Narrow-band (312 nm) ultraviolet B light (UVB) is a new form of therapy for psoriasis, but its mechanism of action is unknown. In a bilateral comparison clinical study, daily exposure of psoriatic plaques to broad-band UVB (290–320 nm) or 312-nm UVB depleted T cells from the epidermis and dermis of psoriatic lesions. However, 312-nm UVB was significantly more depleting in both tissue compartments. To characterize the mechanism of T cell depletion, assays for T cell apoptosis were performed on T cells derived from UVB-irradiated skin in vivo and on T cells irradiated in vitro with 312-nm UVB. Apoptosis was induced in T cells exposed to 50–100 mJ/cm2 of 312-nm UVB in vitro, as measured by increased binding of fluorescein isothiocyanate (FITC)–Annexin V to CD3+ cells and by characteristic cell size/granularity changes measured by cytometry. In vivo exposure of psoriatic skin lesions to 312-nm UVB for 1–2 wk also induced apoptosis in T cells as assessed by the terminal deoxynucleotidyl transferase–mediated dUTP-biotin nick end labeling (TUNEL) reaction in tissue sections, by binding of FITC–Annexin V to CD3+ T cells contained in epidermal cell suspensions, and by detection of apoptosis-related size shifts of CD3+ cells. Induction of T cell apoptosis could be the main mechanism by which 312-nm UVB resolves psoriasis skin lesions.

You do not currently have access to this content.