The neurodegenerative changes in Alzheimer's disease (AD) are elicited by the accumulation of β-amyloid peptides (Aβ), which damage neurons either directly by interacting with components of the cell surface to trigger cell death signaling or indirectly by activating astrocytes and microglia to produce inflammatory mediators. It has been recently proposed that the p75 neurotrophin receptor (p75NTR) is responsible for neuronal damage by interacting with Aβ. By using neuroblastoma cell clones lacking the expression of all neurotrophin receptors or engineered to express full-length or various truncated forms of p75NTR, we could show that p75NTR is involved in the direct signaling of cell death by Aβ via the function of its death domain. This signaling leads to the activation of caspases-8 and -3, the production of reactive oxygen intermediates and the induction of an oxidative stress. We also found that the direct and indirect (inflammatory) mechanisms of neuronal damage by Aβ could act synergistically. In fact, TNF-α and IL-1β, cytokines produced by Aβ-activated microglia, could potentiate the neurotoxic action of Aβ mediated by p75NTR signaling. Together, our results indicate that neurons expressing p75NTR, mostly if expressing also proinflammatory cytokine receptors, might be preferential targets of the cytotoxic action of Aβ in AD.

You do not currently have access to this content.