Super enhancers (SEs) play critical roles in cell type–specific gene regulation. The mechanisms by which such elements work are largely unknown. Two SEs termed DR/DQ-SE and XL9-SE are situated within the human MHC class II locus between the HLA-DRB1 and HLA-DQA1 genes and are highly enriched for disease-causing SNPs. To test the function of these elements, we used CRISPR/Cas9 to generate a series of mutants that deleted the SE. Deletion of DR/DQ-SE resulted in reduced expression of HLA-DRB1 and HLA-DQA1 genes. The SEs were found to interact with each other and the promoters of HLA-DRB1 and HLA-DQA1. DR/DQ-SE also interacted with neighboring CTCF binding sites. Importantly, deletion of DR/DQ-SE reduced the local chromatin interactions, implying that it functions as the organizer for the local three-dimensional architecture. These data provide direct mechanisms by which an MHC-II SE contributes to expression of the locus and suggest how variation in these SEs may contribute to human disease and altered immunity.

This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
You do not currently have access to this content.