The mechanisms that regulate the strength and duration of CD8+ cytotoxic T cell activity determine the effectiveness of an antitumor immune response. To better understand the antitumor effects of anti-cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) antibody treatment, we analyzed the effect of CTLA-4 signaling on CD8+ T cells in vitro and in vivo. In vitro, cross-linking of CTLA-4 on purified CD8+ T cells caused decreased proliferative responses to anti-CD3 stimulation and rapid loss of activation marker expression. In vivo, blockade of CTLA-4 by neutralizing anti–CTLA-4 mAb greatly enhanced the accumulation, activation, and cytotoxic activity of CD8+ T cells induced by immunization with Ag on dendritic cells (DC). This enhanced response did not require the expression of MHC class II molecules on DC or the presence of CD4+ T cells. These results demonstrate that CTLA-4 blockade is able to directly enhance the proliferation and activation of specific CD8+ T cells, indicating its potential for tumor immunotherapy even in situations in which CD4+ T cell help is limited or absent.
Cytotoxic T Lymphocyte–associated Antigen 4 (CTLA-4) Can Regulate Dendritic Cell–induced Activation and Cytotoxicity of CD8+ T Cells Independently of CD4+T Cell Help
Address correspondence to Franca Ronchese, Malaghan Institute of Medical Research, P.O. Box 7060, Wellington South, New Zealand; Phone: 64-4-389-5096; Fax: 64-4-389-5095; E-mail: [email protected]
K. McCoy's present address is Institute for Experimental Immunology, University of Zürich, Schmelzbergstrasse 12, CH-8091 Zürich, Switzerland.
K.D. McCoy and I.F. Hermans contributed equally to this study.
Kathy D. McCoy, Ian F. Hermans, J. Henry Fraser, Graham Le Gros, Franca Ronchese; Cytotoxic T Lymphocyte–associated Antigen 4 (CTLA-4) Can Regulate Dendritic Cell–induced Activation and Cytotoxicity of CD8+ T Cells Independently of CD4+T Cell Help . J Exp Med 5 April 1999; 189 (7): 1157–1162. doi: https://doi.org/10.1084/jem.189.7.1157
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement