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Gut-associated lymphoid tissue (GALT) dendritic cells (DCs) display a unique ability to
generate CCR9*a, 3, gut-tropic CD8* effector T cells. We demonstrate efficient induction
of CCR9 and o3, on CD8* T cells in mesenteric lymph nodes (MLNs) after oral but not
intraperitoneal (i.p.) antigen administration indicating differential targeting of DCs via the
oral route. In vitro, lamina propria (LP)-derived DCs were more potent than MLN or Peyer's
patch DCs in their ability to generate CCR9*a,3,* CD8™ T cells. The integrin o chain
CD103 (cg) was expressed on almost all LP DCs, a subset of MLN DCs, but on few splenic
DCs. CD103* MLN DCs were reduced in number in CCR7~/~ mice and, although CD8* T cells
proliferated in the MLNs of CCR7~/~ mice after i.p. but not oral antigen administration,
they failed to express CCR9 and had reduced levels of «,[3;. Strikingly, although CD103*
and CD103~ MLN DCs were equally potent at inducing CD8* T cell proliferation and IFN-y
production, only CD103+ DCs were capable of generating gut-tropic CD8* effector T cells in
vitro. Collectively, these results demonstrate a unique function for LP-derived CD103+ MLN
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DCs in the generation of gut-tropic effector T cells.

Antigen-dependent differentiation of naive T
cells in lymphoid organs leads to the generation
of effector T cells exhibiting a de novo capacity
to enter peripheral extralymphoid tissues (1).
Effector T cells generated in different lymphoid
organs display distinct tissue tropism, a feature
that appears to be regulated by an organ-specific
induction of adhesion molecules and chemokine
receptors during T cell priming (2—4). For ex-
ample, T cells activated in mesenteric LNs
(MLNs) draining the gut acquire high-level
expression of the integrin ayf3; and the che-
mokine receptor CCR9, and these molecules
are important for their subsequent localization to
the small intestine (3, 5, 6). Conversely, T cells
activated in skin-draining LNs acquire expression
of E- and P-selectin ligands and CCR4 (2, 7)
molecules that appear to direct T cells into
inflamed skin (8—10).

DCs are critical for the generation of tissue-
tropic effector T cell subsets. Thus, MLN or
Peyer’s patch (PP) DCs are necessary and suffi-
cient for the generation of CCR9"a,B,*
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CDO62L~ gut-homing T cells in vitro, whereas
T cells activated by antigen-pulsed skin-draining
peripheral LN (PLN) DCs are induced to express
E- and P-selectin ligands (5, 7, 11, 12). Gut-
associated lymphoid tissue (GALT), but not
splenic, DCs were recently shown to convert
dietary vitamin A to retinoic acid, which in
turn induced T cell expression of CCR9 and
o35 (13). Thus, the expression of retinoid de-
hydrogenase enzymes, catalyzing the sequential
oxidation of vitamin A via retinal to retinoic
acid appears in part to underlie their selective
ability to generate gut-tropic T cells (13).
Consistent with this possibility, T cells primed
with fixed PP DCs failed to express CCRY or
oyP; (14). The site and underlying signals
where GALT DCs are imprinted with their
ability to generate gut-tropic T cells remain
unknown. Indeed, sorting of GALT DCs based
on well-established DC subset markers (CD8a
and CD11b) indicates that all DCs resident
within GALT have the ability to generate gut-
tropic T cells (5, 14).
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Here, we show that the capacity to generate gut-tropic
CD8* effector T cells is present already among DCs in the
small intestinal lamina propria (LP). Further, we identify a
distinct subset of LP-derived DCs within the MLNSs that ex-
press the epithelial-T cell associated integrin CD103 and
have a unique capacity among MLN DCs to generate gut-
homing T cells.

RESULTS

Oral administration of antigen leads to an efficient
generation of CCR9* 3, gut-tropic CD8* T cells

CCRY and a3, are poorly induced on CD8* T cells pro-
liferating in the MLNs after i.p. administration of antigen
alone (5). To examine the generation of CCR9 o3, T
cells after oral antigen administration, TCR-transgenic
OVA-specific OT-I cells were transferred into recipient
mice, and the frequencies of OT-I cells expressing CCR9
and oyf3; in MLNs were examined 3 d after i.p. or oral ad-
ministration of OVA (Fig. 1, A-C). Administration of
OVA 1i.p. leads to a poor induction of CCRY on respond-
ing T cells, and this was enhanced by coadministration of
LPS (Fig. 1, B and C) as previously described (3, 5). In
contrast, oral administration of OVA led to a strong induc-
tion of CCRY on responding T cells both in the absence

and presence of the mucosal adjuvant cholera toxin (CT;
Fig. 1, B and C). A higher percentage of OT-I cells ex-
pressed CCRY after antigen administration via the oral
route as compared with the i.p. route, as well as when
comparing carboxyfluorescein diacetate succinimidyl ester
(CFSE)—labeled cells that had undergone the same number
of cell divisions (not depicted), demonstrating that these
differences do not reflect changes in OT-I cell cycle pro-
gression. Finally, expression of a3, on the transferred OT-I
cells conformed to the same pattern as observed for CCRY,
although the difference between oral and i.p. immunization
was less pronounced.

CCRUY plays a central role in the recruitment of activated
CD8* T cells to the small intestinal epithelium after i.p. ad-
ministration of OVA and adjuvant (3, 5). To determine
whether CCRY is important for this recruitment process of
the immunization regime used, WT and CCR9~/~ OT-I
cells were cotransferred into WT recipient mice, and the ra-
tio of the transferred cells in the MLN and intraepithelial
lymphocyte (IEL) compartments was determined 3 d after
oral or i.p. immunization in the absence or presence of adju-
vant. Although CCRY deficiency had no impact on the an-
tigen-specific activation and expansion of OT-I cells in
MLNSs, the CCR9™/~ OT-I cells were severely impaired in
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Figure 1. Efficient and adjuvant-independent generation of
CCR9*a437* gut-homing T cells in the MLNs after oral administration
of antigen. After adoptive transfer of OT-I cells (A-C) or an equal number of
CCR9~/~ and WT OT-I cells (D), recipient mice were injected i.p. with 5 mg
OVA = 50 g LPS or given 50 mg OVA = 20 g CT orally. 3 d later, donor
cells in MLNs (A-C) or MLNs and the small intestinal epithelium (D) were
analyzed by flow cytometry. (A and B) Expression of CCR9 and a3, by OT-I
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cells in MLNs. Numbers indicate the percentages of positive cells. One repre-
sentative experiment of between five and seven performed. (C) Pooled
results from mice receiving OVA alone orally (shaded bars) or i.p. (open bars).
Mean = SD of between five and seven experiments with three to four mice
in each experiment. *, P < 0.05; ** P < 0.005. (D) Ratio of CCR9~/~ to WT
OT-I cells in the MLNs and IEL compartment. Mean = SD of three separate
experiments with three mice per group in each experiment.
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their ability to enter the small intestinal epithelium after both
oral and i.p. immunization in the absence or presence of ad-
juvant (Fig. 1 D).

LP DCs efficiently generate CCR9*o,3,* CD8*

T cells in vitro

The efficient induction of CCR9 and o3, on CD8" T cells
in the MLNs after oral compared with 1.p. antigen adminis-
tration suggested that these two immunization routes were
inducing differential DC migration/activation or preferen-
tially targeting different DC populations. There was no dif-
ference in the number or phenotype (CD40, CD80, CD86,
and CD103 expression) of CD11¢*MHC class II" DCs in
the MLNs 24 h after administration of OVA 1i.p. (5 mg) or
orally (50 mg; unpublished data), indicating that differences
resulting from oral versus i.p. antigen administration were
caused by differential DC targeting. DCs are numerous
throughout the intestinal LP and are thought to play an im-
portant role in the sampling and processing of oral antigen
(15). Furthermore, LP DCs migrate from the intestinal LP to
the MLNs under steady-state conditions, and this migration
process is enhanced after oral administration of CT and after
i.v. injection of LPS (16-18). We therefore determined
whether LP DCs were capable of generating CCR9 a3+
CD8* T cells in vitro. To obtain sufficient numbers of LP
DC:s for in vitro studies, DCs were expanded in vivo by s.c.
injection of Flt3L-producing melanoma cells, as previously
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Figure 2. LP dendritic cells are potent in generating CCR9ta437+*
CD8* T cells. OT-I cells were activated in vitro with SIINFEKL peptide-
pulsed DCs purified from LP, MLNs, PP, or spleen. (A) OT-I cell proliferation
in response to a graded number of indicated DCs as assessed by quantifi-
cation of methyl-[*H]thymidine incorporation. Values represent mean =+
SD. (B) CCR9 and (C) a,B; expression by CFSE-labeled OT-I cells was deter-
mined by flow cytometry after 4-5 d of co-culture with DCs. The percentage
of positive cells among dividing OT-I cells is presented. DCs from FIt3L-
treated mice were used in all experiments except experiment (expt) 4 in (B)
and (C), where DCs were purified from pooled tissues of 10 untreated
mice. *, P < 0.05. SPL, spleen.
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Figure 3. CD103 is expressed by the majority of LP DCs and

a subset of MLN DCs. Leukocytes were isolated from the small intestinal
LP, MLNs, and spleen and analyzed by flow cytometry using 7-AAD,
anti-MHC class II-FITC, anti-CD11c-APC, and anti-CD103-PE mAbs.
(A) Identification of CD11¢*MHC class II* (region 1), CD11cM9"MHC
class II* (region 1), and CD11c'°“MHC class 11~ (region I1l) cells after
gating on 7-AAD~ (live) cells. (B) Light scatter properties of the indi-
cated populations of cells. (C-D) Representative histograms showing
CD103 expression by LP cells (C) and MLN cells (D) using the region
definitions depicted in (A). (E) Statistical analysis of CD103 expression
by CD11c*MHC class II* (region I) and CD11c"9"MHC class II* (region
1) DCs from LP, MLNs, and spleen (mean = SD; n = 9 for LP and MLNs,
n = 6 for spleen). *, P < 0.0005; **, P < 0.0001 compared with LP
equivalent. n.d., not done.
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described (11). LP, MLN, PP, and splenic DCs, pulsed with
OVA peptide, all induced efficient OT-I T cell proliferation
(Fig. 2 A). Phenotypic analysis of proliferating OT-I cells
demonstrated that LP DCs were by far the most efficient at
generating CCR9* OT-I cells, followed by MLN and PP
DCs (Fig. 2 B). The greater capacity of LP DCs to induce
CCRY on T cells was not caused by differences in cell cy-
cling, as similar differences were observed when comparing
CFSE-labeled T cells that had undergone the same number
of cell divisions (unpublished data). All intestinal DC subsets
induced expression of a,B,; by the OT-I cells and did not
substantially differ in this capacity (Fig. 2 C). OT-I cells acti-
vated by splenic DCs failed to express CCR9 and displayed
relatively low levels of B, induction (Fig. 2, B and C),
which was consistent with our previous results (5). Finally,
data observed with FIt3L-treated mice were confirmed in
one experiment using untreated mice, indicating that this
procedure did not affect the outcome of our experiments
(Fig. 2, B and C, experiment [expt] 4).

Small intestinal LP DCs express the integrin CD103

Given the more pronounced ability of LP DCs, as compared
with MLN and PP DCs, to generate a,,"CCR9" gut-
homing T cells, it seemed conceivable that the capacity of
MLN DC:s to confer gut tropism to T cells is associated with
the presence of an LP-derived subset in the MLNs. We there-
fore performed extensive phenotypic analysis of LP, MLN,
and splenic DCs in an attempt to identify a marker for LP-
derived DCs in the MLNs. One of the molecules we exam-

CD14

Figure 4. In situ expression of CD103 by LP DCs. Cryostat sections of
the small intestinal jejunum of 8-wk-old C57BL/6 mice were analyzed for
expression of CD11c, MHC class Il, and CD103 by four-color immunofluo-
rescence using DAPI for visualization of nuclei. Images show overlays of
CD11c (green) and DAPI (blue) either alone (A and D) or in combination
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ined was the integrin CD103 (agf3,) because it is expressed by
rat DCs in most epithelial tissues (19), has previously been re-
ported to be expressed by murine LP DCs (20), and is up-reg-
ulated on effector CD8" T cells soon after their entry into the
small intestinal epithelium (21). CD103 was expressed by 80%
of the CD11cMeMHC class IIT DCs (region II) in LP and by
64% of the total CD11¢*MHC class II* LP DCs (region [;
Fig. 3, A=E). In the MLNs, a substantially lower fraction of
the CD11c*MHC class II* DCs expressed CD103, and
splenic DCs were largely CD 103~ (Fig. 3, D and E), which is
in agreement with the results of Kilshaw (20). In the LP, an
additional and distinct subset of CD11c*¥*MHC class 11 cells
that displayed the light scatter properties of granulocytes was
identified (Fig. 3, A and B, region III). Only 5 £ 4% of these
granular cells expressed CD103 (mean * SD; n = 9; not de-
picted), and they were not present in the LP DC preparation
used in the experiments shown in Fig. 2. Because these cells
were not present in the MLNs (Fig. 3, A and B), we have not
examined them further.

To confirm in situ the presence of CD103* DCs within
the small intestinal LP, immunofluorescent labeling of tissue
sections was performed (Fig. 4). In initial studies using a pri-
mary anti-CD11c¢ mAb combined with secondary detection
reagents, an abundant number of CD11c* cells were de-
tected within the LP (not depicted). As many of these cells
likely correspond to the numerous CD11c*¥MHC class 11~
granular cells detected by flow cytometry (see Fig. 3 A, re-
gion III), we used a less sensitive, directly fluorochrome-
labeled mADb against CD11c to detect just the CD11chih

c DAPICD103

K

' N,
2

with CD103 (red; B and E) or MHC class Il (red; C and F). CD11c*MHC class II*
DCs coexpressing CD103 (arrows) were found in the LP of the villi either as
scattered cells (A-C) or in clusters (D-F). The contrast and vy parameters
have been modified for CD11c- and MHC class lI-derived fluorescence in
order to balance the high intensity of the CD103 staining.
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Figure 5. Phenotype of CD103* and CD103~ DCs in the small
intestinal LP and MLNs. Leukocytes were isolated from the small
intestinal LP and MLNs, incubated with Cy5-conjugated anti-CD11c
mAb, 7-AAD, and mAbs against the indicated proteins, and analyzed
by flow cytometry. Expression levels of these proteins are shown after
gating on 7-AAD~ (live) and CD11c* (MLN) or CD11c"o" (LP) cells.
Because the flow cytometer was equipped with four photomultiplier
tubes for fluorescence only, we could not include an MHC class Il stain-
ing in these analyses. CD11c"" LP cells were therefore not considered
because these include the MHC class I~ and granular cells contained
within region Il that is shown in Fig. 3 A. The numbers indicate mean
fluorescence intensity = SD, except for the CD62L analysis, which
indicates the percentage of cells in each quadrant.
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cells. Consistent with the FACS data, the vast majority of
these CD11cM"MHC class I DCs within the LP expressed
CD103 (Fig. 4).

Phenotypic analysis of CD103" DCs in the MLNs
showed these cells to express high levels of MHC class II
compared with their CD103~ counterparts and higher, but
still moderate, levels of CD40 and CD86 (Fig. 5). In the LP,
all DCs expressed relatively low levels of CD40 and CD86
regardless of their expression of CD103, whereas CD103™
LP DCs consistently expressed higher levels of CD80 than
their CD103" counterparts or MLN DCs. CD62L expres-
sion, which is required for DC entry into the LNs directly
from the blood stream (22), was confined to the CD103~
DCs in MLNs and absent from all LP DCs (Fig. 5).

Collectively, there is a striking phenotypic resemblance
between the CD103* MLN DCs and the previously de-
scribed MHC class 1I'&" semimature skin-derived DCs
present in skin-draining LNs (23-25). Chemokine receptor
CCRY7 is required for migration of these skin-resident DCs
to draining LNs under both steady-state and inflammatory
conditions (25, 26). We therefore examined the frequency
of CD11c¢*™MHC class II" DCs expressing CD103 in the
MLNs of CCR77/~ and WT mice. The total number of
CD11¢*MHC class II" DCs was reduced by 70% in the
MLNs of CCR77/~ compared with WT mice. Further-
more, only 18 = 4% of the MLN DCs in CCR7~/~ mice
expressed CD103, compared with 36 * 3% of MLN DCs in
WT mice (mean £ SD; n = 5 in each group). Thus, al-
though the MLNs of CCR77/~ mice had a reduced total
number of DCs compared with WT mice, there was a more
pronounced reduction in the CD103* DC population. In
contrast, the total number of CD11cM$"MHC class 11T LP
DCs that expressed CD103 was similar in WT and CCR77/~
mice (unpublished data).

Generation of gut-homing T cells in MLNs requires

a CCR7-dependent immigration of APCs

Next we used CCR7™/"mice for adoptive transfer experi-
ments. We have observed that OVA-specific CD4" T cells
fail to proliferate in the MLNs of CCR7~/~ mice after oral
administration of OVA (unpublished data), indicating that
DC migration from the gut mucosa to the MLNs is per-
turbed in these mice. Similarly, OT-I cells failed to prolifer-
ate in the MLNs of CCR77/~ mice after oral administration
of OVA and CT (unpublished data). Nevertheless, OT-I
cells proliferated equally well in the MLNs of CCR77/~ and
WT mice after 1.p. administration of OVA and LPS (Fig. 6
A). Collectively, these results suggest that CCR7 is required
for DC migration from the intestinal LP to the draining
MLNs and that this process is necessary for CD8* T cell
priming in the MLNs after oral immunization.

If LP-derived DCs are critical for the generation of gut-
tropic T cells in the MLNs, one would thus expect T cells
primed in the MLNs of CCR77/~ mice to fail to express
CCRY. Consistent with this possibility, after i.p. immuniza-
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Figure 6. CD8* T cells primed in the MLNs of CCR7 ~/~ mice fail to
adopt a gut-tropic phenotype. CFSE-labeled OT-I cells were adoptively
transferred into WT or CCR7~/~ recipient mice. 3 d after i.p. immunization
with OVA and LPS, MLNs were collected, and the phenotype of OT-I cells
was determined by flow cytometry. (A) Representative data of CCR9, a3,
and CD62L expression by divided OT-1 cells in the MLNs of WT versus
CCR7~/~ recipient mice. The CFSE gate is set to distinguish dividing from
nondividing cells and is based on the CFSE intensity of OT-I cells in the
PLNs of recipient mice (that do not divide) 3 d after oral OVA administration.
The percentages indicate divided cells that express the markers shown.
(B) Mean values = SD obtained with three mice in each group.

tion with OVA and LPS, OT-I cells in the MLNs of WT
mice expressed CCRY, whereas OT-I cells proliferating in
the MLNs of CCR77/~ mice failed to express this receptor
(Fig. 6, A and B). Induction of o35 and loss of CD62L on
OT-I cells in the MLNs of CCR77/~ mice was also re-
duced, but to a lesser extent.

CD103* but not CD103~ MLN DCs generate CCR9*,3,"ish

CD8™* T cells

Collectively, this line of experiments strongly suggested that
CD103* DCs derived from the intestinal LP are important
for the generation of gut-tropic T cells in the MLNSs. To di-
rectly address this possibility, CD103" and CD103~ DCs
were sorted from the MLNs (Fig. 7 A) and pulsed with
OVA peptide, and their ability to induce CCR9 and a,f3,
on responding OT-I cells was examined (Fig. 7). Both DC
populations induced similar OT-I T cell proliferation,
down-regulation of CD62L, and a similar percentage of
IFN-y—producing OT-I cells (Fig. 7, B, C, and F). In
marked contrast, only CD103* MLN DCs were capable of
inducing CCR9 on responding OT-I cells (Fig. 7, D and F)
and were also more efficient in their ability to induce o 3,
expression by the T cells, although this difference was less
dramatic than observed for CCRY (Fig. 7 D). Because a3,
expression displays slow expression kinetics in vitro as com-
pared with in vivo (11), we expanded the DC-primed OT-I
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cells by supplementing the cultures with IL-7 and IL-15 (27,
28). Although CCRY levels were maintained after 3 d of ex-
pansion, a greater fraction of OT-I cells expressed oy,B5. In
addition, a large proportion of OT-I cells activated by
CD103~ MLN DCs acquired expression of this integrin, al-
though the proportion and levels remained lower than on
OT-I cells activated by CD103" MLN DCs (Fig. 7, E and
F). Finally, CD103* MLN DCs also selectively induced
CCRY on responding CD4* OT-II cells (Fig. 7 D); how-
ever, in contrast to OT-I cells, both DC subsets induced
similar levels of oy, on responding OT-II cells after pri-
mary activation (Fig. 7 D) or after expansion with IL-7 and
IL-15 (unpublished data). Collectively, these results demon-
strate a unique ability of CD103* MLN DCs in generating
gut-tropic effector T cells.

DISCUSSION

We have identified a distinct subset of DCs expressing the
integrin o chain CD103 that are responsible for generating
CCR9"a,B;"e" gut-homing T cells in the MLNs. Most
strikingly, CD103~ DCs, which include the majority of
MLN DCs, can prime both CD4" and CD8" T cells in
vitro but fail to induce CCRY on these cells. We further
demonstrated that, regardless of the immunization regime
being used, CCR9-deficient CD8" T cells are heavily disad-
vantaged in their capacity to enter the small intestinal epithe-
lium, as compared with their CCR9-sufficient counterparts.
Collectively, these results identify CD103* DCs as potential
novel targets for regulating T cell accumulation within the
intestinal mucosa.

Several results from the current study suggest that murine
CD103*" DCs in the MLNs derive from the intestinal LP.
First, LP DCs, as CD103" MLN DCs, were potent genera-
tors of gut-tropic T cells in vitro. Second, CD103 was ex-
pressed on almost all CD11cMe"MHC class 111 LP DCs.
Third, the percentage of DCs that expressed CD103 was
considerably reduced in the MLNs of CCR7~/~ mice. Fi-
nally, there was a phenotypic resemblance between the
CD103* MLN DCs identified in the present study and the
previously described skin-derived MHC class 11"¢" semima-
ture DCs in skin-draining LNs (23-25). Consistent with
their LP origin, CD103 is expressed on almost all DCs in rat
gut—draining LNs (19). We think it unlikely that CD103*
MLN DCs derive from PP, because in our hands PP DCs
were not as potent as MLN DCs at generating gut-tropic T
cells, and the percentage of DCs expressing CD103 in the
PP did not exceed those in the MLNs (unpublished data).
Indeed, recent data in pigs suggest that few if any DCs mi-
grate from the PP to the MLNs (29), and the number of LP,
but not PP, DCs is heavily reduced after i.v. injection of LPS
into mice (18).

The origin of the CD103™ MLN DCs remains elusive. We
believe that the CD103~ LP DCs derive from isolated lym-
phoid follicles (30) or represent recently recruited DCs that
have yet to express CD103 and that these cells are not a major
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Figure 7. CD103* but not CD103~ MLN DCs can generate gut-
tropic CCR9*a4B7Me" T cells. (A) CD11c* DCs were enriched from
MLNs using anti-CD11c magnetic bead cell sorting, incubated with fluo-
rescently labeled mAbs against CD11c and CD103, and sorted into CD103*
and CD103~ DCs by FACS. (B-F) Indicated DC subsets were loaded with
OVA peptide and co-cultured with CD8* OT-I or CD4* OT-l cells. (B) Pro-
liferation of OT-I cells responding to a graded number of DCs was determined
by methyl-[*H]thymidine incorporation. One representative experiment of
three performed is shown. (C) IFN-y production by OT-I cells was determined
by flow cytometry after expansion with IL-7 and IL-15. Percentages

source of CD103™ MLN DCs. This belief is based on the find-
ing that CD103~ MLN DCs express far lower levels of MHC
class IT compared with CD103~ LP DCs, display a very differ-
ent phenotype than their CD103" MLN DC counterparts,
and previous results that rat gut—draining lymph leukocytes de-
pleted of CD103* cells are extremely poor in stimulating the
primary mixed lymphocyte reaction (19), suggesting that few,
if any, rat CD103~ LP DCs migrate into the MLNs. The ex-
pression of CD62L by CD103~ DCs in the MLNs indicates
that at least some of these cells have entered directly from the
blood via high endothelial venules, as previously reported to
occur in popliteal LNs during viral infection (22).

The anatomical location and specific signals involved in
imprinting MLN DCs with the ability to generate gut-tropic
T cells are currently unknown. Clearly, these signals are not

JEM VOL. 202, October 17, 2005

shown indicate OT-I cells expressing IFN-+y. (D-F) CFSE-labeled OT-I or
OT-Il cells were cultured with CD103* or CD103~ DCs for 4-5 d (D) and
further expanded in IL-7 and IL-15 for 3 d (E). Expression of CCR9, a,B5,
and CD62L by responding T cells was then analyzed by flow cytometry.
(D and E) Results are from one representative experiment of four (OT-I)
and two (OT-11) performed. The percentages indicate divided cells
expressing the indicated markers. (F) Mean = SD from four separate
experiments in which expression of CCR9 and CD62L was analyzed after
the primary DC culture, and a47 was analyzed after further expansion
in IL-7 and IL-15.

ubiquitously present within the MLNs, as CD103~ MLN
DCs were incapable of generating gut-tropic T cells. Fur-
thermore, the ability of LP DCs to generate gut-tropic T cells
strongly suggests that imprinting occurs before DC entry into
the MLNs. In this regard, the association of CD103 with a
DC’s ability to generate gut-tropic T cells may provide a
clue. CD103 (o) is the a chain of the a3, integrin, ex-
pressed on the majority of human and mouse intestinal lym-
phocytes (31, 32), and mediates their adhesion to intestinal
epithelial cells via interactions with E-cadherin (33). Impor-
tantly, effector CD8" T cells do not express CD103 before
their entry into the intestinal mucosa but rapidly up-regulate
this integrin after localizing to the intestinal epithelium (21).
CD8" T cells expressing a dominant-negative TGF-BII re-
ceptor express reduced levels of CD103 after their entry into
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the intestinal epithelium (34), indicating an important role for
TGF-B, potentially derived from intestinal epithelial cells
(35), in CD103 induction. Should CD103 be a marker of
DCs that have been exposed to epithelial cells and TGF-, it
would seem likely that epithelial-derived factors also play an
important role in imprinting them with an ability to generate
gut-tropic T cells. An additional, although as we believe, less
likely possibility is that a subset of DC precursors that have al-
ready been imprinted with an ability to generate gut-tropic T
cells selectively localize to the intestinal LP.

Although only CD103* MLN DCs induced CCRY on
responding OT-1 and OT-II cells, both CD103* and
CD103~ MLN DCs were capable of inducing oy;. These
findings are consistent with several recent studies demon-
strating a less stringent requirement for the induction of a,3,
compared with CCR9. Indeed, a3, is induced on T cells
after prolonged activation in vitro by DCs from skin-drain-
ing LNs (14, 36). Because a,f3; is detected on adoptively
transferred CD4* or CD8* T cells in the MLNs but not
PLNSs after immunization of recipient mice (2, 5), a,f3; ex-
pression appears to be more stringently regulated during im-
mune responses in vivo. Nevertheless, T cells primed in the
MLNs of CCR77/~ mice, which contain few CD103"
DG, failed to express CCR9 but showed a less dramatic re-
duction in ayf3; expression compared with T cells primed in
the MLNs of WT mice. Because both a,3; and CCR9 in-
duction on T cells is dependent on intestinal DC production
of retinoic acid (13), a potential explanation for these find-
ings is that oyf; requires lower levels of retinoic acid as
compared with CCRY for its induction and that the
CD103~ MLN DCs can produce low quantities of retinoic
acid. Because of the limited number of cells obtained after
purification and cell sorting of CD103" and CD103™ MLN
DCs, we have not been able to examine the amount of ret-
inoic acid generated by each of these populations. However,
induction of oy3; by lower levels of retinoic acid could po-
tentially be explained through synergistic signals provided by
co-stimulatory molecules. Indeed, up-regulation of o, in
vivo is partially blocked in the presence of a neutralizing
mAb against the OX40L (37), suggesting that OX40 signal-
ing may act in synergy with retinoic acid to trigger expres-
sion of ayf3; by T cells. Consistent with a CD40-dependent
expression of OX40L by DCs (38), we have also found that
a neutralizing antibody to CD40L reduces the number of
o, OT-I cells by ~50% after co-culture with MLN
DCs, whereas CCRY expression is unaftected by this treat-
ment (unpublished data).

Several studies have demonstrated expression of CD103
on DCs both within and outside the small intestine (19, 20).
In the rat, CD103 was originally identified through the mAb
OX-62 raised against veiled cells obtained from the cannu-
lated thoracic duct of mesenteric lymphadenectomized ani-
mals; however, it is also present on DCs in the thymus, cervi-
cal LNs, interstitium of the lung, portal triads of the liver,
glomeruli of the liver, islet of Langerhans of the pancreas, and
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epithelium of choroid plexus, but not in heart and skeletal
muscle (19). A similar distribution of CD103% DCs has been
reported in the mouse (20). We also confirm the findings of
Kilshaw (20) that murine splenic DCs, in apparent contrast to
DC:s in the rat spleen (19), are largely CD1037. Thus, as with
effector CD8" T cells, CD103 expression on DCs appears to
be primarily restricted to epithelial tissues or LNs draining
such tissues. Finally, we have found that ~20% of DCs in
skin-draining LNs express CD103 and that this frequency is
also dramatically reduced in CCR7~/~ mice (unpublished
data). Collectively, these results indicate that CD103* DCs
may represent a unique population of DCs associated with
epithelial tissues and that these cells are capable of migrating
to local draining LNs. In this regard it will be of considerable
interest to determine whether CD103* DCs in LNs draining
distinct epithelial tissues generate eftector T cells with tropism
for that particular site.

Finally, our results suggest that the efficient generation of
gut-tropic T cells after oral compared with i.p. antigen ad-
ministration is caused by a differential targeting of DCs. Fur-
thermore, experiments in CCR7~/~ mice revealed that oral-
administered OVA does not reach the MLNS in soluble form
in sufficient quantity to induce OT-I cell proliferation but
must be transported to the MLNs by DCs. Thus, the en-
hanced generation of CCR9%a,B,"e" OT-I cells after oral
immunization compared with i.p. immunization likely re-
flects enhanced antigen presentation by LP-derived DCs in
the MLNs. Indeed, intestinal DCs display a pronounced mi-
gration into the draining MLNs under steady-state condi-
tions (18, 39). How then is adjuvant functioning to enhance
the generation of gut-tropic T cells? Because both oral CT
and systemic LPS administration induce DC migration from
the small intestinal LP into the draining MLNs (16-18), ad-
juvant likely promotes the generation of gut-tropic T cells
by enhancing the number of intestinally imprinted LP-
derived DCs in the MLNs. At this point, we cannot exclude
the possibility that adjuvant also functions directly to mature
the gut-imprinting ability of CD103" DCs within the
MLNs; however, it is notable that i.v. injection of LPS into
rats almost completely emptied the small intestinal LP of
DCs within 12 h, whereas the phenotype of the DCs in the
gut-draining LNs and in the MLNs showed no apparent
signs of maturation, as judged from expression levels of
CD80 and CD86 (18).

In conclusion, we have demonstrated that the capacity to
generate tissue-selective T cell subsets in the gut is highly re-
stricted to a specialized subset of CD103* MLN DCs most
likely originating from the small intestinal LP. The presence of
CD103" DCs in LNs draining other epithelial tissues suggests
that these cells may also provide important (but different) cues
for T cell migration at these sites. Our results indicate that tar-
geting the CD103™ intestinal DCs may provide a novel means
of regulating intestinal immune responses. This may be of par-
ticular importance in the development of oral vaccines and in
the treatment of chronic inflammatory bowel disease.
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MATERIALS AND METHODS

Mice. OT-I, C57BL/6 (Ly5.1), and C57BL/6 mice were obtained from
the Jackson Laboratory. OT-II mice were provided by M.-J. Wick (Goth-
enburg University, Gothenburg, Sweden). CCR9™/~ OT-I (provided by
A. Wurbel and B. Malissen, Institut national de la santé et de la recherche
médicale, Paris, France) and Ly5.17Ly5.2" OT-I mice were generated as
previously described (5). CCR77/~ mice have been described previously
(26). All mice were bred and maintained at the BioMedical Center animal
facility of Lund University or at the central animal facility of Hannover
Medical School, and all animal work was approved by the local ethical re-
view boards in Lund and Hannover, respectively.

Reagents. In vitro cell culturing was performed in RPMI 1640 with 10%
FCS, 2 mM L-Glutamine, 10 mM Hepes, 1 mM sodium pyruvate, 50 pM
B-mercaptoethanol, 100 U/ml penicillin G, 100 pg/ml streptomycin sul-
fate, and 50 pg/ml gentamicin (all reagents were obtained from GIBCO
BRL), hereafter referred to as complete R10 medium. Also, HBSS was ob-
tained from GIBCO BRL. OVA (grade VI; Sigma-Aldrich) was purified
from endotoxins by Detoxi-Gel chromatography (Pierce Chemical Co.).
Synthetic peptides were purchased from Innovagen. LPS (Escherichia coli, se-
rotype 055:B55), CT (from Vibrio cholerac), DNase I, collagenase type IV
and VIII, 7-amino-actinomycin D (7-AAD), PMA, ionomycin, and Brefel-
din A were obtained from Sigma-Aldrich. Recombinant cytokines were
purchased from R&D Systems, CFSE was purchased from Invitrogen, and
methyl-[*H]thymidine was purchased from GE Healthcare. The following
antibodies were obtained from BD Biosciences: PE- and FITC-conjugated
anti-CD103 (M290, IgG2a), unconjugated or PE-conjugated anti-o,B;
(DATK32, rat IgG2a), PE- or APC-conjugated anti-CD62L (MEL-14, rat
IgG2a), biotinylated anti-CD80 (16-10A1, hamster IgG), PE-conjugated
anti-IFN-y (XMG1.2, rat IgG1), PE-conjugated anti-Ly5.1 (A20, mouse
IgG2a), FITC-conjugated anti-Ly5.2 (104, mouse IgG2a), and PE-conju-
gated antikeyhole limpet hemocyanin (isotype control; A110-2, rat IgG2a).
PE-labeled anti-Ly5.2 (clone 104) was purchased from eBioscience. Anti-
CCRY (K629, polyclonal rabbit IgG) has been described previously (40).
The following mAbs were produced from the hybridomas, purified, and la-
beled according to standard procedures: FITC anti-MHC class II (clone
M5/114.15.2, rat IgG2b), Cy5 anti-CD11c¢ (clone N418, hamster IgG), bi-
otin anti-CD40 (clone FGK45, rat 1gG2a), and biotin anti-CD86 (clone
GL1, rat IgG2a). Primary rabbit IgG and rat [gG2a antibodies were revealed
using biotinylated goat anti—rabbit IgG (polyclonal; Jackson ImmunoRe-
search Laboratories) and biotinylated mouse anti—rat IgG2a (RG7/1.30; BD
Biosciences), respectively, followed by PE- or APC-labeled streptavidin
(BD Biosciences).

DC purification. For in vivo expansion of DCs, C57BL/6 mice were in-
jected s.c. on the dorsal flank with 15-20 X 10¢ Flt3L-secreting B16 mela-
noma cells/mouse as previously described (11). Mice were killed 8-10 d
later, and the indicated organs were removed and used for isolation of DCs.

In experiments depicted in Fig. 2, DCs were purified from Flt3L-
treated C57BL/6 mice. In all other experiments, untreated C57BL/6 mice
were used. LNs and spleens were first cut into small pieces and then treated
with 500 wg/ml collagenase IV and 50 U/ml DNase I diluted in RPM
1640 with 10% FCS and antibiotics. Enzymatic digestion was performed for
45 min at 37°C on an orbital shaker at 250 revolutions per minute. The re-
maining tissue was mechanically minced, and resulting cell suspensions were
pooled and filtered through a 70-pwm cell strainer. Cells were washed in
PBS containing 2% FCS and 2 mM EDTA, and this buffer was used in all
subsequent purification steps. Erythrocytes were removed from spleen cells
by standard Ficoll-Paque density centrifugation (Pharmacia Fine Chemi-
cals). DCs were then immunomagnetically sorted using anti-CD11c—conju-
gated magnetic beads and sequential passage over 2 LS columns, according
to the manufacturer’s protocol (Miltenyi Biotec).

DCs were isolated from the small intestine by enzymatic digestion of
the LP after removal of PP and epithelial cells. In brief, after extensive flush-
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ing with HBSS and removal of PP, the small intestine was cut longitudinally
and then into 5-mm pieces. Epithelial cells were removed by incubating the
tissue for 15 min at 37°C with 2 mM EDTA in HBSS supplemented with
10% FCS, followed by vigorous shaking for 10 s. The samples were filtered
using a nylon mesh and subjected to further EDTA treatment for a total of
three times. To release LP leukocytes, the remaining tissue was incubated
for 45 min at 37°C with 100 U/ml collagenase type VIII and 50 U/ml
DNase I diluted in HBSS containing 10% FCS and 10 mM Hepes. After di-
gestion, the samples were shaken vigorously for 10 s, supernatants were col-
lected by filtration through a nylon mesh, and tissue was subjected to a sec-
ond round of enzymatic digestion. Leukocytes were further enriched on a
40:70 Percoll gradient where the interface was collected after centrifugation
at 600 ¢ for 20 min. DCs were finally immunomagnetically sorted as de-
scribed in the previous section. For all DC preparations, >95% of positively
selected cells expressed CD11c and >90% were CD11¢*MHC class 117, as
assessed by flow cytometry.

For sorting of MLN DCs into CD103" and CD103~ subsets, CD11c¢*
cells were first enriched from total MLN cells by immunomagnetic cell
sorting on a single LS column. Positively selected cells were then incubated
with PE-conjugated anti-CD11lc mAb (HL3, Hamster IgG; BD Bio-
sciences), FITC-conjugated anti-CD103, and 7-AAD and sorted on a
FACSVantage (Becton Dickinson) into 7-AAD " CD11¢"CD103" and
7-AAD~CD11¢*CD103™ fractions. Purity of sorted CD103* and CD103~
DC:s routinely exceeded 90 and 95%, respectively.

In vitro cultures. Splenic CD8B" and CD4* T cells were obtained from
OT-I and OT-II mice, respectively, using biotinylated anti-CD8 mAb
(53-5.8, rat IgG1; BD Biosciences), followed by streptavidin-conjugated
magnetic beads or anti-CD4—conjugated beads, followed by purification on
LS columns according to the manufacturer’s protocol (Miltenyi Biotec). Pu-
rified DCs from MLNs, PP, LP, or spleen were incubated for 1 h at 37°C
with either 1 nM OVA,s; 55, SIINFEKL peptide (recognized by the OT-I
TCR in the context of KY or 1 wM OVAs; ;55 ISQAVHAA-
HAEINEAGR peptide (recognized by the OT-II TCR in the context of
[-AY). After extensive washing, 10> peptide-pulsed DCs were co-cultured
with 2 X 105 CFSE-labeled OT-I or OT-II cells in a final volume of 200 pl
complete R10 medium using a flatbottom 96-well plate. Primary cultures
were analyzed by flow cytometry at day 4 of co-culture, and secondary cul-
tures were analyzed after an additional 3 d of expansion in 1 ml of fresh, com-
plete R10 medium supplemented with 10 ng/ml each of IL-7 and IL-15.

Proliferation of 10> OT-I cells/well in triplicate wells in response to a
graded number of peptide-pulsed DCs was quantified during a 36-h period
of co-culture by measuring methyl-[*H|thymidine incorporation (1 wCi/
well) into DNA during the final 16 h of culture. For this purpose, cells were
co-cultured in a flatbottom 96-well plate, and incorporated radioactivity
was counted in a liquid scintillation counter (Wallac 1450; Microbeta).

Adoptive transfer experiments. 3 X 10° CD8B* OT-I cells were in-
jected 1.v. into C57BL/6 or CCR77/~ recipient mice. For adoptive trans-
fers into the Ly5.17 C57BL/6 recipients, we used Ly5.2% OT-I cells or an
equal number of Ly5.2* CCR97/~ OT-I and Ly5.17Ly5.2%* WT OT-I
cells. The Ly5.2% CCR77/"— and C57BL/6-recipient mice received
CFSE-labeled Ly5.1"Ly5.2" OT-I cells. 1 d after OT-I cell transfer, recipi-
ent mice were immunized either orally with 50 mg OVA with or without
20 wg CT or i.p. with 5 mg OVA with or without 50 wg LPS. 3 d later,
mice were killed, and organs and tissues were collected. Isolation of small
intestinal IEL and lymphocytes from LNs was performed as previously de-
scribed (3). Donor OT-I cells were analyzed by flow cytometry and distin-
guished from the recipient cells based on Ly5.1/Ly5.2 expression.

Flow cytometry analysis. To determine the phenotype of DCs in LN,
spleen, and the small intestine LP, single-cell suspensions were prepared from
the respective organ/tissue according to the protocols described in DC purifi-
cation section. Adoptively transferred Ly5.2* and Ly5.17Ly5.2" OT-I cells
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were detected using FITC- or PE-labeled anti-Ly5.2 mAb and PE-conju-
gated anti-Ly5.1 mAb, respectively. PBS supplemented with 2% FCS and 2
mM EDTA was used for all incubations and washing procedures. All samples
were preincubated with 2 pg/ml of anti-FcR mAb (2.4G2), and all incuba-
tions were performed on ice for 30 min with the viability marker 7-AAD in-
cluded in the final incubation step. Analysis of intracellular IFN-y was per-
formed after a 4-h restimulation with 50 ng/ml PMA and 1 pg/ml
ionomycin in the presence of 10 pg/ml Brefeldin A, followed by fixation and
permeabilization with 4% paraformaldehyde and 0.5% saponin (Sigma-Aldrich).
Data was acquired using a flow cytometer (FACSCalibur; Becton Dickinson),
and data analysis was performed with the CellQuest (Becton Dickinson),
FlowJo (Tree Star, Inc.), and FCSExpress (De Novo Software) software.

Tissue staining. Acetone-fixed cryostat sections of the small intestine je-
junum were quenched with 0.3% H,O,, preincubated with 5% rat serum in
TBST (0.1 M Tris, pH 7.5, 0.15 M NaCl, 0.1% Tween 20) and blocked se-
quentially with 0.001% avidin (wt/vol) and 0.001% biotin (wt/vol) in PBS.
Sections were then incubated for 1 h with APC-conjugated anti-CD11c,
FITC-conjugated anti-MHC class II, and with biotinylated anti-CD103
mAbs diluted in TBST containing 5% rat serum. The anti-CD103 mAb was
then visualized by first applying horseradish peroxidase—labeled streptavidin
and then Alexa 546—conjugated tyramide, according to the manufacturer’s
recommendations (Invitrogen). Slides were counterstained with DAPI and
mounted, and images were acquired using an Axiovert 200M microscope
and the Axiovision software (Carl Zeiss Microlmaging, Inc.).

Statistical analysis. All statistical analyses were performed using the two-
tailed Mann-Whitney U test.
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