patients. One patient suffered
benign infection with Kingella kingae. There were no other
diseases caused by common bacteria, including macro-
phage-infecting species such as Listeria and Nocardia. One
IL-12–deficient patient had one episode of nocardiosis (14).
Paracoccidioides brasiliensis infection in one curable IL-
12R�1–deficient patient had a symptomatic yet benign
course, and oral candidiasis was diagnosed in a few patients.
Other fungi represented no threat to IL-12R�1–deficient
patients. Toxoplasma gondii infection had an uneventful
course in at least five patients. Other common opportunis-
tic protozoa were not pathogenic.

The number of kindreds investigated from various ge-
netic backgrounds and exposed to a variety of environmen-
tal conditions, together with the number of siblings af-
fected, ruling out a major ascertainment bias, make it
possible to conclude that mycobacteriosis and salmonellosis
are the most frequent infectious diseases in patients with
IL-12R�1 deficiency. Our study does not exclude the pos-
sibility that other infectious or non-infectious diseases may
occur in other patients with this genetic defect, or in our
patients later in life. The apparent resistance of IL-
12R�1–deficient patients to most microorganisms never-
theless contrasts with results obtained in mice. Indeed,
IL12p40 KO mice are susceptible to almost all microor-
ganisms tested (35–51). The lack of a requirement for IL-
12 and probably IL-23 for protective immunity against
most microorganisms in humans may reflect the natural
(1), as opposed to experimental, course of most infections
in man.
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