The firm adhesion and transplatelet migration of leukocytes on vascular thrombus are dependent on the interaction of the leukocyte integrin Mac-1 (αMβ2, CD11b/CD18) and the platelet counter receptor glycoprotein (GP) Ibα. Previous studies have established a central role for the I domain, a stretch of ∼200 amino acids within the αM subunit, in the binding of GP Ibα. This study was undertaken to establish the molecular basis of GP Ibα recognition by αMβ2. The P201–K217 sequence, which spans an exposed loop and amphipathic α4 helix in the three-dimensional structure of the αMI domain, was identified as the binding site for GP Ibα. Mutant cell lines in which the αMI domain segments P201–G207 and R208–K217 were switched to the homologous, but non-GP Ibα binding, αL domain segments failed to support adhesion to GP Ibα. Mutation of amino acid residues within P201–K217, H210–A212, T213–I215, and R216–K217 resulted in the loss of the binding function of the recombinant αMI domains to GP Ibα. Synthetic peptides duplicating the P201–K217, but not scrambled versions, directly bound GP Ibα and inhibited αMβ2-dependent adhesion to GP Ibα and adherent platelets. Finally, grafting critical amino acids within the P201–K217 sequence onto αL, converted αLβ2 into a GP Ibα binding integrin. Thus, the P201–K217 sequence within the αMI domain is necessary and sufficient for GP Ibα binding. These observations provide a molecular target for disrupting leukocyte–platelet complexes that promote vascular inflammation in thrombosis, atherosclerosis, and angioplasty-related restenosis.

You do not currently have access to this content.