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Abstract

 

Activation of the nuclear factor (NF)-

 

�

 

B transcription complex by signals derived from the
surface expressed B cell antigen receptor controls B cell development, survival, and antigenic
responses. Activation of NF-

 

�

 

B is critically dependent on serine phosphorylation of the I

 

�

 

B
protein by the multi-component I

 

�

 

B kinase (IKK) containing two catalytic subunits (IKK

 

�

 

and IKK

 

�

 

) and one regulatory subunit (IKK

 

�

 

). Using mice deficient for protein kinase C 

 

�

 

(PKC

 

�

 

) we show an essential role of PKC

 

�

 

 in the phosphorylation of IKK

 

�

 

 and the subse-
quent activation of NF-

 

�

 

B in B cells. Defective IKK

 

�

 

 phosphorylation correlates with im-
paired B cell antigen receptor–mediated induction of the pro-survival protein Bcl-xL. Lack of
IKK

 

�

 

 phosphorylation and defective NF-

 

�

 

B induction in the absence of PKC

 

�

 

 explains the
similarity in immunodeficiencies caused by PKC

 

�

 

 or IKK

 

�

 

 ablation in B cells. Furthermore,
the well established functional cooperation between the protein tyrosine kinase Bruton’s ty-
rosine kinase (Btk), which regulates the activity of NF-

 

�

 

B and PKC

 

�

 

, suggests PKC

 

�

 

 as a
likely serine/threonine kinase component of the Btk-dependent NF-

 

�

 

B activating signal trans-
duction chain downstream of the BCR.
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Introduction

 

Efficient B cell immunity requires mechanisms that guaran-
tee the representation of a diverse immunoglobulin reper-
toire within the peripheral B cell pool (1). A key feature of
peripheral B cells in this context is their ability to persist in
the absence of antigenic stimulation. The relatively long life
of mature naive B cells in peripheral lymphoid organs of
mice and man increases the likelihood for an individual B
cell to encounter an antigen and initiate an effective hu-
moral immune response (2). Conversely, reduced peripheral

 

B cell survival is frequently associated with naturally occurring
or genetically engineered immunodeficiencies (3, 4).

Survival of peripheral B cells is critically dependent on
the surface expression of the B cell antigen receptor (BCR)
and its ability to generate a signal. Ablation of surface ex-
pressed BCR on peripheral B cells by Cre recombinase-
mediated modification of the Ig locus or inducible inactiva-
tion of Syk protein kinase gene lead to rapid B cell death

(5; and unpublished data). These observations suggest a
BCR-dependent signaling cascade responsible for B cell
survival in the absence of antigenic stimulation. Further-
more, reduction in the expression level of Bcl-2 protein af-
ter the BCR ablation and the rescue from apoptosis of
BCR-deficient B cells by Bcl-2 overexpression point to the
existence of a signaling axis connecting the BCR and tran-
scription of anti-apoptotic Bcl-2 family of proteins (5). A
likely link between the BCR and expression of the anti-
apoptotic proteins is suggested by the ability of the BCR
to trigger the activation of nuclear factor (NF)-

 

�

 

B, which
is known to control the expression of Bcl-2 and Bcl-xL (6).
Successful activation of NF-

 

�

 

B and hence transcription of
the NF-

 

�

 

B–dependent genes by various ligands requires
the phosphorylation of the inhibitory protein I

 

�

 

B. Un-
phosphorylated I

 

�

 

B is bound to the complex of the tran-
scription activating Rel-subunits and retains these within
the cytoplasm. Upon cellular activation, I

 

�

 

B is phosphory-
lated on serine residues by the multicomponent I

 

�

 

B kinase
(IKK) containing two catalytic subunits (IKK

 

�

 

 and IKK

 

�

 

)
and one regulatory subunit (IKK

 

�

 

). Phosphorylation of
I

 

�

 

B targets it for ubiquitination and subsequent degrada-
tion by the proteasome (7, 8).
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PKC

 

�

 

 regulates BCR-mediated NF-

 

�

 

B activation

 

Recent studies demonstrated that phosphorylation of
I

 

�

 

B

 

�

 

 downstream of BCR triggering is regulated by the
Bruton’s tyrosine kinase (Btk; references 9 and 10). Muta-
tion of Btk results in X-linked agammaglobulinemia (XLA)
in humans and X-linked immunodeficiency (Xid) in mice
(11). BCR cross-linking induces I

 

�

 

B

 

�

 

 phosphorylation in
wild-type B cells, whereas Btk-deficient B cells or Xid B
cells are unable to support I

 

�

 

B

 

�

 

 phosphorylation and effi-
cient activation of NF-

 

�

 

B. Combined with the short life-
span and inefficient Bcl-xL induction of Btk-deficient/Xid
B cells, these data support an important role of Btk-medi-
ated NF-

 

�

 

B activation in BCR-dependent B cell survival
(9, 10, 12).

The substrate specificity of Btk as a tyrosine kinase pre-
cludes its direct involvement in the phosphorylation of
IKKs or I

 

�

 

Bs on serine residues. This, in turn, implies the
existence of a Btk-dependent serine kinase involved in the
regulation of IKK activity, I

 

�

 

B phosphorylation, and NF-

 

�

 

B activation (9, 10).
Recently, a functional link between Btk and the Ca

 

2

 

�

 

/
diacylglycerol (DAG)-dependent serine/threonine protein
kinase C 

 

�

 

 (PKC

 

�

 

) was demonstrated. B cells of mice defi-
cient for PKC

 

�

 

 display a signaling phenotype similar to
Xid B cells (13–15). We therefore hypothesized that PKC

 

�

 

may be involved in the Btk-mediated NF-

 

�

 

B activation in
B cells.

Here we demonstrate that PKC

 

�

 

 selectively controls
phosphorylation of IKK

 

�

 

 in mature B cells and is required
for the efficient BCR-induced I

 

�

 

B

 

�

 

 phosphorylation,
degradation, and subsequent NF-

 

�

 

B induction. Further-
more, impaired phosphorylation of IKK

 

�

 

 and compro-
mised activation of NF-

 

�

 

B correlate with defective BCR-
mediated induction of Bcl-xL in B cells, thus providing a
mechanistic explanation for the reduced life-span of
PKC

 

�

 

-deficient B cells.

 

Materials and Methods

 

Mice.

 

PKC

 

�

 

�

 

/

 

�

 

 mice on C57BL/6 or 129/Sv genetic back-
ground were used for analysis (13). Mice were kept in the animal
facility of the Institute for Genetics at the University of Cologne
or in the SPF facility of the Laboratory Animal Research Center at
The Rockefeller University following the university guide lines.
Wild-type C57BL/6 or 129/Sv mice were purchased from The
Jackson Laboratory or Charles River Laboratories, respectively.

 

B Cell Proliferation.

 

Splenic B cells of 

 

�

 

95% purity were iso-
lated as described previously (16). Splenic B cells were stimulated
in vitro with 1.2 

 

	

 

g/ml goat anti–mouse IgM F(ab

 




 

)

 

2

 

 (Jackson
ImmunoResearch Laboratories), 7.5 

 

	

 

g/ml anti-CD38 (17), or
5.25 

 

	

 

g/ml anti-RP105 (18) alone or in combination with 25
U/ml recombinant mouse IL-4 (Genzyme) as described previ-
ously (16). Labeling of cells with 5-(and 6-)-carboxyfluorescein
diacetate, succinimidyl ester (CFDA-SE; Molecular Probes) for
measurement of the proliferative responses was performed as de-
scribed (19). The decline in CFSE fluorescence as measure of B
cell proliferation was determined by FACS

 

®

 

 analysis.

 

Cell Survival Assay.

 

Purified splenic B cells were cultured in
the absence or presence of 25 U/ml recombinant mouse IL-4
(Genzyme) for various times. Cells were washed once with ice-

cold Annexin V binding buffer (10 mM Hepes, pH 7.5, 140 mM
NaCl, 5 mM KCl, 1 mM MgCl

 

2

 

, 1.8 mM CaCl

 

2

 

) and cell pellets
were stained with Annexin V (Roche) and 7-aminoactinomycin
D (7AAD; Sigma-Aldrich) as described (5).

 

Western Blotting Analysis and EMSA.

 

The expression level of
Bcl-2 and Bcl-xL proteins were analyzed by Western blotting.
Splenic B cells were purified as described previously (16). 2 

 

�

 

 10

 

6

 

purified B cells were cultured with 10 

 

	

 

g/ml F(ab

 




 

)

 

2

 

 fragment
goat anti-IgM (Jackson ImmunoResearch Laboratories) for indi-
cated time. Cells were harvested and lysed by 1% NP-40 contain-
ing buffer as described previously (16). Anti-Bcl-2 (Neomarkers)
and anti-Bcl-xL (Cell Signaling Technology) were used for this
analysis. The loading of the protein was controlled by Western
blotting of anti-

 

�

 

-Actin (Oncogene Research Products).
For the analysis of Rel family protein expression, the protein

lysate of purified splenic B cells from PKC

 

�

 

�

 

/

 

�

 

 and control mice
were analyzed by Western blotting with antibodies against RelA,
RelB, c-Rel, and p52 (Santa Cruz Biotechnology, Inc.). To ana-
lyze the IKK

 

�

 

/IKK

 

�

 

/IKK

 

�

 

 complex, purified splenic B cells
were lysed 1% CHAPS containing buffer. After the centrifuga-
tion and removal of the insoluble fraction, the protein lysates
were precleared by rabbit Ig and protein A-sepharose. The IKK
complex was immunoprecipitated with anti-IKK

 

�

 

 antibody (Cell
Signaling Technology) or control rabbit Ig followed by the incu-
bation with protein A–sepharose. Sepharose beads were washed
three times with lysis buffer and subjected to SDS-PAGE and
transferred onto PVDF membrane. The membrane was incu-
bated with anti-IKK

 

�

 

 (Upstate Biotechnology), anti-IKK

 

�

 

 (Up-
state Biotechnology), or anti-IKK

 

�

 

 antibodies (Santa Cruz Bio-
technology, Inc.).

NF-

 

�

 

B activation was studied after the stimulation with 20

 

	

 

g/ml goat anti–mouse IgM F(ab

 




 

)

 

2

 

 (Jackson ImmunoResearch
Laboratories) or 10 

 

	

 

g/ml anti-CD40 (3/23; BD PharMingen)
using cytoplasmic and nuclear extracts prepared as described (19).
Degradation and phosphorylation of I

 

�

 

B

 

�

 

 protein were mea-
sured by Western blotting with anti-I

 

�B� antibody (Santa Cruz
Biotechnology, Inc.) and anti-phospho I�B� (Ser32; Cell Signal-
ing Technology). The phosphorylation of IKK� and IKK� was
analyzed by the antibody against phospho-specific form of IKK�
(Ser180) and IKK� (Ser181; Cell Signaling Technology). For the
loading control, the membranes were stripped and reprobed with
anti-IKK� and anti-IKK� antibodies (Upstate Biotechnology).
DNA-binding activity of NF-�B was analyzed by electrophoretic
mobility shift assay (EMSA) as described (19). For the supershift,
antibodies against p50, RelA and c-Rel (Santa Cruz Biotechnol-
ogy, Inc.) were added before the binding reaction with DNA. A
mutant oligonucleotide was used to test the specificity of DNA
binding. The protein loading was determined by Oct-1 EMSA.
All quantifications were done with NIH image software.

Results and Discussion
B cells deficient for Btk or expressing a mutant form of

the Btk protein are characterized by drastically reduced
life-span in vitro and in vivo (12). Similar properties are
characteristic for PKC�-deficient B cells. Incubation of ex
vivo isolated splenic PKC�-deficient B cells in vitro in the
absence of exogenously added agonists of B cell survival is
accompanied by a rapid decline of cell viability (Fig. 1 A).
Similar to B cells with impaired Btk function, the PKC�-
deficient B cells are characterized by drastically decreased
proliferative responses to the antibody-mediated cross-link-
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ing of BCR, or to the polyclonal activation by anti-CD38
or anti-RP105 antibodies (Fig. 1 B). Addition of the gen-
eral B cell survival factor IL-4 (20) to the culture medium
promotes B cell survival (Fig. 1 C) and increases the frac-
tion of dividing cells (Fig. 1 B). These data suggest that ac-
celerated death of PKC�-deficient B cells in vitro is likely
causing defective proliferative responses of PKC�-deficient
B cells to various stimuli in vitro.

Poor survival of PKC�-deficient B cells in vitro corre-
lates with their inability to up-regulate expression of the
anti-apoptotic protein Bcl-xL upon stimulation with anti-
IgM (Fig. 2). Incubation of wild-type splenic B cells with
anti-IgM results in progressive increase in the expression
levels of the Bcl-xL (Fig. 2). Similar treatment of the

PKC�-deficient B cells has a negative impact on the Bcl-
xL expression level (Fig. 2). The inability of the surface ex-
pressed BCR to promote the expression of the anti-apop-
totic Bcl-xL and Bcl-2 proteins likely causes the rapid
death of the PKC�-deficient B cells.

Expression of Bcl-xL in B cells is dependent on the ac-
tivity of the NF-�B transcription factor (6, 21, 22), thus
suggesting a possible involvement of PKC� in NF-�B reg-
ulation. Members of the NF-�B/Rel family of proteins in-
clude RelA, c-Rel, RelB p50/NF-�B1, and p52/NF-�B2
(7). Deficiency in PKC� does not affect expression levels
of RelA, c-Rel, and RelB in splenic B cells (Fig. 3 A). NF-
�B2 is synthesized as a large precursor (p100) that requires
proteolytic processing to produce p52 (7). The relative

Figure 1. Impaired survival and prolifera-
tion of PKC�-deficient B cells in vitro. (A)
Accelerated cell death of PKC��/� B cells
cultured without stimulation. Percentage of
cell viability of purified splenic B cells is
plotted for wild-type (129/Sv) control
(open circles) and PKC��/� (filled circles)
B cells. Each dot represents cells isolated
from an individual mouse. (B) Impaired
proliferative responses of PKC��/� B cells
in vitro in the absence of IL-4 survival sig-
nal. Purified splenic B cells of wild-type (left
column) or PKC��/� mice (right column)
were labeled with CFSE and incubated for
3 d in the presence or absence of the indi-
cated stimuli (see Materials and Methods for
details). The thick line indicates the level of
CFSE florescence in cells upon stimulation,
whereas the thin line indicates the CFSE la-
bel of nonstimulated cells. Reduction in the
CFSE fluorescence is proportional to the
number of cell divisions. (C) IL-4 promotes
survival of both wild-type and PKC��/� B
cells. FACS® analysis of Annexin-V in com-
bination of 7AAD staining of wild-type (left
column) and PKC��/� (right column) B
cells cultured in complete RPMI with or
without IL-4. Note the increase of live cells
annexin-V and 7AAD negative in the pres-
ence of IL-4. Numbers indicate percentages
of gated cells.

Figure 2. Reduced expression of Bcl-xL and Bcl-2
after IgM cross-linking on B cells of PKC��/� com-
pared with control mice. Splenic B cells were isolated
from PKC��/� and PKC��/� mice and incubated with
10 	g/ml anti-IgM for the indicated time (h). Bcl-xL
and Bcl-2 protein expression was analyzed by Western
blot analysis. Equal protein loading was controlled by
anti-actin Western blotting. For quantification, band in-
tensities were first normalized to the respective actin sig-
nal and then calculated as fold-change relative to un-
stimulated PKC��/�, which was set to 1.0.
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amount of unprocessed p100 NF-�B2 precursors is in-
creased in PKC�-deficient B cells compared with control
B cells (Fig. 3 A).

Defective NF-�B2 processing has been previously found
in B cells deficient for IKK� or expressing a catalytically in-
active form of IKK�, which is a component of the tri-
member I�B kinase complex IKK�/IKK�/IKK� (23). To
test whether PKC� controls NF-�B2 processing through
the regulation of IKK� expression or activation we have an-
alyzed the expression and activation state of IKKs in PKC�-
deficient splenic B cells. Both IKK� and IKK�, as well as
the regulatory component of the I�B kinase complex,
IKK�, are expressed in PKC�-deficient B cells at wild-type
levels (Fig. 3 B, WCL lanes). Immunoprecipitation of IKK�
or IKK� from PKC�-deficient and control B cell lysates re-
sults in coprecipitation of IKK�/IKK� or IKK�/IKK�, re-
spectively (Fig. 3 B, and data not shown). These data suggest
that expression of IKK� and formation of the I�B kinase
complex is not controlled by PKC� in B cells.

Activation of IKK� and IKK� is controlled by their
phosphorylation in the activation loop of the kinase domain
at serine residues 176/180 and 177/181, respectively (24).
Hence, the levels of phospho-IKK� (Ser-180) and phos-
pho-IKK� (Ser-181) reflect indirectly the fraction of ac-
tivated IKKs within a cell. In wild-type B cells more
phospho-IKK� than phospho-IKK� can be detected.
Incubation of the wild-type B cells with anti-IgM results in
a drastic increase of the amount of phospho-IKK� while
the phospho-IKK� levels remain relatively stable in the
course of B cell stimulation (Fig. 4 A, top panel). Defi-
ciency in PKC� has a dramatic impact on the phosphoryla-
tion state of IKK� and to a lesser extent on IKK�. Phos-
pho-IKK� is virtually absent both in nonstimulated and
anti-IgM treated PKC�-deficient B cells (Fig. 4 A, top
panel). Moreover, the duration of IgM-mediated phos-
phorylation of IKK� is diminished in PKC�-deficient B
cells compared with the wild-type B cells (Fig. 4 A, top
panel). Considering the essential role of serine phosphoryla-
tion in IKK� and IKK� activation, these results reveal
PKC� as a key regulatory serine/threonine kinase connect-
ing the BCR and IKK activation.

In wild-type B cells, the BCR-mediated activation of
IKK� is followed by phosphorylation of I�B�. This in turn
leads to I�B� degradation and translocation of the Rel pro-
teins to the nucleus. Deficiency in PKC� and ensuing de-
fective IKK� and IKK� phosphorylation result in impaired
I�B� phosphorylation and degradation (Fig. 4 A, middle
panel). Congruently, activation of NF-�B is reduced in
PKC�-deficient B cells (Fig. 4 A, bottom panel).

To test whether impaired NF-�B activation in PKC�-
deficient B cells is specific for BCR-mediated signals, we
tested stimulation of PKC�-deficient B cells through
CD40, which in wild-type B cells also leads to NF-�B acti-
vation. The analysis of IKK� and IKK� phosphorylation in
PKC�-deficient B cells stimulated through CD40 reveals a
paucity in IKK� phosphorylaytion similar to that observed
after BCR engagement (Fig. 4 B, top panel). However, the
CD40-mediated phosphorylation and degradation of I�B�,
as well as the induction of NF-�B DNA-binding activity,
are not impaired in PKC�-deficient B cells (Fig. 4 B, mid-
dle and bottom panel). As a member of the TNF receptor
family, CD40-mediated NF-�B activation is thought to re-
quire a different set of signaling molecules compared with
BCR-mediated NF-�B activation, namely TRAF2, 3, 5,
and 6 (25). Possibly in CD40/TRAF-mediated NF-�B ac-
tivation IKK� activation by itself is sufficient, or other ki-
nases, like NIK, can substitute for IKK� (26). In agreement
with the normal induction of Rel family proteins CD40
stimulation alone improves the survival of PKC�-deficient
B cells to wild-type levels (data not shown). This is also
consistent with the finding that the CD40-mediated induc-
tion of anti-apoptotic A1 is not impaired in IKK�-deficient
B cells (27). In contrast to IgM stimulation, CD40-medi-
ated proliferative responses are only mildly impaired in
PKC�-deficient B cells (13), which is also seen in IKK�-
deficient B cells (27). In conclusion, the PKC�-mediated
regulation of NF-�B activation is largely specific for BCR-

Figure 3. Expression of Rel family proteins and IKK�/IKK�/IKK�
complex in splenic B cells of PKC��/� (�/�) and PKC��/� (�/�)
mice. (A) The amount of RelA, RelB, and c-Rel (left panel) as well as
NF-�B2 (p100 and p52, right panel) were examined by sequential West-
ern blotting. The actin blot (left panel, bottom) was used for quantifica-
tion as described in Fig. 2. For NF-�B2 both p100 and p52 are quantified
in relation to p52 of �/� lysates. The asterisk (*) indicates a nonspecific
band. (B) Normal composition of the IKK�/IKK�/IKK� signalosome
complex in PKC��/� B cells. CHAPS lysates of splenic B cells from
PKC��/� and PKC��/� mice were immunoprecipitated with anti-IKK�
antibody (IKK�) or control rabbit immunoglobulin (RIg). Whole cell ly-
sates (WCL) are shown as blotting control. Membranes were sequentially
probed with IKK� (top), IKK� (middle), and IKK� (bottom) antibodies.
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mediated signaling and has only a minor impact on CD40
mediated B cell activation.

The pattern of defective NF-�B activation is very simi-
lar in B cells of PKC�-deficient and Xid mice (9, 10). As
PKC� can act as a negative regulator of Btk, the similar ef-
fect of both mutations on NF-�B activation appears para-
doxical. However, increased or decreased Btk-mediated
signaling may have the same outcome, as shown by the se-
vere Xid-like phenotype of mice expressing a constitu-
tively active Btk mutant (28, 29). We think that in addi-
tion to its inhibitory role for Btk activation, PKC� may
also act downstream of Btk to mediate the activation of
IKKs. It remains to be seen whether PKC� regulates IKKs
through direct phosphorylation. As the activation loop
serine residues of IKK� or IKK� are not part of a PKC
consensus phosphorylation site, other serine/threonine

residues of IKK� and IKK� may serve as direct substrates
for PKC�. Interestingly, a low stringency scan for com-
mon PKC phosphorylation sites returns several potential
sites for IKK�, but none for IKK� (30). Alternatively,
PKC� may regulate IKKs indirectly through an interme-
diate kinase that would be directly controlled by PKC�.
Regardless of the exact mechanism of the PKC� involve-
ment in IKKs phosphorylation, the data presented reveal
PKC� as a novel component of the NF-�B signaling axis
responsible for the survival and activation of B cells after
BCR cross-linking.
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